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ON CERTAIN CHROMATIC TOPOLOGICAL INDICES OF SOME
MYCIELSKI GRAPHS

SMITHA ROSE (1) AND SUDEV NADUVATH (2)

Abstract. As a coloring analogue of different Zagreb indices, in the recent liter-

ature, the notion of chromatic Zagreb indices has been introduced and studied for

some basic graph classes in trees. In this paper, we study the chromatic Zagreb

indices and chromatic irregularity indices of some special classes of graphs called

Mycielski graphs of paths and cycles.

1. Introduction

For the terms and definitions, which are not introduced in this paper, we refer to

[7, 3, 4, 11]. Throughout our study, we consider G = (V,E) as a finite, nontrivial,

undirected, simple and connected graph.

A topological index of a graph G is a real number which is preserved under isomor-

phism (see [10]), which makes them vital in various fields of mathematical chemistry.

As the earliest irregularity measurement introduced in the literature, the Zagreb

indices, in the manipulation of the vertex degrees, are well studied for years. In-

vestigating the effect of interchanging vertex degrees with minimal coloring, obeying

additional coloring conditions, a whole new area for research is opened fresh. As

a coloring analogue of different Zagreb indices, chromatic Zagreb indices have been

introduced in [8].

2010 Mathematics Subject Classification. 05C15,05C38.

Key words and phrases. Mycielski graphs, chromatic Zagreb indices, irregularity indices.

Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: March 31, 2019 Accepted: Jan. 2, 2020 .

487



488 SMITHA ROSE AND SUDEV NADUVATH

If C = {c1, c2, c3, . . . , c`} is a set of colors (or labels or weights), then a proper vertex

coloring of a graph G is an assignment ϕ : V (G)→ C of the vertices of G with colors

in C such that adjacent vertices of G have different colors. The cardinality of the

minimum set of colors allowing proper coloring of G is called the chromatic number

of G and is denoted χ(G). The set of vertices of G which have the color ci is called

the color class of that color ci in G. The cardinality of the color class of a color ci is

said to be the strength of that color in G and is denoted by θ(ci). We can also define

a function ζ : V (G) → {1, 2, 3, . . . , `} such that ζ(vi) = s ⇐⇒ ϕ(vi) = cs, cs ∈ C.

Also, we denote the number of edges with end points having colors ct and cs by ηts,

where t < s, 1 ≤ t, s ≤ χ(G).

A vertex coloring consisting of the colors having minimum subscripts may be called

a minimum parameter coloring. Unless stated otherwise, the colorings we consider

in this paper are minimum parameter colorings. For any minimum parameter set of

colors C with cardinality |C| = `, a graph G has `! minimum parameter colorings. We

denote these colorings by ϕt(G), 1 ≤ t ≤ `!.

If we color the vertices of G in such a way that c1 is assigned to the maximum

possible number of vertices, then c2 is assigned to the maximum possible number of

remaining uncolored vertices and proceed in this manner until all vertices are colored,

then such a coloring is called a ϕ−-coloring of G. In a similar manner, if c` is assigned

to the maximum possible number of vertices, then c`−1 is assigned to the maximum

possible number of remaining uncolored vertices and proceed in this manner until all

vertices are colored, then such a coloring is called a ϕ+-coloring of G.

Analogous to the definitions of Zagreb and irregularity indices of graphs (see [1, 6,

12, 13]), the notions of different chromatic Zagreb indices and chromatic irregularity

indices have been introduced in [8] as follows:
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Definition 1.0.1. [8] Let G be a graph and let C = {c1, c2, c3, . . . , c`} be a proper

coloring of G such that ϕ(vi) = cs; 1 ≤ i ≤ n, 1 ≤ s ≤ `. Then for 1 ≤ t ≤ ` !,

(i) The first chromatic Zagreb index of G, denoted by Mϕt

1 (G), is defined as

Mϕt

1 (G) =
n∑
i=1

(ζ(vi))
2 =

∑̀
j=1

θ(cj) · j2.

(ii) The second chromatic Zagreb index of G, denoted by Mϕt

2 (G), is defined as

Mϕt

2 (G) =
n−1∑
i=1

n∑
j=2

(ζ(vi) · ζ(vj)), vivj ∈ E(G).

(iii) The chromatic irregularity index of G, denoted by Mϕt

3 (G), is defined as

Mϕt

3 (G) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)|, vivj ∈ E(G).

