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EXACT BAHADUR SLOPE FOR COMBINING INDEPENDENT

TESTS IN CASE OF LAPLACE DISTRIBUTION

ABEDEL-QADER S. AL-MASRI

Abstract. Combining n independent tests of simple hypothesis, vs one-tailed al-

ternative as n approaches infinity, in case of Laplace distribution L(γ, 1) is proposed.

Four free-distribution ”nonparametric” combination procedures namely; Fisher, lo-

gistic, sum of P-values and inverse normal were studied. Several comparisons among

the four procedures using the exact Bahadur’s slopes were obtained. Results showed

that the sum of p-values procedure is better than all other procedures under the null

hypothesis, and the inverse normal procedure is better than the other procedures

under the alternative hypothesis.

1. Introduction

The combination of n independent tests of hypothesis is an important statistical

practice. If H0 is a simple hypothesis, Birnbaum [3] showed that, for given any non-

parametric combination method with a monotone increasing acceptance region, there

exists a problem for which this method is most powerful against some alternative.

Littell and Folks [6] studied four methods of combining a finite number of independent

tests. They found that the Fisher method is better than the inverse normal, the

minimum of p-value method and maximum of p-vales via Bahadur efficiency. Later,

Littell and Folks [7] showed under mild conditions that the Fisher’s method is optimal
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among all methods for combining a finite number of independent tests. Al-Masri [1]

studied six methods of combining independent tests. He showed under conditional

shifted Exponential distribution that the inverse normal method is the best among

six combination methods. Al-Talib, et. al. [2] considered combining independent

tests in case of conditional normal distribution with probability density function

X|θ ∼ N(γθ), θ ∈ [a,∞], a ≥ 0 when θ1, θ2, ... have a distribution function (DF) Fθ.

They concluded that the inverse normal procedure is better than the other procedures.

The paper is organized as follows. The specific problem is given in Section 2. The

basic definitions and preliminaries are given in Section 3. Section 4 is derivation of

the EBS L(γ, 1).

2. The Specific Problem

Consider n hypotheses of the form: See [8]

(2.1) H
(i)
0 : ηi = ηi0, vs , H

(i)
1 : ηi ∈ Ωi − {ηi0}

such that H
(i)
0 is rejected for large values, i = 1, 2, ..., n of some continuous random

variable T (i). The n hypotheses are combined into one as

(2.2)

H
(i)
0 : (η1, ..., ηn) = (η10, ..., η

n
0 ), vs , H

(i)
1 : (η1, ..., ηn) ∈

{

n
∏

i=1

Ωi − {(η10, ..., ηn0 )}
}

For i = 1, 2, . . . , n the p-value of the i-th test is given by

(2.3) Pi(t) = P
H

(i)
0

(

T (i) > t
)

= 1− F
H

(i)
0

(t)

where F
H

(i)
0

(t) is the DF of T (i) under H
(i)
0 . Note that Pi ∼ U(0, 1) under H

(i)
0 .

If considering the special case where ηi = θ and ηi0 = θ0 for i = 1, . . . , n, and also

assume that T (1), . . . , T (n) are independent, then (1) reduces to

H0 : θ = θ0, vs , H1 : θ ∈ Ω− {θ0}(2.4)
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It follows that the p-values P1, . . . , Pn are also independent identically distributed

random variables that have a U(0, 1) distribution under H0, and under H1 have

a distribution whose support is a subset of the interval (0, 1) and is not a U(0, 1)

distribution. Therefore, if f is the probability density function (pdf) of P , then (4)

is equivalent to

H0 : P ∼ U(0, 1), vs , H1 : P ∼ f(2.5)

where P has a pdf f with support a subset of the interval (0, 1).

This study considers the case: ηi = 0, i = 1, . . . , n. Also we are assuming that

T (1), T (2), . . . , T (n) are independent. Then Eq. (4) reduced to

(2.6) H0 : γ = 0, vs , H1 : γ > 0

Thus, the p-values P1, P2, . . . , Pn are i.i.d. r.v.’s distributed with a uniform distribu-

tion U(0, 1) under H0 which is given by (6).

We shall assume that the i-th problem in case of the normal distribution is based on

T
(i)
1 , . . . , T

(i)
(ni)

which are independent r.v.’s. By sufficiency we may assume ni = 1 and

T (i) = Xi for i = 1, . . . , n. Then we consider the sequence
{

T (n)
}

of independent test

statistics that is we will take a random sample X1, . . . , Xn of size n and let n → ∞
and compare the four non-parametric methods via EBS. Although Xi is not sufficient

for θi under H
(i)
0 for the other distributions, but we will assume ni = 1 and T (i) = Xi

for i = 1, . . . , n.

