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EXISTENCE AND UNIQUENESS RESULTS FOR A CLASS OF
NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH

NONLOCAL BOUNDARY CONDITIONS

CHOUKRI DERBAZI (1) AND HADDA HAMMOUCHE (2)

Abstract. In this paper, we study the existence and uniqueness of solutions

for fractional differential equations with fractional integral and Caputo fractional

derivatives in boundary conditions. Our analysis relies on the Banach contraction

principle, Schauder fixed point theorem and Krasnoselskii’s fixed point theorem.

Examples are provided to illustrate the main results.

1. Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to

arbitrary noninteger order. Applications of the fractional differential equations can be

found in various fields of science and engineering. Indeed, there are numerous appli-

cations in viscoelasticity, electrochemistry, control, porous media, electromagnetism,

etc. (see [14, 15, 16, 18]).

At the present day, many authors have studied the existence of solution to the

fractional boundary value problems under various boundary conditions and using

different approaches, for instance, see ([3]-[9], [17, 19, 21, 22]) and references therein.

We also refer the readers to the papers [1, 2, 10, 11, 12, 13] and references therein
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for more literature on some classes of fractional functional or fractional systems with

delay in Banach spaces.

A. Guezane-Lakoud and R. khaldi proved the existence and uniqueness of solutions

for the following nonlinear fractional boundary value problem [8]:
cDq

0+u(t) = f(t, u(t), cDσ
0+u(t)), 0 < t < 1

u(0) = 0, u′(1) = Iσ0+u(1).

Where f : [0, 1] × R × R −→ R is a given function. 1 < q < 2, 0 < σ < 1, and

cDq
0+ is the Caputo fractional derivative.

B. Ahmad et al. studied the following boundary value problem for fractional dif-

ferential equations with nonlocal Riemann-Liouville integral boundary conditions [4]:
cDq

0+x(t) = f(t, x(t)), 1 < q ≤ 2 t ∈ [0, 1],

x(0) = aIβ0+x(η) = a
Γ(β)

∫ η
0

(η − s)β−1ds,

x(1) = bIα0+x(σ) = b
Γ(α)

∫ σ
0

(σ − s)α−1ds.

Where cDq
0+ denotes the Caputo fractional derivative of order q, f is is a given con-

tinuous function, a, b, η, σ are a real constants with 0 < η, σ < 1.

M. Houasand and M. Benbachir considered the existence and uniqueness of solu-

tions for the following problem [9]:

(1.1)


cDα

0+x(t) = f(x(t), cDβ
0+x(t)), t ∈ J

x(0) = x0, x′(0) = 0, x′(1) = λIσ0+x(η).

Where 2 < α ≤ 3, 1 < β ≤ 2; 0 < η < 1, cDα
0+ and cDβ

0+ are the Caputo fractional

derivatives, J = [0, 1], λ is real constant f is continuous function on R2.
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In 2017 C-M. Su et al studied the existence and uniqueness of solutions for bound-

ary value problem of nonlinear fractional differential equation with fractional integral

BCs as well as integer and fractional derivative [21]:
cDq

0+u(t) = f(t, u(t)) t ∈ (0, 1)

u(0) = u′′(0) = 0 cDσ1
0+u(1) = λIσ20+u(1).

Here 2 < q < 3, 0 < σ1 ≤ 1, σ2 > 0, λ 6= Γ(2 + σ2)/Γ(2 − σ1), cDq
0+ ,

cDσ1
0+ denotes

the standard Caputo fractional derivatives and Iσ20+ denotes the standard Riemann-

Liouville fractional integral, f : [0, 1]× R −→ R is continuous.

Motivated by the above works, in this article we aim to establish the existence and

uniqueness of solutions to the boundary-value problem of the fractional differential

equations

(1.2)


cDα

0+y(t) = f(t, y(t), cDβ
0+y(t)), 0 < t < 1

y(0) = y0, y
′(0) = aIσ10+y(η1), cDβ1

0+y(1) = bIσ20+y(η2),

where cDν
0+ is the Caputo fractional derivative of order ν ∈ {α, β, β1} such that

2 < α ≤ 3, 0 < β, β1 ≤ 1, Iθ0+ is the Riemann–Liouville fractional integral of order

θ > 0, θ ∈ {σ1, σ2}, J := [0, 1] and f : J ×R2 −→ R is a continuous function, a, b are

suitably chosen real constants.