In view of the above notions, the minimum and maximum chromatic Zagreb indices

and the corresponding irregularity indices are defined in [8] as follows.

Mϕ−

1 (G) = min{Mϕt

1 (G) : 1 ≤ t ≤ `!},

Mϕ+

1 (G) = max{Mϕt

1 (G) : 1 ≤ t ≤ `!},

Mϕ−

2 (G) = min{Mϕt

2 (G) : 1 ≤ t ≤ `!},

Mϕ+

2 (G) = max{Mϕt

2 (G) : 1 ≤ t ≤ `!},

Mϕ−

3 (G) = min{Mϕt

3 (G) : 1 ≤ t ≤ `!},

Mϕ+

3 (G) = max{Mϕt

3 (G) : 1 ≤ t ≤ `!}.

In a similar way, we define the chromatic total irregularity indices as follows:

Definition 1.0.2. The chromatic total irregularity index of a graph G corresponding

to a proper coloring ϕ : V (G)→ C = {c1, c2, . . . c`} is defined as

Mϕt

4 (G) =
1

2

n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)|, vi, vj ∈ V (G).
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Then, the minimal and maximal chromatic total irregularities are defined as

Mϕ+

4 (G) = min{Mϕt

4 (G) : 1 ≤ t ≤ `!}

Mϕ−

4 (G) = max{Mϕt

4 (G) : 1 ≤ t ≤ `!}.

This definition is the chromatic analogue of the total irregularity of graphs defined

in [1].

2. Chromatic Zagreb Index of Mycielskian of a graph

Motivated by the studies mentioned above, we study the chromatic Zagreb indices

and chromatic irregularity indices of Mycielskian of certain fundamental graph classes

in the following discussion.

Definition 2.0.1. [9] Let G be a graph with the vertex set V (G) = {v1, . . . , vn}.

The Mycielski graph or the Mycielskian of a graph G, denoted by µ(G), is the graph

with vertex set V (µ(G)) = {v1, v2, . . . , vn, u1, u2, . . . , un, w} such that

(i) vivj ∈ E(µ(G)) if and only ifvivj ∈ E(G),

(ii) viuj ∈ E(µ(G)) if and only if vivj ∈ E(G), and

(iii) uiw ∈ E(µ(G)) for all i = 1, . . . , n.

An illustration to Mycielskian of a graph is provided in Figure 1.

Note that the set of vertices {u1, u2, . . . , un} is an independent set in µ(G) and

can be denoted by U . The vertices ui and vi may be called the twin vertices and

the vertex w may be called the root vertex of µ(G). For the ease of the notation, we

represent the Mycielski graph of a graph G by Ğ.

First we find out the chromatic topological indices defined above for the Mycielskian

of paths. Let P̆n denote the Mycielskian of a path on n vertices. Then, P̆n has 2n+ 1

vertices and 4n− 3 edges. We introduce here the notation ηts to denote the number

of edges with end points t and s respectively, where t < s, 1 ≤ t, s ≤ χ(P̆n).
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v1 v2 v3 v4 v5 v6 v7

u1 u2 u3 u4 u5 u6 u7

w

Figure 1. The Mycielski graph µ(P7)

Theorem 2.1. For the Mycielskian of a path Pn, we have

(i) Mϕ−

1 (P̆n) =


15n+3

2
; if n is odd

15n+8
2

; if n is even;

(ii) Mϕ−

2 (P̆n) = 13n− 11;

(iii) Mϕ−

3 (P̆n) = 5n− 4;

(iv) Mϕ−

4 (P̆n) =


7n2+4n−3

8
; if n is odd

7n2+6n
8

; if n is even.

Proof. Note that χ(P̆n) = 3 and the chromatic topological indices can be calculated

for all 3! minimum parameter colorings. To find Mϕ−

1 ,Mϕ−

2 and Mϕ−

3 , we follow the

coloring pattern as described below:

Since the maximum independent set of P̆n is the set U , assign the color c1 to all

its vertices. Since the path Pn is bipartite, we can assign the color c2 to dn
2
e vertices

in V and the color c3 to the remaining bn
2
c vertices in V . Since the root vertex w is

adjacent to all vertices of U and w is not adjacent to any vertex in V , w can have

the color c2. For the Mycielskian of the path Pn, t, s = 1, 2, 3.

Part (i): In order to find Mϕ−

1 of P̆n, we first color the vertices as mentioned above

and then proceed to consider the following cases.
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Case-1: Let n be odd. Then, we have θ(c1) = n, θ(c2) = n+3
2

and θ(c3) = n−1
2

.

