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EXACT BAHADUR SLOPE FOR COMBINING INDEPENDENT
TESTS IN CASE OF LAPLACE DISTRIBUTION

ABEDEL-QADER S. AL-MASRI

ABSTRACT. Combining n independent tests of simple hypothesis, vs one-tailed al-
ternative as n approaches infinity, in case of Laplace distribution L(+, 1) is proposed.
Four free-distribution ”nonparametric” combination procedures namely; Fisher, lo-
gistic, sum of P-values and inverse normal were studied. Several comparisons among
the four procedures using the exact Bahadur’s slopes were obtained. Results showed
that the sum of p-values procedure is better than all other procedures under the null
hypothesis, and the inverse normal procedure is better than the other procedures

under the alternative hypothesis.

1. INTRODUCTION

The combination of n independent tests of hypothesis is an important statistical
practice. If Hy is a simple hypothesis, Birnbaum [3] showed that, for given any non-
parametric combination method with a monotone increasing acceptance region, there
exists a problem for which this method is most powerful against some alternative.
Littell and Folks [6] studied four methods of combining a finite number of independent
tests. They found that the Fisher method is better than the inverse normal, the
minimum of p-value method and maximum of p-vales via Bahadur efficiency. Later,

Littell and Folks [7] showed under mild conditions that the Fisher’s method is optimal
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among all methods for combining a finite number of independent tests. Al-Masri [1]
studied six methods of combining independent tests. He showed under conditional
shifted Exponential distribution that the inverse normal method is the best among
six combination methods. Al-Talib, et. al. [2] considered combining independent
tests in case of conditional normal distribution with probability density function
X|0 ~ N(»0), 0 € [a,o0],a > 0 when 61, 0,, ... have a distribution function (DF) Fj.
They concluded that the inverse normal procedure is better than the other procedures.
The paper is organized as follows. The specific problem is given in Section 2. The
basic definitions and preliminaries are given in Section 3. Section 4 is derivation of

the EBS L(v, 1).

2. THE SPECIFIC PROBLEM

Consider n hypotheses of the form: See [8]
(2.1) Héi) L =, VS ,Hl(i) cm € — {ni}

such that Héi) is rejected for large values, i = 1,2, ...,n of some continuous random

variable T(®). The n hypotheses are combined into one as

(2.2)

H(()Z) : (nlw"ann) = (n(l)aang)’ vs 7H1(Z) : (7717""77”) < {HQZ N {(T]é’ 77761)}}

=1

For ¢ =1,2,...,n the p-value of the i-th test is given by

(2.3) Pt)=P

ao (T0 > 8) =1 Fuo (t)

where F' ) (t) is the DF of T under H(()i). Note that P, ~ U(0, 1) under H(()i).
0
If considering the special case where n; = 6§ and 1} = 6y for i = 1,...,n, and also

assume that 7!, ... T(™ are independent, then (1) reduces to

(24) H0:9:90, US,H1:9€Q—{90}
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It follows that the p-values Pi,..., P, are also independent identically distributed
random variables that have a U(0, 1) distribution under Hy, and under H; have
a distribution whose support is a subset of the interval (0,1) and is not a U(0,1)
distribution. Therefore, if f is the probability density function (pdf) of P, then (4)

is equivalent to
(2.5) Hy:P~U(,1), vs, H : P~ f

where P has a pdf f with support a subset of the interval (0, 1).
This study considers the case: 7; = 0, ¢ = 1,...,n. Also we are assuming that

T, 7@ . T™ are independent. Then Eq. (4) reduced to
(2.6) Hy:~v=0, vs,H :v>0

Thus, the p-values Py, Ps, ..., P, are i.i.d. r.v.’s distributed with a uniform distribu-
tion U(0,1) under H, which is given by (6).