Note that, in Eq. (1.2), the nonlinear term involves Caputo fractional derivative;

to the best of our knowledge, few results can be found in the literature concerning

boundary value problems for Caputo fractional differential equations with fractional

integral and Caputo fractional derivatives in boundary conditions and nonlinear term

depends on Caputo fractional derivative of the unknown function.

In comparison to problem (1.1), our considered BVP (1.2) is more general than the

problem studied in [9], as we consider a problem with Riemann-Liouville fractional

integral and Caputo fractional derivatives in boundary conditions, while the authors
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in [9] investigated a problem with three point boundary conditions. Moreover, in

[9] the assumption on f are strong (f uniformly Lipschitz condition or uniformly

bounded). In this paper the new existence and uniqueness results will be presented

for the boundary value problem (1.2) by virtue of fractional calculus and fixed point

method under some weak conditions.

Compared with the results appeared in [9], there are some differences. The most

important of them is that the assumptions on f are more general and easy to check.

The rest of the paper is organized as follows: In Section 2, we give some definitions

and lemmas which we need to prove the main results. In Section 3, several fixed

point theorems are used to give sufficient conditions for the existence (uniqueness) of

solutions to (1.2) such as Banach’s contraction principle, Krasnoselskii’s fixed point

theorem, and Schauder’s fixed point theorem. We end our work with illustrative

examples.

2. Preliminaries

Here, we intend to introduce some basic definitions and properties of fractional

calculus theory see [14, 16, 18].

Definition 2.1. A real function f(t); t > 0 is said to be in space Cµ, µ ∈ R if there

exists a real number p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C(0,+∞), and it

is said to be in the space Cn
µ if and only if f (n) ∈ Cµ;n ∈ N.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0

of a function f ∈ Cµ, µ ≥ −1, is defined as

Iα0+f(t) =


1

Γ(α)

∫ t
0
(t− s)α−1f(s)ds, α > 0,

f(t), α = 0,

where Γ(·) is the Euler gamma function.
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Definition 2.3. The fractional derivative of f(t) in the Caputo sense is defined as

cDα
0+f(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

for n− 1 < α ≤ n, n ∈ N, t > 0, f ∈ Cn
−1.

Lemma 2.1. Let α > β > 0, and f ∈ Cµ, µ ≥ −1. Then we have:

(1) Iα0+I
β
0+f(t) = Iα+β

0+ f(t),

(2) cDα
0+I

α
0+f(t) = f(t),

(3) cDβ
0+I

α
0+f(t) = Iα−β0+ f(t),

(4) Iα0+(cDα
0+f(t)) = f(t) +

∑m−1
j=0 cjt

j, for some cj ∈ R, j = 0, 1, 2, . . . ,m − 1,

where m = [α] + 1.

Lemma 2.2. Let α > 0, then the differential equation

(cDα
0+f)(t) = 0,

has the unique solution

f(t) =
m−1∑
j=0

cjt
j, cj ∈ R, j = 0 . . .m− 1,

where m− 1 < α ≤ m.

Lemma 2.3 ([8, 21]). Let α > 0, f ∈ L1([0, 1],R+). Then for all t ∈ [0, 1] we have

Iα+1
0+ f(t) ≤ ‖Iα0+f‖L1 .

Lemma 2.4 ([14]). The fractional integral Iα0+, α > 0 is bounded in L1(a, b) with

‖Iα0+f‖L1(a,b) ≤
(b− a)α

Γ(α + 1)
‖f‖L1(a,b).

Let us now introduce the space E =
{
y : y ∈ C([0, 1],R) : cDβ

0+y ∈ C([0, 1],R)
}
.

equipped with the norm

‖y‖E = ‖y‖∞ + ‖cDβ
0+y‖∞ = sup

t∈J
|y(t)|+ sup

t∈J
|cDβ

0+y(t)|.
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Clearly, (E, ‖.‖E) is a Banach space [20].

Theorem 2.1. (Krasnselskii’s fixed point theorem). Let U be a closed convex, bounded

and nonempty subset of a Banach space E. Let A,B be the opertors such that

• Ax+ By ∈ U whenever x, y ∈ U ;

• A is compact and continuous;

• B is contraction mapping.

Then there exists z ∈ U such that z = Az + Bz.

Theorem 2.2. (Schauder’s fixed point theorem). Let (E, d) be a complete metric

space, let U be a closed convex subset of E, and let A : U −→ U be a mapping such

that the set {Au : u ∈ U} is relatively compact in E. Then A has at least one fixed

point.