Now, by the definition of first chromatic Zagreb index, we have

Mϕ−

1 (P̆n) =
3∑
i=1

(θ(ci))i
2 =

15n+ 3

2
.

Case-2: Let n be even. Then, we have θ(c1) = n, θ(c2) = 1 + n
2

= n+2
2

and

θ(c3) = n
2
. Then, from the definition of first chromatic Zagreb index we have

Mϕ−

1 (P̆n) =
3∑
i=1

(θ(ci))i
2 =

15n+ 8

2
.

Part (ii): We first color the vertices as per the instructions in the introductory

part of this proof. Here, we observe that η12 = 2n − 1, η23 = η13 = n − 1. Now, the

result follows from substitution and simplification as

Mϕ−

2 (P̆n) =
t<s∑

1≤t,s≤χ(P̆n)

tsηts = 13n− 11

Part (iii): To find the minimum irregularity measurement, we color the vertices

using minimum parameter coloring. Now, η12 = 2n− 1 edges and η23 = n− 1 edges

contributes the distance 1 to the total summation while η13 = n− 1 contributes the

distance 2. Then, we have

Mϕ−

3 (P̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n− 1 + 3(n− 1) = 5n− 4.

Part (iv): After minimum parameter coloring, to find the total irregularity of P̆n,

we consider all the possible vertex pairs from P̆n and find their possible color distances.

Half of their total sum will give us the total irregularity of P̆n. Since the vertex pairs

with same colors do not contribute to the color distance, we omit such cases. The

possibility of the vertex pairs which contribute to the color distance can be classified

into three, namely, {1, 3}, {1, 2}, {2, 3} combinations. The {1, 3} combination has the

color distance 2 while the other two combinations have the color distance 1. Each

vertex of color c1 pairs with θ(c3) vertices of color c3. So the total color distance
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for the {1, 3} combination is 2θ(c1)θ(c3). Similarly, the total color distance for the

{1, 2} combination is θ(c1)θ(c2) and for the {2, 3} combination is θ(c2)θ(c3). Now we

consider the following two cases:

Case-1: Let n be odd. Then, we have θ(c1) = n, θ(c2) = n+3
2

and θ(c3) = n−1
2

.

Now, by the definition of fourth chromatic Zagreb index, we have

Mϕ−

4 (P̆n) =
1

2

∑
u,v∈V (P̆n)

|ϕ(u)− ϕ(v)|

= 2θ(c1)θ(c3) + θ(c1)θ(c2) + θ(c2)θ(c3)

=
7n2 + 4n− 3

8
.

Case-2: Let n be even. Then, we have θ(c1) = n, θ(c2) = 1 + n
2

= n+2
2

and

θ(c3) = n
2
. The total summation will follow from the definition of fourth chromatic

Zagreb index.

Mϕ+

4 (P̆n) =
1

2

∑
u,v∈V (P̆n)

|ϕ(u)− ϕ(v)|

= 2θ(c1)θ(c3) + θ(c1)θ(c2) + θ(c2)θ(c3)

=
7n2 + 6n

8
.

�

Theorem 2.2. For the Mycielskian of a path Pn, we have

(i) Mϕ+

1 (P̆n) =


23n+11

2
; if n is odd

23n+8
2

; if n is even

(ii) Mϕ+

2 (P̆n) = 17n− 11

(iii) Mϕ+

3 (P̆n) = 6n− 4

(iv) Mϕ+

4 (P̆n) =


7n2+12n−3

8
; if n is odd

7n2+10n
8

; if n is even
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Proof. The chromatic Zagreb indices with any minimum parameter set of colors can

be calculated in 3! ways, since the chromatic number of P̆n is 3. All through this proof,

for all the four parts, we first apply the minimum parameter coloring as follows, if not

mentioned otherwise. We color the vertices of U with c3, c2 to dn
2
e vertices in V and

the color c1 to bn
2
c vertices of V . The root vertex is colored with c2. As in Theorem

2.1, let θ(ci) denotes the cardinality of the color class of ci and ηts denotes the number

of edges with end points t, s where t < s, 1 ≤ t, s ≤ χ(P̆n). For t, s = 1, 2, 3, we have

Part (i): In the case of the maximum value of chromatic Zagreb index, we assign a

maximum color index for the maximum independence set, which adds the maximum

value to the sum of the squares. Here, we consider the following two cases:

Case-1: Let n be odd. Then, we have θ(c1) = n−1
2

, θ(c2) = n+3
2

and θ(c3) = n.

