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GENERALIZED LAGUERRE POLYNOMIAL BOUNDS FOR

SUBCLASS OF BI-UNIVALENT FUNCTIONS

TRAILOKYA PANIGRAHI (1) AND JANUSZ SOKÓ L (2)

Abstract. In the present paper, we propose to introduce a new subclass of bi-

univalent analytic functions TΣ(λ, γ) (0 < λ ≤ 1, γ ≥ 0) which is defined by making

use of the generalized Laguerre polynomials in the open unit disk ∇. We derive

upper bounds for the coefficients |a2|, |a3| and discuss Fekete-Szegö problem for the

functions belonging to the new introduced class TΣ(λ, γ).

1. Introduction and Motivation

Let C denote the set of complex numbers and let H(∇) be the class of functions

which are analytic in the open unit disk ∇ := {z ∈ C : |z| < 1}. Let Λ be the class of

all functions f ∈ H(∇) satisfying the normalization condition f(0) = f ′(0)− 1 = 0.

Thus, a function f ∈ Λ has the following Taylor-Maclurian series expansion:

(1.1) f(z) = z +

∞
∑

n=2

anz
n (z ∈ ∇).

We denote by S, the subclass of all functions in Λ that are univalent in ∇.

For real number β > −1, the polynomial solution y(x) of the differential equation

(see [14])

(1.2) xy′′ + (1 + β − x)y′ + ny = 0,
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where n is non-negative integers, is called generalized Laguerre polynomial or asso-

ciated Laguerre polynomial and it is denoted by Lβ
n(x). It has many applications in

areas of mathematical physics and quantum mechanics; for example in the integration

of Helmholtz’s equation in paraboloidal coordinates, in the theory of propagation of

electromagnetic oscillations along long lines and so on. These polynomials satisfy

certain recurrence relations, namely,

(1.3) Lβ
n+1(x) =

2n + 1 + β − x

n+ 1
Lβ
n(x)−

n+ β

n+ 1
Lβ
n−1(x) (n ≥ 1)

with the initial conditions

(1.4) Lβ
0 (x) = 1, Lβ

1 (x) = 1 + β − x.

It can easily derived from (1.3) that

Lβ
2 (x) =

x2

2
− (β + 2)x+

(β + 1)(β + 2)

2
,

Lβ
3 (x) = −x

3

6
+

(β + 3)x2

2
− (β + 2)(β + 3)

2
x+

(β + 1)(β + 2)(β + 3)

6
,(1.5)

and so on.

It may be noted that the simply Laguerre polynomials are the special case β = 0 of

generalized Laguerre polynomial i.e. L0
n(x) = Ln(x).

Result 1.1. (see [14]) Let F (x, z) be the generating function of the generalized La-

guerre polynomial Lβ
n(x). Then

(1.6) F (x, z) =

∞
∑

n=0

Lβ
n(x)z

n =
e−

xz
1−z

(1− z)β+1
(x ∈ R, z ∈ ∇).

Now we recall the subordination between two analytic functions as follows:

Definition 1.1. Let f and g be two analytic functions in ∇. Then f is subordinate

to g if there exists an analytic function w, satisfying the condition of Schwarz lemma
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(i.e w(0) = 0, |w(z)| < 1 (z ∈ ∇)) such that f(z) = g(w(z)). We denote this

subordination by f(z) ≺ g(z) (z ∈ ∇). In particular, if the function g is univalent in

∇, then (see [5, 16])

f(z) ≺ g(z) (z ∈ ∇) ⇐⇒ f(0) = g(0) and f(∇) ⊂ g(∇).

The Koebe One-Quarter theorem (see [9]) asserts that the image of ∇ under every

functions in the normalized univalent function class S contains the disk |z| < 1/4.

Therefore, the inverse of f ∈ Λ is an univalent analytic function f−1 in a disk ∆ρ =

{z : z ∈ C and |z| < ρ, ρ ≥ 1
4
}. Then we have f−1(f(z)) = z, (z ∈ ∇) and

f(f−1(w)) = w (w ∈ ∆ρ). From (1.1), we have

(1.7) g(w) = f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · .

Definition 1.2. A function f ∈ Λ is said to be bi-univalent in ∇ if both f and f−1

are univalent in ∇. Let Σ be denote the class of bi-univalent function in ∇ given by

(1.1).

