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A RADIUS PROBLEM FOR A CERTAIN CLASS OF SCHLICHT

FUNCTIONS

K. O. BABALOLA (1) AND F. M. JIMOH (2)

Abstract. In this work we apply a lemma of Tuan and Anh [5] to solve a radius

problem for certain class of schlicht functions defined by a product of expressions

having geometric meaning. Many interesting consequences of the result are de-

rived for some well known classes of functions, most especially the novel radius of

convexity of order 1
2 for functions of bounded turning in the unit disk |z| < 1.

1. Introduction

Let A be the class of functions of the form

f(z) = z + a2z
2 + · · ·

which are holomorphic in the unit disk E = |z| < 1. Denote by P (β), the class of

functions

p(z) = 1 + p1z + p2z
2 + p3z

3 + ...

holomorphic in E and satisfying Re p(z) > β for some real number 0 ≤ β < 1.

In [2], the authors introduced and gave some characterizations of a class of func-

tions, J α
n (β), consisting of f ∈ A satisfying

Re
Dnf(z)α

αnzα
Dn+1f(z)α

αn+1zα
> β
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where Dn is the Salagean derivative [4] defined by

Dnf(z) = D(Dn−1f(z)) = z[Dn−1f(z)]′, n ∈ N0 = {0, 1, 2, ...}

withD0f(z) = f(z) and, α and β are real numbers restricted by 0 ≤ β < 1 and α ≥ 0.

Furthermore powers mean principal determinations only. They proved, among others,

that for n ≥ 1, J α
n (β) consists of schlicht functions in E. They also remarked that

for n = 0, the cases α = 0, 1/2 and 1 coincide respectively with well-known classes of

schlicht maps, namely, (i) starlike functions of order β

Re
zf ′(z)

f(z)
> β,

(ii) bounded turning functions of order β

Re f ′(z) > β,

and (iii) Bazilevic functions of type 2, order β

Re
zf ′(z)f(z)α−1

zα
> β

(see Remark 1 [2]).

Oversightedly, the authors missed the fact that the case n = 0 generally consists

of schlicht Bazilevic maps of type 2α, order β defined by

Re
f(z)2α−1f ′(z)

z2α−1
> β

by which we conclude (in passing) that the new class of functions consists of schlicht

functions only and so provides a unified treatment for many known classes of schlicht

functions in the unit disk. The result of this paper with its many interesting new and

existing corollaries for many classes of functions further justifies the introduction of

the new class J α
n (β).

The object of the present work is to employ a lemma of Tuan and Anh [5] to

solve a radius problem for the class J α
0 (β). Some of the consequences of our result
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include the determination of the radius of the subdisk |z| < r for which functions in

J α
0 (β) satisfy certain not-linear combinations (see [1]), and in particular, the radius

of convexity for some special cases of the new class.

In the next section we state the lemma of Tuan and Anh [5] on which we depend

for our main result, which we prove in Section 3 of the paper.

2. The Lemma

Lemma 2.1. [5] Let p ∈ P . Then for 0 ≤ β < 1

Re
zp′(z)

β

1−β
+ p(z)

≥







− 2(1−β)r
(1+r)(1+(2β−1)r)

, for R1 ≤ R2,

− β

1−β
+ 1

1−β

(

2R1 − 1−(2β−1)r2

1−r2

)

, for R2 ≤ R1.

where R1 =
(

β−β(2β−1)r2

1−r2

)
1

2

and R2 =
1+(2β−1)r

1+r
. The functions given by

p(z) =







1−z
1+z

, for R1 ≤ R2,

1
2

(

1+ze−iθ

1−ze−iθ +
1+zeiθ

1−zeiθ

)

, for R2 ≤ R1.

show that the inequalities are sharp, where cos θ satisfies the equation

(2R1 − a− α)− 2 cos θ[(2R1 − a− α)(1 + α)

+ (1− α)2]r + [2α(2R1 − a− α)(1 + 2 cos2 θ) + 4(1− α)2]r2

− 2 cos θ[(2R1 − a− α)(3α− 1) + (1− α)2]r3 + (2α− 1)r4 = 0

with a = (1− (2α− 1)r2)/(1− r2).

3. Main Result

The following radius problem is our main result. Some important consequences are

indicated after the proof.