We shall assume that the i-th problem in case of the normal distribution is based on
Tl(i), e >T((72) which are independent r.v.’s. By sufficiency we may assume n; = 1 and
T® = X, fori =1,...,n. Then we consider the sequence {T(")} of independent test
statistics that is we will take a random sample X;,..., X, of size n and let n — oo
and compare the four non-parametric methods via EBS. Although Xj is not sufficient
for 6; under H((]i) for the other distributions, but we will assume n; = 1 and 70 = X
fori=1,...,n.

The following four combination tests: Fisher, logistic, inverse normal and the sum of

P-values, that will be used in this paper:

L, =257" In(P)>c
PFisher =
0, ow

L= () > e

0, ow

PLlogistic =
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17 - Z:‘Lzl @71(3) > c
YNormal =
0, ow

L - Z?:l F>c
PSum =
0, ow,

where @ is the cdf of standard normal distribution.

3. DEFINITIONS AND PRELIMINARIES

In this section we will state some definitions and preliminaries that will be used

Definition 3.1. (Bahadur efficiency and exact Bahadur slope (EBS)) Let Xy, ..., X,
be ii.d. from a distribution with a probability density function f(z,6), and we
want to test Hy : 0 = 6y vs. Hy : 0 € © — {6y}. Let {Tél)} and {Tf)} be two
sequences of test statistics for testing H,. Let the significance attained by T be
LY =1-F (TS’), where F (TS’) — Py, (T,S” < t) i =1,2. Then there exists a
positive valued function C;(#) called the exact Bahadur slope of the sequence {Téi)}
such that
Ci(0) = HILIEO —2n" " In (L},)

with probability 1 (w.p.1) under ¢ and the Bahadur efficiency of {TT(LI)} relative to
{T,S”} is given by ep (Th, T) = C1(6)/Ca(6). See [§]

Theorem 3.1. (Large deviation theorem) Let X1, Xo, ..., X,, be i.i.d., with distribu-
tion F' and put S, =Y., X;. Assume existence of the moment generating function
(mgf) M(z) = Ep (e¥X), z real, and put m(t) = inf, e ¥~ = inf, e=**'M(2). The
behavior of large deviation probabilities P (S, > t,), where t,, — oo at rates slower

than O(n). The case t,, = tn, if —oo <t < EY, then P (S, < nt) < [m(t)]", the
—2n"'In Pr (S, > nt) — —2Inm(t) a.s. (Fp).

See [8]
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Theorem 3.2. (Bahadur theorem) Let {T,,} be a sequence of test statistics which

satisfies the following:

(1) Under Hy: 0 € © — {6y}
n 2T, — b(0) a.s. (Fp),

where b(#) € R.

(2) There exists an open interval I containing {b(f) : 0 € © —{6o}}, and a func-
tion g continuous on I, such that

lim —2n " log sup [1 — Fy, (n%t)] = lim —2n"'log [1 — Fy, (n%t)} =g(t), tel.
n 0€6q "
If {T.} satisfied (1)-(2), then for 6 € © — {6y}
—2n " tlog sup [1 — Fy, (T,,)] — C(0) a.s. (Fy).
€O

See [3]

Theorem 3.3. Let X1,..., X, be i.i.d. with probability density function f(z,0), and
we want to test Hy: 0 = 0ws. Hy :0 > 0. Forj=1,2,1letT,; =>" | fi(z;)/v/n bea
sequence of statistics such that Hy will be rejected for large values of T,, ; and let ¢; be
the test based on T, ;. Assume Eo(fi(x)) > 0,V0 € ©, Eo(fi(z)) =0, Var(fi(z)) >0
for g =1,2. Then

1. If the derivative U;(0) is finite for j = 1,2, then

iy QL0 _ Verealo) (KO
60 Co(0)  Varg—o(fi(x)) [5(0)] °

where b;(0) = Eg(f;(x)), and C;(0) is the EBS of test p; at 6.
2. If the derivative U}(0) is infinite for j = 1,2, then

lim C1(0) _ Varg—o(f2(v)) {
-0 Co(0)  Varg—o(fi())

NAOE
%L“%bg(e)} '

See [1]
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Theorem 3.4. If TV and TP are two test statistics for testing Hy : 6 = 0 vs.
Hy : 0 > 0 with distribution functions Fo(l) and Féz) under Hy, respectively, and that
TV is at least as powerful as T at 6 for any o, then if ¢; is the test based on T,Sj’,

7 =1,2, then

cW () > c2(9).