A good amount of literature are available for the bounds of the coefficient estimate

for the class of bi-univalent functions. The concept of bi-univalent analytic functions

was introduced by Lewin [15] in 1967 and he showed that |a2| < 1.51. Subsequently,

Brannan and Clunie [3] conjectured that |a2| ≤
√
2 for f ∈ Σ. Netanyahu [17] on the

other hand, showed that maxf∈Σ |a2| = 4
3
. Brannan and Taha [4] introduced certain

subclasses of the bi-univalent function class Σ similar to the familiar subclasses S∗(α)

and K(α) of starlike and convex functions of order α (0 < α < 1) respectively. The

classes S∗
Σ(α) and KΣ(α) of bi-univalent starlike functions of order α and bi-convex

functions of order α, corresponding to the function classes S∗(α) and K(α), were

also introduced analogously. For each of the function classes S∗
Σ(α) and KΣ(α), they

found non-sharp estimates on the initial coefficients.

The coefficient estimate problems for bi-univalent function is about half a century old.
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Any good results on this topic is recognized world-wide as a significant contribution.

But the problem remained in hibernation for about thirty years until it was freshly

discussed by Srivastava et al.[20]. From the work of Srivastava et al.[20], we choose

to recall the functions z
1−z

, − log(1− z),−1
2
log 1+z

1−z
and so on are in the class Σ. The

familiar Koebe function which is univalent is not a member of class Σ.

Motivated by the work of Srivastava et al.[20], many researchers investigated the

coefficients bounds for various subclasses of bi-univalent function class Σ (see [1, 2, 7,

8, 11, 18, 19, 21]). Not much is known about the bounds on the general coefficients

|an| for n ≥ 4. In the literature, there are only a few works determining the general

coefficient bounds on |an| for the analytic bi-univalent function class (see [6, 12,

13]). The coefficient estimate problem for each of the following Taylor-Maclaurin

coefficients |an| (n ∈ N \ {1, 2}) is presumably still an open problem. Motivated by

aforementioned works, we introduce a new subclass of bi-univalent function class Σ

by using generating function of generalized Laguerre polynomial as follows.

Definition 1.3. A function f ∈ Σ of the form (1.1) is said to be in the class TΣ(λ, γ)

if it satisfies the following subordination condition:

(1.8)
1

2





(

z

f(z)

)1−γ

f ′(z) +

{

(

z

f(z)

)1−γ

f ′(z)

}
1
λ



 ≺ F (x, z) (z ∈ ∇)

and

(1.9)
1

2





(

w

g(w)

)1−γ

g′(w) +

{

(

w

g(w)

)1−γ

g′(w)

}
1
λ



 ≺ F (x, w) (w ∈ ∇),

where 0 < λ ≤ 1, γ ≥ 0 and g = f−1 is given by (1.7). All of the powers are chosen

in order to 1α=1.



GENERALIZED LAGUERRE POLYNOMIAL BOUNDS 131

Remark 1. Taking λ = 1 in Definition 1.3, it can seen that a function f ∈ Σ is in the

class TΣ(1, γ) = TΣ(γ) if

(1.10)

(

z

f(z)

)1−γ

f ′(z) ≺ F (x, z) (z ∈ ∇)

and

(1.11)

(

w

g(w)

)1−γ

g′(w) ≺ F (x, w) (w ∈ ∇),

where γ ≥ 0 and g = f−1 is given by (1.7).

Remark 2. Taking γ = 1 in Definition 1.3, we get the following: A function f ∈ Σ is

in the class TΣ(λ, 1) = TΣ(λ) if

(1.12)
1

2
[f ′(z) + (f ′(z))

1
λ ] ≺ F (x, z) (z ∈ ∇)

and

(1.13)
1

2
[g′(w) + (g′(w))

1
λ ] ≺ F (x, w) (w ∈ ∇),

where γ ≥ 0 and g = f−1 is given by (1.7).

Remark 3. Letting γ = 0 in Remark 1, we get the following function class. A function

f ∈ Σ is said to be in the class TΣ(0) = TΣ if

(1.14)
zf ′(z)

f(z)
≺ F (x, z) (z ∈ ∇)

and

(1.15)
wg′(w)

g(w)
≺ F (x, w) (w ∈ ∇)

Remark 4. Putting γ = 1 in Remark 1 or λ = 1 in Remark 2 we obtain the result for

the following function class. A function f ∈ Σ is said to be in the class TΣ(1, 1) = TΣ1

if

(1.16) f ′(z) ≺ F (x, z) (z ∈ ∇)
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and

(1.17) g′(w) ≺ F (x, w) (w ∈ ∇).

The main objective of the present paper is sequentially arrange in the following

manner. In Section 2, we obtain the coefficient bounds on the Taylor-Maclaurin

coefficients on a2 and a3 for the function belongs to TΣ(λ, γ). In Section 3, we

consider the Fekete-Szegö problem for the above mentioned class. Finally, the paper

is ended with concluding remark.