Now, by the definition of first chromatic Zagreb index, we have

Mϕ+

1 (P̆n) =
3∑
i=1

(θ(ci))i
2 =

23n+ 11

2
.

Case-2: Let n be even. Then, we have θ(c1) = n
2
, θ(c2) = 1 + n

2
= n+2

2
and

θ(c3) = n. By the definition of first chromatic Zagreb index, we have

Mϕ+

1 (P̆n) =
3∑
i=1

(θ(ci))i
2 =

23n+ 8

2
.

Part (ii): We follow the coloring pattern as stated, but in this part the root vertex

w is colored with c2. Here we have η12 = 2n− 1, η23 = η13 = n− 1 and through total

summation, the result follows.

Part (iii): After coloring the vertices as mentioned, we note that η12 = 2n − 1

edges and η23 = n− 1 edges contribute the distance 1 to the total summation while

η13 = n− 1 contributes the distance 2. Thus, we have

Mϕ+

3 (P̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2(n− 1) + 2(2n− 1) = 6n− 4.
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Part (iv): To evaluate the maximum value of the fourth chromatic Zagreb index,

we follow the coloring stated, except that the root vertex is colored with c1. With

the same logic described in part(iv) of the Theorem 2.1, we proceed to the following

two cases:

Case-1: Let n be odd. Then, we have θ(c1) = n+3
2

, θ(c2) = n−1
2

and θ(c3) = n.

Now, by the definition of fourth chromatic Zagreb index, we have

Mϕ−

4 (P̆n) =
1

2

∑
u,v∈V (P̆n)

|ϕ(u)− ϕ(v)|

= 2θ(c1)θ(c3) + θ(c1)θ(c2) + θ(c2)θ(c3)

=
7n2 + 12n− 3

8
.

Case-2: Let n be even. Then, we have θ(c1) = n+2
2

, θ(c2) = n
2

= and θ(c3) = n.

Then, the result follows from the definition of the chromatic total irregularity index.

Mϕ+

4 (P̆n) =
1

2

∑
u,v∈V (P̆n)

|ϕ(u)− ϕ(v)|

= 2θ(c1)θ(c3) + θ(c1)θ(c2) + θ(c2)θ(c3)

=
7n2 + 10n

8
.

�

3. Chromatic Topological Indices of Mycielskian of Cycles

Next we discuss the chromatic Zagreb indices of Mycielskian of a cycle in the

following theorems.

Theorem 3.1. For the Mycielskian of a cycle Cn, we have
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(i) Mϕ−

1 (C̆n) =


15n+27

2
; if n is odd

15n+8
2

; if n is even

(ii) Mϕ−

2 (C̆n) =


13n+ 11; if n is odd

13n; if n is even

(iii) Mϕ−

3 (C̆n) =


5n+ 4; if n is odd

5n; if n is even

(iv) Mϕ−

4 (C̆n) =


7n2+14n−1

8
; if n is odd

7n2+6n
8

; if n is even

Proof. Part (i): As explained in Theorem 2.1, the set U is the largest independence

set in C̆n also and we assign color c1 to all vertices in U . As stated earlier, every

vertex of V is adjacent to at least one vertex in U and hence no vertices in V can

have the color c1. To proceed further, we have to consider the following cases.

Case-1: Let n be odd. Then, Cn is 3- colorable and we can color the vertices in V

using three colors, say c2, c3, c4 such that bn
2
c vertices have colors c2 and c3, while one

vertex has color c4. The root vertex w can be colored using the color c2. Then we

have, θ(c1) = n, θ(c2) = n+1
2

, θ(c3) = n−1
2

and θ(c4) = 1 . Hence the total summation

can be given as

Mϕ−

1 (C̆n) =
4∑
i=1

(θ(ci))i
2 =

15n+ 27

2
.

Case-2: Let n be even. Then, Cn can be colored using two colors, say c2 and c3,

the corresponding color classes contain n
2

vertices each. Since w is adjacent to all

vertices in U and w is not adjacent to any vertex in V , we can assign the color c2 to

w. If θ(ci) denotes the cardinality of the color class of ci, then we have θ(c1) = n,
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θ(c2) = 1 + n
2

= n+2
2

and θ(c3) = n
2
. The total summation will follow from the

definition of first chromatic Zagreb index.