3. Main Results

Before starting and proving our main result we introduce the following auxiliary

lemma.

Lemma 3.1. Let 2 < α ≤ 3 and h be continuous function on J := [0, 1]. Then the

linear problem

(3.1) cDα
0+y(t) = h(t),

with boundary conditions

(3.2) y(0) = y0, y′(0) = aIσ10+y(η1), cDβ1
0+y(1) = bIσ20+y(η2),

is equivalent to the fractional integral equation

y(t) = Iα0+h(t) + (v6t
2 − v1t)I

α+σ1
0+ h(η1) + (v2t− v5t

2)Iα+σ2
0+ h(η2)

+ (v8t
2 − v4t)I

α−β1
0+ h(1) + (1− v3t− v7t

2)y0.(3.3)
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Here

∆ =

[(
aησ1+1

1

Γ(σ1 + 2)
− 1

)(
bησ2+2

2

Γ(σ2 + 3)
− 1

Γ(3− β1)

)
−
(

bησ2+1
2

Γ(σ2 + 2)
− 1

Γ(2− β1)

)(
aησ1+2

1

Γ(σ1 + 3)

)]
6= 0,

v1 =
a

∆

(
bησ2+2

2

Γ(σ2 + 3)
− 1

Γ(3− β1)

)
, v2 =

ab

∆

(
ησ1+2

1

Γ(σ1 + 3)

)
,

v3 =
ησ11 v1

Γ(σ1 + 1)
− ησ22 v2

Γ(σ2 + 1)
, v4 =

v2

b
, v5 =

b

2∆

(
aησ1+1

1

Γ(σ1 + 2)
− 1

)
,(3.4)

v6 =
a

2∆

(
bησ2+1

2

Γ(σ2 + 2)
− 1

Γ(2− β1)

)
, v7 =

ησ22 v5

Γ(σ2 + 1)
− ησ11 v6

Γ(σ1 + 1)
,

and

v8 =
v5

b
.

Proof. By applying Lemma (2.1), we may reduce (3.1) to an equivalent integral equa-

tion

(3.5) y(t) = Iα0+h(t)− c0 − c1t− c2t
2, c0, c1, c2 ∈ R.

Applying the boundary conditions (3.2) in (3.5) we find that

c0 = −y0,

Using the boundary conditions of (3.2) in (3.5), we end up with a system of equations:

(P0)



(
aη
σ1+1
1

Γ(σ1+2)
− 1
)
c1 + 2

(
aη
σ1+2
1

Γ(σ1+3)

)
c2 = aIα+σ1

0+ h(η1) +
(

aη
σ1
1

Γ(σ1+1)

)
y0.(

bη
σ2+1
2

Γ(σ2+2)
− 1

Γ(2−β1)

)
c1 + 2

(
bη
σ2+2
2

Γ(σ2+3)
− 1

Γ(3−β1)

)
c2 = bIα+σ2

0+ h(η2) +
(

bη
σ2
2

Γ(σ2+1)

)
y0

−Iα−β10+ h(1).

Solving (P0) together with notations (3.4), we find that

c1 = v1I
α+σ1
0+ h(η1)− v2I

α+σ2
0+ h(η2) + v3y0 + v4I

α−β1
0+ h(1),

c2 = v5I
α+σ2
0+ h(η2)− v6I

α+σ1
0+ h(η1) + v7y0 − v8I

α−β1
0+ h(1),
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Substituting the value of c0, c1, c2 in (3.5) we get (3.3). �

In view of Lemma 3.1 we define the integral operator T : E −→ E by

T y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), cDβ
0+y(s))ds

+
v6t

2 − v1t

Γ(α + σ1)

∫ η1

0

(η1 − s)α+σ1−1f(s, y(s), cDβ
0+y(s))ds

+
v2t− v5t

2

Γ(α + σ2)

∫ η2

0

(η2 − s)α+σ2−1f(s, y(s), cDβ
0+y(s))ds

+
v8t

2 − v4t

Γ(α− β1)

∫ 1

0

(1− s)α−β1−1f(s, y(s), cDβ
0+y(s))ds

+ (1− v3t− v7t
2)y0.(3.6)

In this section we shall present and prove our main results. First, consider the

following hypotheses:

(H1) the function f : J × R× R −→ R is continuous

(H2)

|f(t, x1, y1)− f(t, x2, y2)| ≤ g1(t)|x1 − x2|+ g2(t)|y1 − y2|,

for all x1, x2, y1, y2 ∈ R; g1, g2 ∈ L1(J,R+) and t ∈ J.