®1 ®2

See [8]

Corollary 3.1. If T, is the uniformly most powerful test for all o, then it is the best
via EBS. See [8]

Theorem 3.5.
2t <mg(t) <et, ¥V:0<t<0.5,
where
mg(t) = inf e * !
S o 2>0 z ’
See [1]

Theorem 3.6. (1) mp(t) > 2te™®, Vt >0,
(2) mp(t) < te'™t, Vit > 0.852,
3
(3) my(t) gt( e ) et Vit > 4,

1+¢2

where my(t) = inf,co 1) e **1z csc(nz) and csc is an abbreviation for cosecant

function.

See [1]

Theorem 3.7. For x > 0,

Where ¢ is the pdf of standard normal distribution. See [1]
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Theorem 3.8. For x > 0,

¢(x)
1—®(z) > .
ARV
See [1]
: —zt __ _—t
Lemma 3.1. (1) mp(t) > Oirzlgle =e
e~ t?/(t+1) (mt
(2) mp(t) < — m( za),
sin (£%)

3 ms(t) = infng ) <infL 0 €0 < —et, <0

ms(t) > —2t, —3 <t <0.
z—1

(4) <lhz<z-1, >0
x

See [1]

Theorem 3.9. For any integrable function f and any n in the interior of ©, the

integral
[ @O @) du(e)
is continuous and has derivatives of all orders with respect to the n's, and these can
be obtained by differentiating under the integral sign. See [5]
4. DERIVATION OF THE EBS For L(v,1)

In this section we will study testing problem (6). We will compare the four methods
viz. Fisher, logistic, sum of P-values and the inverse normal method via EBS.
Let Xi,..., X, be iid. with probability density function L(v,1), and we want to

test (6). The P-value in this case is given by
(1) Pu(Xa) =1 - FM(X,) = 1 - Fo(x) = 1 {1 - sgn(z) (1 — 1)}

The next four lemmas give the EBS for Fisher (Cr), logistic (Cp), inverse normal

(Cn), and sum of p-values (Cs) methods.
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Lemma 4.1. The exact Bahadur’s slope (EBS’s) result for the tests, which is given
in Section 2, are as follows:

B1. Fisher method. Cp(y) = bp(vy) —2In(bp(y)) +21n(2) — 2,

where
br(y) = 2cosh(v) + In(4) sinh(7).

B2. Logistic method. Cpr(y) = —2In(m(br(7))), where

mp(t) = Zei%fl) e F'rz cse(nz)

and
br(y) = In(4) sinh[7].

B3. Sum of p-values method. Cs(y) = —21In(m(bs(y))), where

—z
—zt

= inf
mslt) = e

and

bs(7) = § (sinh(y) — 2 cosh(v)) .

B4. Inverse Normal method. Cy(y) = —21In(m(by(7))) = 2 sinh*(7).

Proof of B1.

Ty = —Qi I [5 {1 39”\(/“%) (1—e ™D }] .

By the strong law of large number (SLLN)

Tr wpl 1 _lz
7%i>bF(7):2ln2—EH In {1 —sgn(z) (1—e | ‘)}

then

bp(v) =2mI2-2 [ In {1 — sgn(z) (1 — e‘m)} %e‘lm_ﬂ dr = (14In2)e”—(In2—1)e”" = 2 cosh(y)
R
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Now under Hy, then by Theorem 1, we have mg(t) = inf,.qe **Mg(z), where

Mg(z) = Ep(e*X). Under Hy : =1 {1 — sgn(z) (1 — e 1*1)} ~ U(-1,0), so Mg(z) =

1—

¢~ by part (2) of Theorem 2 we complete the proof, that is

z

bp(7) 1_teo

Cr(y) = —2In(mp(bp(y))) = —2In (?e 2 ) =bp(y)—2In(bp(y))+21In(2)-2.