The following four combination tests: Fisher, logistic, inverse normal and the sum of

P-values, that will be used in this paper:

ϕF isher =







1, −2
∑n

i=1 ln(Pi) > c

0, ow

ϕlogistic =







1, −
∑n

i=1 ln
(

Pi

1−Pi

)

> c

0, ow
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ϕNormal =







1, −∑n
i=1Φ

−1(Pi) > c

0, ow

ϕSum =







1, −
∑n

i=1 Pi > c

0, ow,

where Φ is the cdf of standard normal distribution.

3. Definitions and Preliminaries

In this section we will state some definitions and preliminaries that will be used

Definition 3.1. (Bahadur efficiency and exact Bahadur slope (EBS)) Let X1, . . . , Xn

be i.i.d. from a distribution with a probability density function f(x, θ), and we

want to test H0 : θ = θ0 vs. H1 : θ ∈ Θ − {θ0}. Let
{

T
(1)
n

}

and
{

T
(2)
n

}

be two

sequences of test statistics for testing H0. Let the significance attained by T
(i)
n be

L
(i)
n = 1− Fi

(

T
(i)
n

)

, where Fi

(

T
(i)
n

)

= PH0

(

T
(i)
n ≤ ti

)

, i = 1, 2. Then there exists a

positive valued function Ci(θ) called the exact Bahadur slope of the sequence {T (i)
n }

such that

Ci(θ) = lim
θ→∞

−2n−1 ln
(

Li
n

)

with probability 1 (w.p.1) under θ and the Bahadur efficiency of
{

T
(1)
n

}

relative to
{

T
(2)
n

}

is given by eB (T1, T2) = C1(θ)/C2(θ). See [8]

Theorem 3.1. (Large deviation theorem) Let X1, X2, . . . , Xn be i.i.d., with distribu-

tion F and put Sn =
∑n

i=1Xi. Assume existence of the moment generating function

(mgf) M(z) = EF

(

ezX
)

, z real, and put m(t) = infz e
−z(X−t) = infz e

−ztM(z). The

behavior of large deviation probabilities P (Sn ≥ tn) , where tn → ∞ at rates slower

than O(n). The case tn = tn, if −∞ < t ≤ EY, then P (Sn ≤ nt) ≤ [m(t)]n , the

−2n−1 lnPF (Sn ≥ nt) → −2 lnm(t) a.s. (Fθ) .

See [8]
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Theorem 3.2. (Bahadur theorem) Let {Tn} be a sequence of test statistics which

satisfies the following:

(1) Under H1 : θ ∈ Θ− {θ0}:

n− 1
2Tn → b(θ) a.s. (Fθ) ,

where b(θ) ∈ R.

(2) There exists an open interval I containing {b(θ) : θ ∈ Θ− {θ0}} , and a func-

tion g continuous on I, such that

lim
n

−2n−1 log sup
θ∈Θ0

[

1− Fθn(n
1
2 t)

]

= lim
n

−2n−1 log
[

1− Fθn(n
1
2 t)

]

= g(t), t ∈ I.

If {Tn} satisfied (1)-(2), then for θ ∈ Θ− {θ0}

−2n−1 log sup
θ∈Θ0

[1− Fθn(Tn)] → C(θ) a.s. (Fθ) .

See [3]

Theorem 3.3. Let X1, . . . , Xn be i.i.d. with probability density function f(x, θ), and

we want to test H0 : θ = 0 vs. H1 : θ > 0. For j = 1, 2, let Tn,j =
∑n

i=1 fi(xi)/
√
n be a

sequence of statistics such that H0 will be rejected for large values of Tn,j and let ϕj be

the test based on Tn,j. Assume Eθ(fi(x)) > 0, ∀θ ∈ Θ, E0(fi(x)) = 0, V ar(fi(x)) > 0

for j = 1, 2. Then

1. If the derivative b′j(0) is finite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=

V arθ=0(f2(x))

V arθ=0(f1(x))

[

b′1(0)

b′2(0)

]2

,

where bi(θ) = Eθ(fj(x)), and Cj(θ) is the EBS of test ϕj at θ.

2. If the derivative b′j(0) is infinite for j = 1, 2, then

lim
θ→0

C1(θ)

C2(θ)
=

V arθ=0(f2(x))

V arθ=0(f1(x))

[

lim
θ→0

b′1(θ)

b′2(θ)

]2

.