2. Coefficient Bounds

The coefficient bounds for the function f ∈ Σ in the class TΣ(λ, γ) is given by the

following theorem.

Theorem 2.1. Let the function f ∈ Σ given by (1.1) be in the class TΣ(λ, γ) (0 <

λ ≤ 1, γ ≥ 0). Then

(2.1) |a2| ≤
2λ|1 + β − x|

√

|1 + β − x|
√

∣

∣

∣
A1(1 + β − x)2 − A2

(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)
∣

∣

∣

and

(2.2) |a3| ≤
4λ2(1 + β − x)2

(1 + γ)2(1 + λ)2
+

2λ|1 + β − x|
(1 + λ)(γ + 2)

,

where

(2.3) A1 = λ(λ+ 1)(1 + γ)(2 + γ) + (1− λ)(1 + γ)2

(2.4) A2 = (1 + λ)2(1 + γ)2.
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Proof. Let f ∈ TΣ(λ, γ) be given by (1.1) and g = f−1. Then, by Definition 1.3, we

have

(2.5)
1

2





(

z

f(z)

)1−γ

f ′(z) +

{

(

z

f(z)

)1−γ

f ′(z)

}
1
λ



 = F (x, φ(z)),

and

(2.6)
1

2





(

w

g(w)

)1−γ

g′(w) +

{

(

w

g(w)

)1−γ

g′(w)

}
1
λ



 = F (x, ψ(w)).

Define the functions φ(z) and ψ(w) by

(2.7) φ(z) = d1z + d2z
2 + . . . ,

(2.8) ψ(z) = e1w + e2w
2 + . . .

which are analytic in ∇ with φ(0) = ψ(0) = 0 and |φ(z)| < 1, |ψ(z)| < 1, (z, w ∈ ∇).

It is fairly well-known that if

|φ(z)| = |d1z + d2z
2 + . . . | < 1 (z ∈ ∇)

and

(2.9) |ψ(w)| = |e1w + e2w
2 + . . . | (w ∈ ∇),

then

|di| ≤ 1 and |ei| ≤ 1 (i ∈ N := {1, 2, 3, . . .}).(2.10)

Making use of (2.7) and (2.8) in (2.5) and (2.6) respectively, we obtain

1

2





(

z

f(z)

)1−γ

f ′(z) +

{

(

z

f(z)

)1−γ

f ′(z)

}
1
λ



 =

∞
∑

n=0

Lβ
n(x)[φ(z)]

n

= 1 + Lβ
1 (x)d1z + [Lβ

1 (x)d2 + Lβ
2 (x)d

2
1]z

2 + . . . ,(2.11)
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and

1

2





(

w

g(w)

)1−γ

g′(w) +

{

(

w

g(w)

)1−γ

g′(w)

}
1
λ



 =

∞
∑

n=0

Lβ
n(x)[ψ(w)]

n

= 1 + Lβ
1 (x)e1w + [Lβ

1 (x)e2 + Lβ
2 (x)e

2
1]w

2 + . . . .(2.12)

A simple calculation give

1

2





(

z

f(z)

)1−γ

f ′(z) +

{

(

z

f(z)

)1−γ

f ′(z)

}
1
λ



 = 1 +
(1 + λ)(1 + γ)

2λ
a2z

+

[

(γ + 2)(1 + λ)

4λ
(2a3 + (γ − 1)a22) +

(1− λ)(1 + γ)2

4λ2
a22

]

z2 + · · ·(2.13)

and

1

2





(

w

g(w)

)1−γ

g′(w) +

{

(

w

g(w)

)1−γ

g′(w)

}
1
λ



 = 1− (1 + γ)(1 + λ)

2λ
a2w

+

[

(1 + λ)(γ + 2)

4λ
{(3 + γ)a22 − 2a3}+

(1− λ)(1 + γ)2

4λ2
a22

]

w2 + · · ·(2.14)

Hence, upon comparing coefficients between (2.11) and (2.13) and (2.12) and (2.14)

we obtain

(2.15)
(1 + λ)(1 + γ)

2λ
a2 = Lβ

1 (x)d1,

(2.16)
(1 + λ)(γ + 2)

4λ
[2a3 + (γ − 1)a22] +

(1− λ)(γ + 1)2

4λ2
a22 = Lβ

1 (x)d2 + Lβ
2 (x)d

2
1,

and

(2.17) −(1 + λ)(1 + γ)

2λ
a2 = Lβ

1 (x)e1,

(2.18)
(1 + λ)(γ + 2)

4λ
[(3 + γ)a22 − 2a3] +

(1− λ)(1 + γ)2

4λ2
a22 = Lβ

1 (x)e2 + Lβ
2 (x)e

2
1.