Mϕ−

1 (C̆n) =
3∑
i=1

(θ(ci))i
2 =

15n+ 8

2
.

Part (ii): We color the vertices as per the instructions in part (i) for even and odd

cases of n. Now consider the following cases:

Case- 1: Let n be odd. Here we see that η12 = 2n− 1, η13 = n− 1, η14 = 2, η23 =

n− 2, η24 = η34 = 1. Hence, we have the sum

Mϕ−

2 (C̆n) =
t<s∑

1≤t,s≤χ(C̆n)

tsηts = 13n+ 11.

Case- 2: Let n be even. Here we see that η12 = 2n, η23 = η13 = n. The definition

of second chromatic Zagreb index, gives the sum

Mϕ−

2 (C̆n) =
t<s∑

1≤t,s≤χ(C̆n)

tsηts = 13n.

Part (iii): To find the minimum irregularity measurement, we proceed to the

following two cases, after coloring the vertices using minimal parameter coloring.

Case- 1: Let n be odd. Here we see that η12 = 2n− 1, η13 = n− 1, η14 = 2, η23 =

n − 2, η24 = η34 = 1. Now η14 = 2 edges contributes the distance 3, η13 = n − 1

edges and η24 = 1edge contributes the distance 2 to the total summation while all

other edges contributes the distance 1. Then the result follows from the following

calculations:

Mϕ−

3 (C̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n− 1 + 2(n− 1) + n− 2 + 9 = 5n+ 4.

Case- 2: Let n be even. Now η12 = 2n edges and η23 = n edges contribute the

distance 1 to the total summation while η13 = n contributes the distance 2. The
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result follows from the following calculations:

Mϕ−

3 (C̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n+ n+ 2n = 5n.

Part (iv): First color the vertices according to minimal parameter coloring de-

scribed in the first part of the proof. In order to calculate the total irregularity of

C̆n, all the possible vertex pairs from C̆n have to be considered and their possible

color distances are determined. We observe that vertex pairs with same colors con-

tribute nothing to the color distance and we discard such cases. The possibility of

the vertex pairs which contribute to the color distance can be classified according to

the following two cases.

Case- 1: Let n be odd. Here the possible combinations which contributes to the

color distances are {1, 2}, {2, 3}, {3, 4} contributing 1, {1, 3}, {2, 4} contributing 2 and

{1, 4} contributing 3. We have θ(c1) = n, θ(c2) = n+1
2

, θ(c3) = n−1
2

and θ(c4) = 1.

Now for the combination {t, s}, each vertex of color ct pairs with θ(cs) vertices of

color cs. So the total color distance for the {t, s} combination is the color distance

times 2θ(ct)θ(cs). Then, from the definition, we have

Mϕ−

4 (C̆n) =
1

2

∑
u,v∈V (C̆n)

|ϕ(u)− ϕ(v)|

=
7n2 + 14n− 1

8
.

Case- 2: Let n be even. The combinations possible are charted as {1, 2}, {2, 3}

contributing 1 and {1, 3} contributing 2. Here, we observe that θ(c1) = n, θ(c2) =
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1 + n
2

= n+2
2

and θ(c3) = n
2
. With the same logic as in case (1), we have

Mϕ−

4 (C̆n) =
1

2

∑
u,v∈V (C̆n)

|ϕ(u)− ϕ(v)|

=
1

2
{2θ(c1)θ(c3) + θ(c1)θ(c2) + θ(c2)θ(c3)}

=
7n2 + 6n

8
.

�

Theorem 3.2. For the Mycielskian of a cycle Cn, we have

(i) Mϕ+

1 (C̆n) =


45n+7

2
; if n is odd

23n+8
2

; if n is even

(ii) Mϕ+

2 (C̆n) =


38n− 19; if n is odd

17n; if n is even

(iii) Mϕ+

3 (C̆n) =


5n+ 4; if n is odd

5n; if n is even

(iv) Mϕ+

4 (C̆n) =


7n2+16n+1

8
; if n is odd

7n2+6n
8

; if n is even

Proof. The Mycielskian of a cycle C̆n, has chromatic number 4 when n is odd and

3 when n is even. We first color C̆n by minimal parameter coloring in such a way

that we get the maximum values for the chromatic Zagreb indices and irregularity

measurements.