Theorem 3.1. Let f ∈ J α
n (β). Then

Re

(

Dn+1f(z)α

Dnf(z)α
+

Dn+2f(z)α

Dn+1f(z)α

)

> 2ρ, ρ ≥ −1

4
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for |z| < r0(α, β, ρ) where r0(α, β, ρ) is given by

r0(α, β, ρ) =























F
2(α−ρ)(1−2β)

, if 0 ≤ β < β0(α, ρ),
(

G
(4(α−ρ)2+1)(1−β)+4(α−ρ)(1−3β)

)
1

2

, if β0(α, ρ) ≤ β < 1, β 6= µ,
(

2(α−ρ)
2(α−ρ)+1

)
1

2

, if β = µ

where also

β0(α, ρ) = min

{

1

2
,

1

4(α− ρ) + 1

}

and

F = [(4(α− ρ)2 + 1)(1− β)2 − 4(α− ρ)β(1− β)]
1

2 + 2(α− ρ)β + β − 1

G = 4[2β(α− ρ)(1− β)]
1

2 − [(1− 4(α− ρ)2)(1− β) + 8(α− ρ)β]

µ =
(2(α− ρ) + 1)2

1 + 12(α− ρ) + 4(α− ρ)2
.

Proof. Since f ∈ J α
n (β), then there exists a p(z) ∈ P such that

(3.1)
Dnf(z)α

αnzα
Dn+1f(z)α

αn+1zα
= β + (1− β)p(z).

Differentiation of equation (3.1) and some computation yields

Dn+1f(z)α

Dnf(z)α
+

Dn+2f(z)α

Dn+1f(z)α
= 2α +

zp′(z)
β

1−β
+ p(z)

.

If R1 < R2, then by the condition of the theorem and the lemma, we have

Re

(

Dn+1f(z)α

Dnf(z)α
+

Dn+2f(z)α

Dn+1f(z)α

)

≥ 2α− 2(1− β)r

(1 + r)(1 + (2β − 1)r)

where R1 and R2 are as given in the lemma. Therefore we deduce that

(3.2) Re

(

Dn+1f(z)α

Dnf(z)α
+

Dn+2f(z)α

Dn+1f(z)α

)

> 2ρ

provided

(α− ρ)− (1− β)r

(1 + r)(1 + (2β − 1)r)
> 0
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which is true if |z| = r < r0(α, β, ρ) where

r0(α, β, ρ) =
F

2(α− ρ)(1− 2β)

is the smallest positive root of the equation

(α− ρ)(2β − 1)r2 + (2(α− ρ)β + β − 1)r + (α− ρ) = 0.

Now, this root is real if

(2(α− ρ)β + β − 1)2 − 4(α− ρ)2(2β − 1) ≥ 0

and since this root must be less than one, then

β < β0(α, ρ) = min

{

1

2
,

1

4(α− ρ) + 1

}

.

Next, suppose R2 ≤ R1, then by the lemma again and the condition of the theorem,

Re

(

Dn+1f(z)α

Dnf(z)α
+

Dn+2f(z)α

Dn+1f(z)α

)

≥ 2α− β

1− β
+

1

1− β

[

2

(

β − β(2β − 1)r2

1− r2

)
1

2

− 1− (2β − 1)r2

1− r2

]

.

and the condition (3.2) is satisfied provided

2(α− ρ)− β

1− β
+

1

1− β

[

2

(

β − β(2β − 1)r2

1− r2

)
1

2

− 1− (2β − 1)r2

1− r2

]

> 0

which is the case if |z| = r < r0(α, β, ρ) where r0(α, β, ρ) is the smallest positive root

of the equation

(3.3) ar4 + br2 + c = 0

where

a = (4(α− ρ)2 + 1)(1− β)2 + 4(α− ρ)(1− β)(1− 3β),

b = 2(1− 4(α− ρ)2)(1− β)2 + 16(α− ρ)β(1− β)
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and

c = (4(α− ρ)2 + 1)(1− β)2 − 4(α− ρ)(1− β)(1 + β).

This root is given by

r0(α, β, ρ)

=

(

4[2β(α− ρ)(1− β)]
1

2 − [(1− 4(α− ρ)2)(1− β) + 8(α− ρ)β]

(4(α− ρ)2 + 1)(1− β) + 4(α− ρ)(1− 3β)

)
1

2

where β 6= (2(α− ρ) + 1)2/(1 + 12(α− ρ) + 4(α− ρ)2).

If β = (2(α− ρ)+ 1)2/(1+12(α− ρ)+ 4(α− ρ)2) in (3.3), we obtain the third root

given in the theorem. �

For n = 0, we have the following important corollaries from the main result.