In order to simplify the computations in the main results we set some notations:

M1 =
1

Γ(α)
+
|v6|+ |v1|
Γ(α + σ1)

+
|v2|+ |v5|
Γ(α + σ2)

+
|v8|+ |v4|
Γ(α− β1)

,

M2 =
1

Γ(α− β)
+

2|v6|+ (2− β)|v1|
Γ(3− β)Γ(α + σ1)

+
2|v5|+ (2− β)|v2|
Γ(3− β)Γ(α + σ2)

+
2|v8|+ (2− β)|v4|
Γ(3− β)Γ(α− β1)

,

N1 = (1 + |v3|+ |v7|), N2 =
2|v7|+ (2− β)|v3|

Γ(3− β)
.

Now we are ready to establish the main results.

Our first results is based on the Banach contraction principle.

Theorem 3.1. Assume that (H1), (H2) true and the following condition

(3.7) γ1 = (M1 +M2)(‖g1‖L1 + ‖g2‖L1) < 1.
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true. Then the problem (1.2) has a unique solution on J .

Proof. Transform the problem (1.2) into a fixed point problem. Clearly, the fixed

points of the operator T defined by (3.6) are solutions of the problem (1.2).

Let x, y ∈ E and t ∈ J , using (3.3) we can write

T (x)(t)− T (y)(t) = Iα0+(f(t, x(t), cDβ
0+x(t))− f(t, y(t), cDβ

0+y(t)))

+ (v6t
2 − v1t)I

α+σ1
0+ (f(η1, x(η1), cDβ

0+x(η1))− f(η1, y(η1), cDβ
0+y(η)))

+ (v2t− v5t
2)Iα+σ2

0+ (f(η2, x(η2), cDβ
0+x(η2))− f(η2, y(η2), cDβ

0+y(η2)))

+ (v8t
2 − v4t)I

α−β1
0+ (f(1, x(1), cDβ

0+x(1))− f(1, y(1), cDβ
0+y(1))).

By (H2), we can find that

|T (x)(t)− T (y)(t)| ≤ ‖x− y‖∞
{
Iα0+g1(t) + (|v6|+ |v1|)Iα+σ1

0+ g1(η1)

+(|v2|+ |v5|)Iα+σ2
0+ g1(η2) + (|v8|+ |v4|)Iα−β10+ g1(1)

}
+ ‖cDβ

0+x−
cDβ

0+y‖∞
{
Iα0+g2(t) + (|v6|+ |v1|)Iα+σ1

0+ g2(η1)

+ (|v2|+ |v5|)Iα+σ2
0+ g2(η2) + (|v8|+ |v4|)Iα−β10+ g2(1)

}
.

According to the lemmas 2.3 and 2.4, we have

‖T x− T y‖∞ ≤ ‖x− y‖∞
[

1

Γ(α)
+
|v6|+ |v1|
Γ(α + σ1)

+
|v2|+ |v5|
Γ(α + σ2)

+
|v8|+ |v4|
Γ(α− β1)

]
‖g1‖L1

+ ‖cDβ
0+x−

cDβ
0+y‖∞

[
1

Γ(α)
+
|v6|+ |v1|
Γ(α + σ1)

+
|v2|+ |v5|
Γ(α + σ2)

+
|v8|+ |v4|
Γ(α− β1)

]
‖g2‖L1 .

Thus,

(3.8) ‖T (x)− T (y)‖∞ ≤M1(‖g1‖L1 + ‖g2‖L1)‖x− y‖E.
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And

cDβ
0+T y(t) = Iα−β0+ f(t, y(t), cDβ

0+y(t))

+
2v6t

2−β + (2− β)v1t
1−β

Γ(3− β)
Iα+σ1

0+ f(η1, y(η1), cDβ
0+y(η1))

+
2v5t

2−β + (2− β)v2t
1−β

Γ(3− β)
Iα+σ2

0+ f(η2, y(η2), cDβ
0+y(η2))

+
2v8t

2−β + (2− β)v4t
1−β

Γ(3− β)
Iα−β10+ f(1, y(1), cDβ

0+y(1))

+
2v7t

2−β + (2− β)v3t
1−β

Γ(3− β)
y0.