See [1]
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Theorem 3.4. If T
(1)
n and T

(2)
n are two test statistics for testing H0 : θ = 0 vs.

H1 : θ > 0 with distribution functions F
(1)
0 and F

(2)
0 under H0, respectively, and that

T
(1)
n is at least as powerful as T

(2)
n at θ for any α, then if ϕj is the test based on T

(j)
n ,

j = 1, 2, then

C(1)
ϕ1

(θ) ≥ C(2)
ϕ2

(θ).

See [8]

Corollary 3.1. If Tn is the uniformly most powerful test for all α, then it is the best

via EBS. See [8]

Theorem 3.5.

2t ≤ mS(t) ≤ et, ∀ : 0 ≤ t ≤ 0.5,

where

mS(t) = inf
z>0

e−zt e
z − 1

z
.

See [1]

Theorem 3.6. (1) mL(t) ≥ 2te−t, ∀t ≥ 0,

(2) mL(t) ≤ te1−t, ∀t ≥ 0.852,

(3) mL(t) ≤ t
(

t2

1+t2

)3

e1−t, ∀t ≥ 4,

where mL(t) = infz∈(0,1) e
−ztπz csc(πz) and csc is an abbreviation for cosecant

function.

See [1]

Theorem 3.7. For x > 0,

φ(x)

[

1

x
− 1

x3

]

≤ 1− Φ(x) ≤ φ(x)

x
.

Where φ is the pdf of standard normal distribution. See [1]
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Theorem 3.8. For x > 0,

1− Φ(x) >
φ(x)

x+
√

π
2

.

See [1]

Lemma 3.1. (1) mL(t) ≥ inf
0<z<1

e−zt = e−t

(2) mL(t) ≤
e−t2/(t+1)

(

πt
t+1

)

sin
(

πt
t+1

)

(3)







ms(t) = infz>0
e−zt(1−e−z)

z
≤ infz>0

e−zt

z
≤ −et, t < 0

ms(t) ≥ −2t, −1
2
≤ t ≤ 0.

(4)
x− 1

x
≤ ln x ≤ x− 1, x > 0

See [1]

Theorem 3.9. For any integrable function f and any η in the interior of Θ, the

integral
∫

f(x)e
∑

ηiTi(x)h(x)dµ(x)

is continuous and has derivatives of all orders with respect to the η′s, and these can

be obtained by differentiating under the integral sign. See [5]

4. Derivation of The EBS For L(γ, 1)

In this section we will study testing problem (6). We will compare the four methods

viz. Fisher, logistic, sum of P-values and the inverse normal method via EBS.

Let X1, . . . , Xn be i.i.d. with probability density function L(γ, 1), and we want to

test (6). The P-value in this case is given by

(4.1) Pn(Xn) = 1− FH0(Xn) = 1− F0(x) =
1
2

{

1− sgn(x)
(

1− e−|x|)}

The next four lemmas give the EBS for Fisher (CF ), logistic (CL), inverse normal

(CN), and sum of p-values (CS) methods.
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Lemma 4.1. The exact Bahadur’s slope (EBS’s) result for the tests, which is given

in Section 2, are as follows:

B1. Fisher method. CF (γ) = bF (γ)− 2 ln(bF (γ)) + 2 ln(2)− 2,

where

bF (γ) = 2 cosh(γ) + ln(4) sinh(γ).

B2. Logistic method. CL(γ) = −2 ln(m(bL(γ))), where

mL(t) = inf
z∈(0,1)

e−ztπz csc(πz)

and

bL(γ) = ln(4) sinh[γ].

B3. Sum of p-values method. CS(γ) = −2 ln(m(bS(γ))), where

mS(t) = inf
z>0

e−zt1− e−z

z

and

bS(γ) =
1
4
(sinh(γ)− 2 cosh(γ)) .

B4. Inverse Normal method. CN(γ) = −2 ln(m(bN (γ))) =
2
π
sinh2(γ).

Proof of B1.

TF = −2

n
∑

i=1

ln
[

1
2

{

1− sgn(x)
(

1− e−|x|)}]

√
n

.