It follows from (2.15) and (2.17) that

(2.19) d1 = −e1,
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and

(2.20)
(1 + λ)2(1 + γ)2

2λ2
a22 = [Lβ

1 (x)]
2(d21 + e21).

Adding (2.16) and (2.18) and using (2.20) in the resulting equation, we get

(2.21)

[λ(λ+1)(γ+1)(γ+2)+(1−λ)(1+γ)2](Lβ
1 (x))

2−(1+λ)2(1+γ)2Lβ
2 (x)]a

2
2 = 2λ2(Lβ

1 (x))
3(d2+e2),

which implies

(2.22) a22 =
2λ2(Lβ

1 (x))
3(d2 + e2)

A1(L
β
1 (x))

2 − A2L
β
2 (x)

,

where A1 and A2 are given by (2.3) and (2.4) respectively. Applying (2.10) to the

coefficients d2 and e2 and using (1.4) and (1.5) in (2.22) we have

|a2| ≤
2λ|1 + β − x|

√

|1 + β − x|
√

|A1(1 + β − x)2 − A2

(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)

|
.

In order to find the bound on |a3|, subtracting (2.18) from (2.16), we obtain

(2.23)
(1 + λ)(γ + 2)

λ
(a3 − a22) = Lβ

1 (x)(d2 − e2) + Lβ
2 (x)(d

2
1 − e21).

By virtue of (2.19) and (2.20), equation (2.23) reduces to

a3 =
2λ2(Lβ

1 (x))
2

(1 + λ)2(1 + γ)2
(d21 + e21) +

λ

(1 + λ)(γ + 2)
Lβ
1 (x)(d2 − e2).

Substituting the values of Lβ
1 (x) and L

β
2 (x) from (1.4) and (1.5) and applying (2.10)

to the coefficients d1, d2, e1 and e2, we get

(2.24) |a3| ≤
4λ2(1 + β − x)2

(1 + γ)2(1 + λ)2
+

2λ|1 + β − x|
(1 + λ)(γ + 2)

.

Thus, the proof of Theorem 2.1 is completed. �

Taking λ = 1 in Theorem 2.1, we obtain the following result:
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Corollary 2.1. Let f ∈ Σ given by (1.1) be in the class TΣ(γ). Then

|a2| ≤
2|1 + β − x| 32

√

|2(1 + γ)(2 + γ)(1 + β − x)2 − 4(1 + γ)2
(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)

|

and

|a3| ≤
(1 + β − x)2

(1 + γ)2
+

|1 + β − x|
(γ + 2)

.

Putting γ = 1 in Theorem 2.1 gives the following.

Corollary 2.2. Let f ∈ Σ given by (1.1) belongs to the class TΣ(λ). Then

|a2| ≤
√

2λ2|1 + β − x|3
|(3λ2 + λ+ 2)(1 + β − x)2 − 2(1 + λ)2{x2

2
− (β + 2)x+ (β+1)(β+2)

2
}|

and

|a3| ≤
λ2(1 + β − x)2

(1 + λ)2
+

2λ|1 + β − x|
3(1 + λ)

.

Letting γ = 0 in Corollary 2.1, we get

Corollary 2.3. Let f ∈ Σ given by (1.1) be in the class TΣ. Then

|a2| ≤
|1 + β − x| 32

√

|(1 + β − x)2 −
(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)

|

and

|a3| ≤ (1 + β − x)2 +
|1 + β − x|

2
.

Taking λ = 1 in Corollary 2.2 we obtain the following result.

Corollary 2.4. Let f ∈ Σ given by (1.1) be in the class TΣ1. Then

|a2| ≤
|1 + β − x| 32

√

|3(1 + β − x)2 − 4
(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)

|

and

|a3| ≤
(1 + β − x)2

4
+

|1 + β − x|
3

.
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3. The Fekete-Szegö Inequalities for the class TΣ(λ, γ)

It is well-known (cf.[9]) that for a function f ∈ S given by (1.1), the sharp inequality

|a3 − a22| < 1 holds. Fekete-Szegö [10] obtained sharp upper bounds for |a3 − µa22|
for f ∈ S where µ is real. Thus, the determination of sharp upper bounds for the

nonlinear functional |a3−µa22| for any compact family F of functions in Λ is popularly

known as the Fekete-Szego problem for F .

The Fekete-Szegö inequalities for function f in the class TΣ(λ, γ) is given by the

following theorem.