Using similar techniques applied to get (3.8), we have

(3.9) ‖cDβ
0+T x−

cDβ
0+T y‖∞ ≤M2(‖g1‖L1 + ‖g2‖L1)‖x− y‖E.

From (3.8), (3.9) we obtain

‖T x− T y‖E ≤ (M1 +M2)(‖g1‖L1 + ‖g2‖L1)‖x− y‖E.

So we have

‖T x− T y‖E ≤ γ1‖x− y‖E.

By (3.7), we deduce that T is a contraction. As a consequence of Banach fixed-point

theorem, we deduce that T has a fixed point which is the unique solution of the

problem (1.2). �

Our next result is upon the Schauder’s fixed point theorem.

Theorem 3.2. Assume that (H1) true, and there exists a function ψ ∈ L1(J,R+)

such that

|f(t, x, y)| ≤ ψ(t) + a1|x|τ1 + a2|y|τ2 , x, y ∈ R.(3.10)
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where 0 < τi < 1, and ai ≥ 0 for i = 1, 2, 3. Also assume that there exists a number

r > 0 such that

r ≥ max
{

4(M1 +M2)‖ψ‖L1 , (4(M1 +M2)a1)
1

1−τ1 ,

(4(M1 +M2)a2)
1

1−τ2 , 4(N1 +N2)|y0|
}
.(3.11)

Then the problem (1.2) has at least one solution on J .

Proof. In order to use the Schauder fixed-point theorem to prove our main result, we

define a subset Br of E defined by

Br = {y ∈ E : ‖y‖E ≤ r} ,

where r satisfies inequality (3.11). Notice that Br is closed, convex and bounded

subset of the Banach space E.

Now we prove that T : Br −→ Br. For any y ∈ Br, we have

|T y(t)| ≤ Iα0+|f(s, y(s), cDβ
0+y(s))|

+ (|v6|+ |v1|)Iα+σ1
0+ |f(η1, y(η1), cDβ

0+y(η1))|

+ (|v2|+ |v5|)Iα+σ2
0+ |f(η2, y(η2), cDβ

0+y(η2))|

+ (|v8|+ |v4|)Iα−β10+ |f(1, y(1), cDβ
0+y(1))|

+ (1 + |v3|+ |v7|)|y0|.
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Using hypothese (3.10) we get

|T y(t)| ≤ Iα0+ψ(t) + (|v6|+ |v1|)Iα+σ1
0+ ψ(η1)

+ (|v2|+ |v5|)Iα+σ2
0+ ψ(η2) + (|v8|+ |v4|)Iα−β10+ ψ(1)

+ a1

(
Iα0+|y(t)|τ1 + (|v6|+ |v1|)Iα+σ1

0+ |y(η1)|τ1

+(|v2|+ |v5|)Iα+σ2
0+ |y(η2)|τ1 + (|v8|+ |v4|)Iα−β10+ |y(1)|τ1

)
+ a2

(
Iα0+ |cD

β
0+y(t)|τ2 + (|v6|+ |v1|)Iα+σ1

0+ |cDβ
0+y(η1)|τ2

+(|v2|+ |v5|)Iα+σ2
0+ |cDβ

0+y(η2)|τ2 + (|v8|+ |v4|)Iα−β10+ |cDβ
0+y(1)|τ2

)
+ (1 + |v3|+ |v7|)|y0|

≤M1‖ψ‖L1 + (a1r
τ1 + a2r

τ2)M1 +N1.

Hence

‖T y‖∞ ≤M1‖ψ‖L1 + (a1r
τ1 + a2r

τ2)M1 +N1.(3.12)

And

‖cDβ
0+T y‖∞ ≤M2‖ψ‖L1 +M2(a1r

τ1 + a2r
τ2) +N2.(3.13)

From (3.12), (3.13) we get

‖T y‖E ≤ (M1 +M2)(‖ψ‖L1 + a1r
τ1 + a2r

τ2) + (N1 +N2) ≤ r

4
+
r

4
+
r

4
+
r

4
≤ r,

By the condition (3.11), we deduce that

‖T y‖E ≤ r,

thus, T (Br) ⊂ Br.

In view of the continuity of f, it is easy to verify that T is continuous.
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Next, we show that the families T (Br) and cDβ
0+T (Br) are equicontinuous. Since

f is continuous, we can assume that |f(t, y(t), cDβ
0+y(t))| ≤ M for any y ∈ Br and

t ∈ [0, 1].