By the strong law of large number (SLLN)

TF√
n

w.p.1−−−→ bF (γ) = 2 ln 2− E
H1 ln

{

1− sgn(x)
(

1− e−|x|)}

then

bF (γ) = 2 ln 2−2

∫

R

ln
{

1− sgn(x)
(

1− e−|x|)} 1
2
e−|x−γ| dx = (1+ln 2)eγ−(ln 2−1)e−γ = 2 cosh(γ)+ln(4)
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Now under H0, then by Theorem 1, we have mS(t) = infz>0 e
−ztMS(z), where

MS(z) = EF (e
zX). Under H0 : −1

2

{

1− sgn(x)
(

1− e−|x|)} ∼ U(−1, 0), so MS(z) =

1−e−z

z
, by part (2) of Theorem 2 we complete the proof, that is

CF (γ) = −2 ln(mF (bF (γ))) = −2 ln

(

bF (γ)

2
e1−

bF (γ)

2

)

= bF (γ)−2 ln(bF (γ))+2 ln(2)−2.

�

Proof of B3.

TS = −
n

∑

i=1

1
2

{

1− sgn(x)
(

1− e−|x|)}

√
n

.

By the strong law of large number (SLLN)

TS√
n

w.p.1−−−→ bS(γ) = −E
H1

[

1
2

{

1− sgn(x)
(

1− e−|x|)}]

then

bS(γ) = −1
4

∫

R

{

1− sgn(x)
(

1− e−|x|)} e−|x−γ| dx = −1
8

(

3e−γ + eγ
)

= 1
4
(sinh(γ)− 2 cosh(γ)) .

Now, by Theorem 1, we have mS(t) = infz>0 e
−ztMS(z), where MS(z) = EF (e

zX).

Under H0 : −1
2

{

1− sgn(x)
(

1− e−|x|)} ∼ U(−1, 0), so MS(z) =
1−e−z

z
, by part (2)

of Theorem 2 we complete the proof, that is CS(γ) = −2 ln(mS(bS(γ))). �

Proof of B4.

TN = −
n

∑

i=1

Φ−1
(

1
2

{

1− sgn(x)
(

1− e−|x|)})

√
n

.

By the strong law of large number (SLLN)

TN√
n

w.p.1−−−→ bN (γ) = −E
H1 Φ−1

(

1
2

{

1− sgn(x)
(

1− e−|x|)})

where

bN (γ) =
1√
2π

(

eγ − e−γ
)

=
√

2
π
sinh(γ).
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Now, by Theorem 1, we have mN (t) = infz>0 e
−ztMN (z), where MN(z) = EF (e

zX).

Under H0 : −Φ−1
(

1
2

{

1− sgn(x)
(

1− e−|x|)}) ∼ N(0, 1), so MN (z) = ez
2/2, by part

(2) of Theorem 2, CN(γ) = −2 ln(mN(bN (γ))) = b2N (γ) =
2
π
sinh2(γ). �

4.1. The Limiting ratio of the EBS for different tests when γ → 0.

Corollary 4.1. The limits of ratios for different tests are as follows:

A1. lim
γ→0

CS(γ)

CF (γ)
= 1.56103

A2. lim
γ→0

CL(γ)

CF (γ)
= 1.21585

A3. lim
γ→0

CN(γ)

CF (γ)
= 1.32504

A4. lim
γ→0

CN(γ)

CL(γ)
= 1.08981

A5. lim
γ→0

CS(γ)

CN(γ)
= 1.1781

A6. lim
γ→0

CS(γ)

CL(γ)
= 1.2839

Proof of A1.

bF (γ) = (1 + ln 2)eγ − (ln 2− 1)e−γ = 2 cosh(γ) + ln(4) sinh(γ).

Therefore

b′F (γ) = 2 sinh(γ) + ln(4) cosh(γ),

then

lim
γ→0

b′F (γ) = ln(4) < ∞.
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Also

bS(γ) =
1
4
(sinh(γ)− 2 cosh(γ)) ,

then

lim
γ→0

b′S(γ) = lim
γ→0

1
4
(cosh(γ)− 2 sinh(γ)) = 1

4
< ∞.

Now under H0 : hF (x) = −2 ln
[

1
2

{

1− sgn(x)
(

1− e−|x|)}] ∼ χ2
2 and hS(x) =

−1
2

{

1− sgn(x)
(

1− e−|x|)} ∼ U(−1, 0), so V arγ=0(hF (x)) = 4 and V arγ=0(hS(x)) =

1
12
, also,

b′S(0)

b′F (0)
=

1

4 ln(4)
. By applying Theorem 3 we can get lim

γ→0

CS(γ)

CF (γ)
= 1.56103.