Now we suppose n is odd. Since U comprises the largest independence set in C̆n, we

assign color c4 to all vertices in U . Every vertex of V is adjacent to at least one vertex

in U . Hence we color bn
2
c vertices and the root vertex w with c3 and the other bn

2
c

vertices with color c2 . The remaining one vertex is colored with the color c1. Hence,
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we observe the following values when n is odd. θ(c1) = 1, θ(c2) = n−1
2

, θ(c3) = n+1
2

and

θ(c4) = n. Also we have η34 = 2n− 1, η24 = n− 1, η14 = 2, η23 = n− 2, η12 = η13 = 1.

Let n be even. We color vertices of U with c3 and root vertex w with c2. Then,

Cn can be colored using two colors, say c2 and c1, the corresponding color classes

contain n
2

vertices each. Thus we note the following values when n is even. θ(c1) = n
2
,

θ(c2) = n+2
2

and θ(c3) = n. Also we have η23 = 2n and η12 = η13 = n.

Now we proceed for the four parts of the theorem.

Part (i): To find the first chromatic Zagreb index, we consider the following cases:

Case-1: Let n be odd. Then we have the total summation as

Mϕ+

1 (C̆n) =
4∑
i=1

(θ(ci))i
2 =

45n+ 7

2
.

Case-2: Let n be even. The total summation will follow from the definition as

Mϕ+

1 (C̆n) =
3∑
i=1

(θ(ci))i
2 =

23n+ 8

2
.

Part (ii): We color the vertices as per the instructions in introduction for even and

odd cases of n. Now consider the following cases:

Case- 1: Let n be odd. Then, we have the sum

Mϕ+

2 (C̆n) =
t<s∑

1≤t,s≤χ(C̆n)

tsηts = 38n− 19.

Case- 2: Let n be even. Then, the total summation is the direct consequence of

the definition of second chromatic Zagreb index

Mϕ+

2 (C̆n) =
t<s∑

1≤t,s≤χ(C̆n)

tsηts = 17n.

Part (iii): To find the minimum irregularity measurement, consider the following

cases:

Case- 1: Let n be odd. Here we see that, η12 + η23 + η34 edges contributes 1 to the

color distance, η13 + η24 edges contributes 2, while η14 edges contributes 3. Then the
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result follows from the following calculations:

Mϕ+

3 (C̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n− 1 + 2(n− 1) + n− 2 + 9 = 5n+ 4.

Case- 2: Let n be even. Here η12 +η23 = 3n edges contributes the distance 1 to the

total summation while η13 = n contributes the distance 2. The result follows from

the following calculations:

Mϕ+

3 (C̆n) =
n−1∑
i=1

n∑
j=2

|ζ(vi)− ζ(vj)| = 2n+ n+ 2n = 5n.

Part (iv): To calculate the total irregularity of C̆n, all the possible vertex pairs

from C̆n have to be considered and their possible color distances are determined. The

possibility of the vertex pairs which contribute to the color distance can be classified

according to the following two cases.

Case- 1: Let n be odd. Here the possible combinations which contributes to the

color distances are {1, 2}, {2, 3}, {3, 4} contributing 1, {1, 3}, {2, 4} contributing 2

and {1, 4} contributing 3. Just as we proceeded in part(4) of the previous theorem,

we calculate the total irregularity as given below:

Mϕ+

4 (C̆n) =
1

2

∑
u,v∈V (C̆n)

|ϕ(u)− ϕ(v)|

=
7n2 + 14n− 1

8

Case- 2: Let n be even. The combinations possible are charted as {1, 2}, {2, 3}

contributing 1 and {1, 3} contributing 2. Observe that θ(c1) = n, θ(c2) = 1+ n
2

= n+2
2

and θ(c3) = n
2
. With the same logic as in case (1), we have

Mϕ+

4 (C̆n) =
1

2

∑
u,v∈V (C̆n)

|ϕ(u)− ϕ(v)|

=
7n2 + 6n

8
.
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�

4. Conclusion

Chromatic topological indices can find a variety of applications in mathematical

chemistry, optimization techniques, distribution theory and even in sociology. An

overview of chromatic Zagreb indices and irregularity indices of Mycielskian of paths

and cycles is provided in this paper. More research areas will be opened if Myciel-

skian of different graph classes like bipartite graphs, complete graphs are considered.

Also comparative study on chromatic Zagreb indices and irregularity indices of graph

classes and their operations will be interesting. One can also work on chromatic Za-

greb indices and irregularity indices of some associated graphs such as line graphs,

subdivision of graphs, total graphs, etc. Even the chromatic version of other topo-

logical indices gives fresh areas of research with tremendous applications.
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