Now, for 0 ≤ t1 < t2 ≤ 1, we have

|T (y)(t2)−T (y)(t1)| ≤ 1

Γ(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
|f(s, y(s), cDβ

0+y(s))|ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1|f(s, y(s), cDβ
0+y(s))|ds

+
(|v6|(t22 − t21) + |v1|(t2 − t1))

Γ(α + σ1)

∫ η1

0

(η1 − s)α+σ1−1|f(s, y(s), cDβ
0+y(s))|ds

+
(|v2|(t2 − t1) + |v5|(t22 − t21))

Γ(α + σ2)

∫ η2

0

(η2 − s)α+σ2−1|f(s, y(s), cDβ
0+y(s))|ds

+
(|v8|(t22 − t21) + |v4|(t2 − t1))

Γ(α− β1)

∫ 1

0

(1− s)α−β1−1|f(s, y(s), cDβ
0+y(s))|ds

+ [|v3|(t2 − t1)|v7|(t22 − t21)]|y0|

≤M

{
1

Γ(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
ds+

1

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

+
(|v6|(t22 − t21) + |v1|(t2 − t1))

Γ(α + σ1)

∫ η1

0

(η1 − s)α+σ1−1ds

+
(|v2|(t2 − t1) + |v5|(t22 − t21))

Γ(α + σ2)

∫ η2

0

(η2 − s)α+σ2−1ds

+
(|v8|(t22 − t21) + |v4|(t2 − t1))

Γ(α− β1)

∫ 1

0

(1− s)α−β1−1ds

}
+ [|v3|(t2 − t1) + |v7|(t22 − t21)]|y0|.

Thus,

|T (y)(t2)− T (y)(t1)| ≤M

[
tα2 − tα1

Γ(α + 1)
+
|v6||t22 − t21|+ |v1||t2 − t1|

Γ(α + σ1 + 1)
ηα+σ1

1

|v2||t22 − t21|+ |v5||t2 − t1|
Γ(α + σ2 + 1)

ηα+σ2
2 +

|v8||t22 − t21|+ |v4||t2 − t1|
Γ(α− β1 + 1)

]
+ [|v3|(t2 − t1) + |v7|(t22 − t21)]|y0|(3.14)



154 CHOUKRI DERBAZI AND HADDA HAMMOUCHE

And

|cDβ
0+T y(t2)−cDβ

0+T y(t1)| ≤M

{
1

Γ(α− β)

∫ t1

0

[
(t2 − s)α−β−1 − (t1 − s)α−β−1

]
ds

+
1

Γ(α− β)

∫ t2

t1

(t2 − s)α−β−1ds

+
2|v6||t2−β2 − t2−β1 |+ (2− β)|v1||t1−β2 − t1−β1 |

Γ(3− β)Γ(α + σ1)

∫ η1

0

(η1 − s)α+σ1−1ds

+
2|v5||t2−β2 − t2−β1 |+ (2− β)|v2||t1−β2 − t1−β1 |

Γ(3− β)Γ(α + σ2)

∫ η2

0

(η2 − s)α+σ2−1ds

+
2|v8||t2−β2 − t2−β1 |+ (2− β)|v4||t1−β2 − t1−β1 |

Γ(3− β)Γ(α− β1)

∫ 1

0

(1− s)α−β1−1ds

}
.

Thus,

|cDβ
0+Ty(t2)− cDβ

0+Ty(t1)| ≤M

{
tα−β2 − tα−β1

Γ(α− β + 1)

+
2|v6||t2−β2 − t2−β1 |+ (2− β)|v1||t1−β2 − t1−β1 |

Γ(3− β)Γ(α + σ1 + 1)
ηα+σ1

1

+
2|v5||t2−β2 − t2−β1 |+ (2− β)|v2||t1−β2 − t1−β1 |

Γ(3− β)Γ(α + σ2 + 1)
ηα+σ2

2

+
2|v8||t2−β2 − t2−β1 |+ (2− β)|v4||t1−β2 − t1−β1 |

Γ(3− β)Γ(α− β1 + 1)

}

+
2|v7||t2−β2 − t2−β1 |+ (2− β)|v3||t1−β2 − t1−β1 |

Γ(3− β)
(3.15)

The right-hand sides of inequality (3.14) and (3.15) tends to zero when t1 → t2

independently of y, so T is compact as consequence of the Arzelá–Ascoli theorem,

and T is continuous. We claim that T is completely continuous.