Similarly we can prove the other parts. �

4.2. The Limiting ratio of the EBS for different tests when γ → ∞.

Corollary 4.2. The limits of ratios for different tests are as follows:

D1. lim
γ→∞

CL(γ)

CF (γ)
=

2 ln 2

1 + ln 2

D2. lim
γ→∞

CL(γ)

CN(γ)
= lim

γ→∞

CF (γ)

CN(γ)
= lim

γ→∞

CS(γ)

CF (γ)
= lim

γ→∞

CS(γ)

CN(γ)
= lim

γ→∞

CL(γ)

CS(γ)
= 0

Proof of limγ→∞
CL(γ)
CF (γ)

. By Lemma 1 part (1) CL(γ) ≤ 2bL(γ) . So

lim
γ→∞

CL(γ)

CF (γ)
≤ lim

γ→∞

2bL(γ)

bF (γ)− 2 ln(bF (γ)) + 2 ln(2)− 2
.

It is sufficient to obtain the limit of lim
γ→∞

2bL(γ)

bF (γ)
. Then by using L’Hopital’s rule, we

get

lim
γ→∞

2bL(γ)

bF (γ)
= lim

γ→∞

2ln2

tanh(γ) + ln 2
=

2ln2

1 + ln 2

Then

lim
γ→∞

CL(γ)

CF (γ)
≤ 2 ln 2

1 + ln 2
.
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Also, by Theorem 6 part (2), we have CL(γ) ≥ 2bL(γ)− 2 ln (bL(γ))− 2 . So

lim
γ→∞

CL(γ)

CF (γ)
≥ lim

γ→∞

2bL(γ)− 2 ln (bL(γ))− 2

bF (γ)− 2 ln(bF (γ)) + 2 ln(2)− 2
.

It is sufficient to obtain the limit of lim
γ→∞

2bL(γ)

bF (γ)
. Then by using L’Hopital’s rule, we

get

lim
γ→∞

2bL(γ)

bF (γ)
= lim

γ→∞

2 ln 2

tanh(γ) + ln 2
=

2 ln 2

1 + ln 2

Then

lim
γ→∞

CL(γ)

CF (γ)
≥ 2 ln 2

1 + ln 2
.

By pinching theorem, we have lim
γ→∞

CL(γ)

CF (γ)
=

2 ln 2

1 + ln 2
. �

Proof of limγ→∞
CL(γ)
CN (γ)

. From B4 we have

CN(γ) =
2
π
sinh2(γ).

By Lemma 1 part (1) CL(γ) ≤ 2bL(γ) . So

lim
γ→∞

CL(γ)

CN(γ)
≤ lim

γ→∞

2bL(γ)
2
π
sinh2(γ)

lim
γ→∞

CL(γ)

CN(γ)
≤ lim

γ→∞

2 ln(4) sinh(γ)
2
π
sinh2(γ)

= lim
γ→∞

2 ln(4)
2
π
sinh(γ)

= 0.

So

lim
γ→∞

CL(γ)

CN(γ)
≤ 0.

Then

lim
γ→∞

CL(γ)

CN(γ)
= 0.

�
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Proof of limγ→∞
CS(γ)
CF (γ)

. By Lemma 1 part (3) CS(γ) ≤ −2 ln(2)− 2 ln(−bS(γ)) . So

lim
γ→∞

CS(γ)

CF (γ)
≤ lim

γ→∞

−2 ln(2)− 2 ln(−bS(γ))

bF (γ)− 2 ln(bF (γ)) + 2 ln(2)− 2
.

It is sufficient to obtain the limit of lim
γ→∞

−2 ln(−bS(γ))

bF (γ)
.

Then

lim
γ→∞

−2 ln(−bS(γ))

bF (γ)
= lim

γ→∞

−2 ln(2)− 2γ + 3 ln(2)

(1 + ln 2)eγ
,

now, by using L’Hopital’s rule, we get

lim
γ→∞

−2 ln(−bS(γ))

bF (γ)
= 0.

So

lim
γ→∞

CS(γ)

CF (γ)
≤ 0.

Then

lim
γ→∞

CS(γ)

CF (γ)
= 0.

�

4.3. Comparison of the EBS for the four combination procedures. From the

relations in section (4.1) we conclude that locally as γ → 0, the sum of p-values

procedure is better than all other procedures since it has the highest EBS, followed

in decreasing order by the inverse normal and the logistic procedure. The worst is

the Fisher’s procedure, i.e,

CS(γ) > CN(γ) > CL(γ) > CF (γ).

Whereas, from result of Section (4.2) as γ → ∞ the inverse normal procedure is better

than the other procedures, followed in decreasing order by the Fisher’s procedure and

the sum of p-values. The worst is the logistic procedure, i.e,

CN(γ) > CF (γ) > CS(γ) > CL(γ).
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