Corollary 3.1. Let f ∈ J α
0 (β) (that is, f is Bazilevic of type 2α, order β). Then

(3.4) Re

{

1 +
zf ′′(z)

f(z)
+ (2α− 1)

zf ′(z)

f(z)

}

> 2ρ, ρ ≥ −1

4

for |z| < r0(β) where r0(β) is as given in the theorem.

It is worthy of mention that Babalola in [1] proved that (3.4) is sufficient for

schlichtness in the open unit disk. Now take ρ = α− 1
4
in (3.4), we have the following.

Corollary 3.2. Let f ∈ J α
0 (β) (that is, f is Bazilevic of type 2α, order β). Then

Re

{

1 +
zf ′′(z)

f(z)
+ (2α− 1)

zf ′(z)

f(z)

}

> 2α− 1

2

for |z| < r0(β) where r0(β) is given by

r0(β) =



























3β−2+
√

(1−β)(5−9β)

1−2β
, if 0 ≤ β < 1

2
,

(

8
√

2β(1−β)−5β−3

9−17β

)
1

2

, if 1
2
≤ β < 1, β 6= 9

17
,

√
3
3
, if β = 9

17
.

In particular, if α = 0, we have:
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Corollary 3.3. Let f ∈ J 0
0 (β) (that is, f is starlike of order β). Then

(3.5) Re

{

1 +
zf ′′(z)

f(z)
− zf ′(z)

f(z)

}

> −1

2

for |z| < r0(β) where r0(β) is as given in Corollary 3.2 above.

Also if we take α = 1
2
, which consists of functions of bounded turning of order β,

then we have the radius of convexity of order 1
2
for such functions as:

Corollary 3.4. Let f ∈ J
1

2

0 (β) (that is, f is of bounded turning order β). Then

(3.6) Re

{

1 +
zf ′′(z)

f(z)

}

>
1

2

for |z| < r0(β) where r0(β) is also as given in Corollary 3.2 above.

This radius of convexity of order 1
2
for bounded-turning functions of order β is

novel, and advances over similar result of Macgregor [3] for the radius of convexity

of order zero. Particular cases for β = 0 and β = 1
2
are mentioned in Corollaries 3.8

and 3.12 below.

Also if α = 1, then we have:

Corollary 3.5. Let f ∈ J 1
0 (β) (that is, f is starlike of order β). Then

(3.7) Re

{

1 +
zf ′′(z)

f(z)
+

zf ′(z)

f(z)

}

>
3

2

for |z| < r0(β) where r0(β) is as given in Corollary 3.2 above.

Finally, we note the plausible limiting case r0(β) → 1 as β → 1 in Corollary 3.2

above, and also in particular, for the cases β = 0 and β = 1/2 we have the following.

Corollary 3.6. Let f ∈ J α
0 . Then f satisfies (3.4) in the subdisk |z| <

√
5− 2.

Corollary 3.7. Every starlike function (f ∈ J 0
0 ) satisfies (3.5) in the subdisk |z| <

√
5− 2.
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Corollary 3.8. Every bounded turning function (f ∈ J
1

2

0 ) satisfies (3.6) in the sub-

disk |z| <
√
5− 2. That is every bounded turning function is convex of order 1

2
in the

subdisk subdisk |z| <
√
5− 2.

This radius of convexity of order 1
2
for bounded-turning functions is new.

Corollary 3.9. Every type 2 Bazilevic function (f ∈ J 1
0 ) satisfies (3.7) in the subdisk

|z| <
√
5− 2.

Corollary 3.10. Let f ∈ J α
0 (

1
2
). Then f satisfies (3.4) in the subdisk

|z| <
√

8
√
2− 11 = 0.5600968657.

Corollary 3.11. Every starlike function of order 1
2
(f ∈ J 0

0 (
1
2
)) satisfies (3.5) in the

subdisk |z| <
√

8
√
2− 11.

Corollary 3.12. Every bounded turning function of order 1
2
(f ∈ J

1

2

0 (1
2
)) satisfies

(3.6) in the subdisk |z| <
√

8
√
2− 11.

Also this radius of convexity of order 1
2
for bounded-turning functions of order 1

2

is also new.

Corollary 3.13. Every Type 2 Bazilevic function of order 1
2
(f ∈ J 1

0 (
1
2
)) satisfies

(3.7) in the subdisk |z| <
√

8
√
2− 11.
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