As a consequence of Schauder’s fixed-point theorem, we deduce that T has a fixed

point. We claim that the problem (1.2) has at least one solution on J . �

For a1 = a2 = 0, Theorem 3.2 takes the following form.
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Corollary 3.1. Let (H1) hold. In addition, the function f satisfies the assumptions:

|f(t, x, y)| ≤ ψ(t),

∀(t, x, y) ∈ J × R × R and ψ ∈ L1(J,R+). Then the boundary value problem (1.2)

has at least one solution on J .

For τ1 = τ2 = 1, Theorem 3.2 takes the following form.

Corollary 3.2. Let (H1) hold. In addition, the function f satisfies the assumptions:

|f(t, x, y)| ≤ ψ(t) + a1|x|+ a2|y|,

∀(t, x, y) ∈ J ×R×R, where ψ ∈ L1(J,R+). Then the boundary value problem (1.2)

has at least one solution on J .

Our key tool in the next existence result is based on the Krasnoselskii’s fixed point

theorem.

Theorem 3.3. Assume that (H1) and (H2) hold, furthermore there exists non-

negative function φ ∈ L1(J,R+) such that :

(3.16) |f(t, x, y)| ≤ φ(t),

for all x, y ∈ R and t ∈ J .

Then the problem (1.2), has at least one solution on J , provided that γ1 < 1, where

γ1 given in (3.7).

Proof. Let r > 0, such that

(3.17) r ≥ (M1 +M2)‖φ‖L1 + (N1 +N2)|y0|,

and consider the ball

Br =
{
y ∈ E : ‖y‖E ≤ r

}
.
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We define the operators A and B on Br by:

Ay(t) = Iα0+f(t, y(t), cDβ
0+y(t)),

By(t) = (v6t
2 − v1t)I

α+σ1
0+ f(η1, y(η1), cDβ

0+y(η1))

+ (v2t− v5t
2)Iα+σ2

0+ f(η2, y(η2), cDβ
0+y(η2))

+ (v8t
2 − v4t)I

α−β1
0+ f(1, y(1), cDβ

0+y(1))

+ (1− v3t− v7t
2)y0.

Then the fractional integral Equation (3.6) can be written as the operator equation:

T y(t) = Ay(t) +Ay(t), y ∈ Br

We will divide the proof into three steps.

Step 1 : Ax + By ∈ Br, for any x, y ∈ Br and t ∈ J. By the same way of the proof

of Theorem 3.2, we can easily show that

‖Ax+ By‖E ≤ (M1 +M2)‖φ‖L1 + (N1 +N2)y0.

Using (3.17) we conclude that Ax+ By ∈ Br.

Step 2 : A is compact and continuous. We have verified that A : Br → E is

continuous and compact under its definition, a detailed proof is given in Appendix.

Step 3 : B is a contraction mapping on Br. Let x, y ∈ Br and t ∈ J by using the

same arguments in Theorem 3.1 we can show that

‖B(x)− B(y)‖E ≤ (‖g1‖L1 + |g2‖L1)

(
M1 −

1

Γ(α)
+M2 −

1

Γ(α− β)

)
‖x− y‖E,

≤ (M1 +M2)(‖g1‖L1 + ‖g2‖L1)‖x− y‖E,

≤ γ1‖x− y‖E.

By (3.7) , we deduce that B is a contraction.
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As a consequence of Krasnoselskii’s fixed point theorem, we conclude that the

operator T defined by (3.6) has at least one fixed point u ∈ Br, which is just the

solution of the boundary value problem (1.2). This completes the proof of Theorem.

3.3. �

4. Examples

In this section, in order to illustrate our results, we consider two examples.

Example 4.1. Consider the following fractional differential problem:

(4.1)


cD

11
4

0+y(t) = f(t, y(t), cD
1
8

0+y(t)) ∀t ∈ J = [0, 1]

y(0) = 1, y′(0) = 1
100
I

3
2

0+y(1
2
), cD

7
8

0+y(1) = 1
10
I

5
2

0+y(3
4
)

In this case we take f(t, y(t), cD
1
8

0+y(t)) = t4

4!
y(t) + (1−t)2

10
cD

1
8

0+y(t) + e−t,

α =
11

4
, β =

1

8
, β1 =

7

8
, y0 = 1, a =

1

100
, b =

1

10
, σ1 =

3

2
, σ2 =

5

2
, η1 =

1

2
, η2 =

3

4
.