U

Proof of B3.
B "ol {1 — sgn(x) (1 — e_‘w‘)}
Tg=— ;21 2 \/ﬁ .

By the strong law of large number (SLLN)

% T b(0) = ~E [ {1 - sona) (1 - 7))

bs(v) = —3 /R {1—sgn(z) (1- e"“')} e It dy = —3 (3¢77 +¢7) = 1 (sinh(y) — 2 cosh(y)) .

Now, by Theorem 1, we have mg(t) = inf,~g e **Mg(z), where Mg(z) = Ep(e*¥).

Under Hy : —1 {1 —sgn(z) (1 — e ")} ~ U(-1,0), so Mg(z) = :=¢=, by part (2)
of Theorem 2 we complete the proof, that is Cs(y) = —2In(mg(bs(7)))- O
Proof of Bj.

£y - -3 e (o))

By the strong law of large number (SLLN)

% WL (9) = —EM @t ({1~ sgn(a) (1 — e )

where

by () =

(7 —e) = \/%sinh(ﬂy).

8-
3
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Now, by Theorem 1, we have my(t) = inf,~q e ' My(z), where My(z) = Ep(e*¥).
Under Hy : =@ (3 {1 —sgn(x) (1 —e ) }) ~ N(0,1), so My(z) = e/, by part
(2) of Theorem 2, Cy(7) = —2In(my(by(7))) = by () = Zsinh*(v). O

4.1. The Limiting ratio of the EBS for different tests when v — 0.

Corollary 4.1. The limits of ratios for different tests are as follows:

AL lim &5 _ 4 56103
7—0 CF(”Y)

A2, Tim SEO) 51585
7=0 Cr(7)

A3, lim X0 _ a5
=0 Cr(7)

A4 1im ) 1 ggost
7—0 CL(’Y)

A5, 1im S50 g
7=0 Cn(7)

A6. 1im Z50) _ | 39
7—0 CL(’Y)

Proof of Al.

br(y) = (1+1n2)e” — (In2 — 1)e™” = 2cosh(y) + In(4) sinh (7).

Therefore
b () = 2sinh(7) + In(4) cosh(y),
then

lim b () = In(4) < 0.

¥—0
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Also
bs(7) = § (sinh(v) — 2cosh(v)),
then
lim s (7) = lim § (cosh(y) = 2sinh(7)) = § < oc.

Now under Hy : hp(z) = —2In[2 {1 —sgn(z) (1—e}] ~ X3 and hg(z) =
—1{1- gzgvzé;c) (1 —1e_|m|)} ~ U(=1,0), s0 Var,—o(hp(x)) =4 andg/czrszo(hg(x)) =
%, also, b;(O) = ()’ By applying Theorem 3 we can get h m CF(W) = 1.56103.
Similarly we can prove the other parts. 0

4.2. The Limiting ratio of the EBS for different tests when v — oc.

Corollary 4.2. The limits of ratios for different tests are as follows:

D1. lLim CL(’}/) _ 21In2
=00 Cp(y) 1+4+1In2

CL(’Y)
D2. lim = = = =
1200 On(7) 720 COn(y) 120 Cr(y) =0 On(y) =00 Cs(7)

. CLy) _ 2b.,(7)
lim < lim .
v=00 Cp(7y) = v=00 bp(y) — 2In(bp(7y)) + 2In(2) — 2
. . . - . QbL(’Y) . , T
It is sufficient to obtain the limit of lim . Then by using L’Hopital’s rule, we
7= bp(7)
get
. 2br(y) ) 2In2 2In2
lim = lim =
v—o0 bp(y)  v—ootanh(y)+1In2 1+41n2
Then