Theorem 3.1. Let the function f given by (1.1) be in the class TΣ(λ, γ). Then for

any real number α, we have

|a3 − αa22| ≤















2λ
(1+λ)(2+γ)

|1 + β − x| |α− 1| ≤ 1
2λ(1+λ)(2+γ)

M

4λ2|1−α||1+β−x|3
∣

∣

∣
A1(1+β−x)2−A2

(

x2

2
−(β+2)x+

(β+1)(β+2)
2

)
∣

∣

∣

|α− 1| ≥ 1
2λ(1+λ)(2+γ)

M

where A1 and A2 are given by (2.3) and (2.4) respectively and

M =

∣

∣

∣

∣

∣

∣

A1 −
A2

(

x2

2
− (β + 2)x+ (β+1)(β+2)

2

)

(1 + β − x)2

∣

∣

∣

∣

∣

∣

.

Proof. From (2.22) and (2.23) we observe that

a3 − αa22 = a22 +
λ

(1 + λ)(γ + 2)
Lβ
1 (x)(d2 − e2)− αa22

= (1− α)a22 +
λ

(1 + λ)(γ + 2)
Lβ
1 (x)(d2 − e2)

= (1− α)
2λ2(Lβ

1 (x))
3(d2 + e2)

A1(L
β
1 (x))

2 − A2L
β
2 (x)

+
λ

(1 + λ)(γ + 2)
Lβ
1 (x)(d2 − e2)

= Lβ
1 (x)

[(

χ(α, x) +
λ

(1 + λ)(γ + 2)

)

d2 +

(

χ(α, x)− λ

(1 + λ)(γ + 2)

)

e2

]

,

where

χ(α, x) =
2λ2(1− α)(Lβ

1 (x))
2

A1(L
β
1 (x))

2 − A2L
β
2 (x)

.
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In view of (1.4) and (1.5) we conclude that

|a3 − αa22| ≤











2λ|1+β−x|
(1+λ)(2+γ)

(

0 ≤ |χ(α, x)| ≤ λ
(1+λ)(2+γ)

)

2|1 + β − x||χ(α, x)|
(

|χ(α, x)| ≥ λ
(1+λ)(γ+2)

)

.

This completes the proof of Theorem 3.1. �

Taking λ = 1 in Theorem 3.1, we obtain the Fekete-Szegö result for the class TΣ(γ)

as follows:

Corollary 3.1. Let the function f ∈ Σ be in the class TΣ(γ). Then for any complex

number α, we have

|a3 − αa22| ≤































|1+β−x|
γ+2

(

|α− 1| ≤ 1+γ

2(γ+2)

∣

∣

∣

∣

2 + γ − 2(1 + γ)

(

x2

2
−(β+2)x+

(β+1)(β+2)
2

(1+β−x)2

)
∣

∣

∣

∣

)

2|1−α||1+β−x|3
∣

∣

∣
(1+γ)(2+γ)(1+β−x)2−2(1+γ)2

(

x2

2
−(β+2)x+ (β+1)(β+2)

2

)
∣

∣

∣

(

|α− 1| ≥ 1+γ

2(γ+2)

∣

∣

∣

∣

2 + γ − 2(1 + γ)

(

x2

2
−(β+2)x+

(β+1)(β+2)
2

(1+β−x)2

)
∣

∣

∣

∣

)

.

Putting γ = 1 in Corollary 3.1 we get the following result for the class TΣ1 .

Corollary 3.2. Let the function f ∈ Σ given by (1.1) be in the class TΣ1. Then for

any real number α, we obtain

|a3 − αa22| ≤































|1+β−x|
3

(

|α− 1| ≤
∣

∣

∣

∣

1− 4
(

x2

2
−(β+2)x+ (β+1)(β+2)

2

)

3(1+β−x)2

∣

∣

∣

∣

)

|1−α||1+β−x|3
∣

∣

∣
3(1+β−x)2−4

(

x2

2
−(β+2)x+

(β+1)(β+2)
2

)
∣

∣

∣

(

|α− 1| ≥
∣

∣

∣

∣

1− 4
(

x2

2
−(β+2)x+

(β+1)(β+2)
2

)

3(1+β−x)2

∣

∣

∣

∣

)

Concluding Remarks

: In the present investigation, we have introduced a new subclass TΣ(λ, γ) (0 <

λ ≤ 1, γ ≥ 1) of the class Σ of normalized bi-univalent function in the open unit disk

∇. We have obtained the coefficient estimates and Fekete-Szegö inequalities for the
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function belonging to this bi-univalent function class. Several corollaries of the main

result are derived.
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