Let t ∈ J, x, x1, y, y1 ∈ R

|f(t, x, y)− f(t, x1, y1)| = t4

4!
|x− x1|+

(1− t)2

10
|y − y1|

Hence the condition (H2) holds with

g1(t) =
t4

4!
, g2(t) =

(1− t)2

10

using the Matlab program, we can find γ1 = (M1 + M2)(‖g1‖L1 + ‖g2‖L1) = 83
799

< 1

Thus, the assumptions of (Theorem 3.1) hold so the problem (4.1) has a unique

solution on J.

Example 4.2. Let us consider the following fractional boundary value problem:

(4.2)


cD

11
5

0+y(t) = (t− 0.25)2y(t)
1
3 + e−t

2
sin(

(cD
1
2
0+
y(t))

1
6

2
) ∀t ∈ J = [0, 1]

y(0) =
√

3, y′(0) = 1
2
I

8
5

0+y(1
4
), cD

1
7

0+(1) = 1
4
I

7
3

0+y(3
4
)
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Let t ∈ J, x, y ∈ R

|f(t, x, y)| ≤ 9

16
|x|

1
3 +
|x| 16

2

Where ψ(t) = 0, a1 = 9
16
, a2 = 1

2
, τ1 = 1

3
, τ2 = 1

6

α =
11

5
, β =

1

2
, β1 =

1

7
, y0 =

√
3, a =

1

2
, b =

1

4
, η1 =

1

4
, η2 =

3

4
, σ1 =

8

5
, σ2 =

7

3
,

the hypothesis of Theorem (3.2) holds wich implies that the problem (4.2) has a so-

lution

5. Conclusion

We have studied a nonlinear fractional differential equation with nonlinearity de-

pending on the unknown function together with its lower-order fractional derivative,

equipped with fractional integral and Caputo fractional derivatives in boundary con-

ditions. Several existence and uniqueness results have been derived by applying

different tools of the fixed point theory. We also provide examples to make our re-

sults clear. For future research directions, it is possible to consider the existence and

uniqueness of solutions for systems of fractional differential equations.

Appendix A. A detailed proof of both the compactness and the

continuity of the operator A

The operator A : Br → E defined by

Ax(t) = Iα0+f(t, x(t), cDβ
0+x(t)).

is continuous and compact.

The continuity of A follows from the continuity of f . Next we prove that A is

uniformly bounded on Br

Let any x ∈ Br. Then for each t ∈ J and by (3.16) we we have:

|Ax(t)| ≤ Iα0+|f(s, x(s), cDβ
0+x(s))| ≤ Iα0+φ(t) ≤ ‖φ‖L

1

Γ(α)
.
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And

|cDβ
0+Ax(t)| ≤ Iα−β0+ |f(s, x(s), cDβ

0+x(s))| ≤ Iα−β0+ φ(t) ≤ ‖φ‖L1

Γ(α− β)
.

Hence

‖Ax‖∞ ≤
‖φ‖L1

Γ(α)
,

and

‖cDβ
0+Ax‖∞ ≤

‖φ‖L1

Γ(α− β)
.

This implies that

‖Ax‖E = ‖Ax‖∞ + ‖Ax‖∞

≤ Γ(α) + Γ(α− β)

Γ(α)Γ(α− β)
‖φ‖L1 <∞.

This proves that A is uniform bounded.

Next, we show that the families A(Br) and cDβ
0+A(Br) are equicontinuous.

Let t1, t2 ∈ [0, 1], t1 < t2, x ∈ Br, we have

|A(x)(t2)−A(x)(t1)| ≤ 1

Γ(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
|f(s, x(s),CDβ

0+y(s))|ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1|f(s, x(s),CDβ
0+x(s))|ds,

≤ 1

Γ(α)

∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
φ(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1φ(s)ds,(A.1)

and

|cDβ
0+Ax(t2)− cDβ

0+Ax(t1)| ≤ 1

Γ(α− β)

∫ t1

0

[
(t2 − s)α−β−1 − (t1 − s)α−β−1

]
φ(s)ds

+
1

Γ(α− β)

∫ t2

t1

(t2 − s)α−β−1φ(s)ds.(A.2)

The right-hand sides of inequality (A.1) and (A.2) tends to zero when t1 → t2 in-

dependently of x ∈ Br. So A is relatively compact on Br. As consequence of the

Arzela-Ascoli theorem, A is compact on Br.
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