CL(’}/) < 2In2
y=00 Cp(y) — 1+1n2’
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Also, by Theorem 6 part (2), we have CL(v) > 2b.(y) —2In (br()) —2 . So

lim Cr(v) > lim 2br,(y) —2In (bp(7)) — 2
v=00 Cp(y) ~ 700 bp(y) — 2In(bp(y)) +2In(2) — 2°

2b
It is sufficient to obtain the limit of lim L(’y). Then by using L’Hopital’s rule, we
1=00 bp(7)

get

. 2br() , 2In2 2In2

lim ———= = lim =

y=oo bp(y)  r—octanh(y) +In2 1+41In2
Then

2In2
lim Ci0y) > ne

C 2In2
By pinching theorem, we have lim L(7) = ne
=00 Cp(y)  1+41n2

Cr(v)

MOR From B4 we have

Proof of lim,_,
Cn(y) = Zsinh*(v).

By Lemma 1 part (1) CL(y) < 2b.(y) . So

2b(7)
2 sinh?(7)

™

lim Cr(v) < lim
y—00 C’N('y) y—00

2In(4)sinh(y) I 21n(4)

= = 0.
2 sinh*(v) y—o0 2 ginh(7)

< lim
'Y—)OO

So

Then
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Proof of lim,_, ¢s() By Lemma 1 part (3) Cs(y) < —21In(2) — 2In(=bg(y)) . So

Cr(v)°
—2In(2) — 2In(-bs(7))
P Cr(r) = P be() — 21n(br (7)) + 21n(2) — 2

~2In(~bs(1))

It is sufficient to obtain the limit of lim

y—00 br(7)
Then
lim —21In(—bs(7)) — lim —2In(2) — 2y + 3111(2)’
y—00 bp(’y) ~y—$00 (1 +1n 2)6’7

now, by using L’Hopital’s rule, we get

—2In(=bs(7))

lim = 0.
Y00 br(Y)
So
. Cs(v)
lim < 0.
y=oo Cp(y) —
Then
tim S50) g
y=oe Cp(7)

U

4.3. Comparison of the EBS for the four combination procedures. From the
relations in section (4.1) we conclude that locally as v — 0, the sum of p-values
procedure is better than all other procedures since it has the highest EBS, followed
in decreasing order by the inverse normal and the logistic procedure. The worst is

the Fisher’s procedure, i.e,

Cs(v) > Cn(y) > Cr(vy) > Cr(7).

Whereas, from result of Section (4.2) as 7 — oo the inverse normal procedure is better
than the other procedures, followed in decreasing order by the Fisher’s procedure and

the sum of p-values. The worst is the logistic procedure, i.e,

Cn(v) > Cr(y) > Cs(y) > Cr(7).



176

ABEDEL-QADER S. AL-MASRI

Acknowledgement

The authors would like to thank the editor and the referees for their valuable time

in reading and providing useful comments which enhanced the article.

REFERENCES

Al-Masri, AQ (2010). Combining independent tests in case of triangular and conditional shifted
exponential distributions. Journal of Modern Applied Statistical Methods, 9(1), 221-226.
Al-Talib, M., Al Kadiri, M. and Al-Masri, A-Q. (2019). On combining independent tests in case
of conditional normal distribution. Communications in Statistics-Theory and Methods, 1-12.
Bahadur, R. R. (1959). Stochastic comparison of tests. Annals of Mathematical Statistics, 31,
276-292.

Birnbaum, A. (1955). Combining independent test of significance. Journal of the American
Statistical Association, 49, 559-579.

Lehmann, E.L. (1983) Theory of point estimation, first ed., Wiley, New York.

Littell, R. C., and Folks, L. J. (1971). Asymptotic optimality of Fisher’s method of combining
independent tests. Journal of the American Statistical Association, 66, 802-806.

Littell, R. C., and Folks, L. J. (1973). Asymptotic optimality of Fisher’s method of combining
independent tests II. Journal of the American Statistical Association, 68, 193-194.

Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: John
Wiley.

DEPARTMENT OF STATISTICS, YARMOUK UNIVERSITY, IRBID, JORDAN

Email address: almasri68@yu.edu. jo



