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QUASI-N -OPEN SETS IN (a)TOPOLOGICAL SPACES

SHEETAL LUTHRA(1), HARSH V. S. CHAUHAN(2) AND B. K. TYAGI(3)

Abstract. In this paper, we introduced the notion ofN -open sets in (a)topological

spaces which is a set equipped with countable number of topologies. We investigated

the three types of N -open sets in (a)topological spaces and via them several types

of compactness are introduced. Also, we introduced the notion of quasi-N -open

sets in (a)topological spaces and related compactness.

1. Introduction

J. C. Kelly [8] introduced the notion of bitopological spaces (X, τ1, τ2) (a non empty

set X endowed with two topologies τ1 and τ2) which is a wider structure than the

classical topological spaces. Several authors worked on bitopology, three topologies

and countable number of topologies in [4, 5, 6, 7, 14, 15, 16, 20, 21]. Tyagi et. al. [23]

studies new types of sets via γ-open sets in (a)topological spaces. Datta [9] introduced

the notion of quasi-open sets in bitopological spaces. In [1, 10, 11, 17, 18, 19, 24, 25],

several modifications of concept of quasi-open sets are introduced. In this paper, we

introduced the notion of N -open sets in (a)topological spaces and investigated the

three types of N -open sets and via them several types of compactness are introduced.

We define and investigate quasi-N -open sets in (a)topological spaces and use them

to define new type of compactness.
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Let (X, τ) be a topological space and let G be a subset of X. A point x ∈ X

is said to be an infinite point [2, 3] (resp. condensation point [12]) of G if for each

U ∈ τ with x ∈ U , U ∩G is infinite (resp. uncountable). In case, the set G contains

all its infinite points (resp. condensation points), G is called N -closed [2, 3] (resp.

ω-closed [12]). A set is said to be N -open [2, 3] (resp. ω-open [13]) if its complement

is N -closed (resp. ω-closed).

Throughout the paper, N denotes the set of natural numbers. τnN , τnω denotes the

topology on X consisting of all N -open, ω-open sets in (X, τn), respectively. τlr, τrr,

τI denotes the left ray topology, the right ray topology and the indiscrete topology on

the set of all real numbers, respectively. If there is no scope of confusion, we denote

the (a)topological space (X, {τn}n∈N) by (X, {τn}).

2. (a)topological spaces

Definition 2.1. [22] If {τn} is a sequence of topologies on a set X, then the pair

(X, {τn}n∈N) is called an (a)topological space.

Definition 2.2. Let (X, {τn}) be an (a)topological space. The smallest topology on

X containing ∪n∈N τn is called the least upper bound topology on X.

The least upper bound topology on (a)topological space (X, {τn}) will be denoted

by (< X, {τn} >). If there is no scope of confusion, we denotes (< X, {τn} >) by

< τn >.

Definition 2.3. A set A ⊆ X is said to be s-open if it is open in the least upper

bound topology on (X, {τn}).

Proposition 2.4. A set A ⊆ X is s-open if and only if for each x ∈ A there exist

Un ∈ τn(for each n ∈ N) such that x ∈ ∩n∈N Un ⊆ A, where Un = X for all except

finitely many n.
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Proof. Let A ⊆ X be s-open and x ∈ A be arbitrary. Then A is open in the

least upper bound topology of (X, {τn}). This implies that there exist Uji ∈ τji,

i = 1, 2, . . . , n such that x ∈ ∩n
i=1

Uji ⊆ A. Let Uk = X for all k 6= j1, j2, . . . , jn.

Thus, for each x ∈ A there exist Un ∈ τn such that x ∈ ∩n∈N Un ⊆ A, where Un = X

for all except finitely many n.

Conversely, let for each x ∈ A there exist Un ∈ τn such that x ∈ ∩n∈N Un ⊆ A, where

Un = X for all except finitely many n, say i1, i2, . . . , ik. Then x ∈ ∩k
j=1

Uij ⊆ A. Then

A is open in the least upper bound topology of (X, {τn}) and hence, A is s-open. �

Definition 2.5. A set A ⊆ X is said to be µ-open if A ∈ ∪n∈N τn.

The family of all µ-open sets in (X, {τn}) will be denoted by µ(τn).

Definition 2.6. A set A ⊆ X is said to be quasi-open if for every x ∈ A there exists

Un ∈ τn such that x ∈ Un ⊆ A for some n ∈ N.

Definition 2.7. A set A ⊆ X is said to be quasi-closed if X\A is quasi-open.

The family of all quasi-open sets in (X, {τn}) is denoted by q(τn). It is observe

that τn ⊆ q(τn) for all n ∈ N.

Proposition 2.8. A set A ⊆ X is quasi-open if and only if A = ∪n∈N Gn, where

Gn ∈ τn for all n ∈ N.

Proof. Let A be a quasi-open set in (X, {τn}) and let x ∈ A be arbitrary. Then there

exists Un ∈ τn(depending upon x) such that x ∈ Un ⊆ A for some n ∈ N. This implies

that A = ∪x∈A Un. If required, take Un = ∅ for some naturals n. Then A = ∪n∈N Un,

where Un ∈ τn for all n ∈ N. Converse follows by Definition 2.6. �

Proposition 2.9. Let (X, {τn}) be an (a)topological space. Then we have the following :

(a). µ(τn) ⊆ q(τn) ⊆< τn >.
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(b). q(τn) is closed under arbitrary union.

Proof. The proof follows by definitions. �

Following example shows that q(τn) is not closed under finite intersection.

Example 2.10. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Then the set A = (−∞, 2) ∈ τ1 ⊂ q(τn) and B = (0,∞) ∈ τ2 ⊂ q(τn).

But A ∩ B = (0, 2) 6∈ q(τn).

In general, < τn >6= q(τn) and ∪n∈N τn 6= q(τn). For example, Consider the

(a)topological space (R, {τn}) where τ1 = τlr, τn = τrr for all n 6= 1. Then the

set (0, 2) = (−∞, 2) ∩ (0,∞) and thus (0, 2) ∈< τn > But (0, 2) 6∈ q(τn). Hence,

< τn >6= q(τn).

It is observe that the set A = (−∞, 0) ∪ (2,∞) ∈ q(τn) but A 6∈ τn for any n ∈ N.

Hence, ∪n∈N τn 6= q(τn).

Definition 2.11. Let (X, {τn}) be an (a)topological space and let A ⊆ X. Then

(a). A is said to be µ-N (resp. µ-ω) open in (X, {τn}) if A ∈ ∪n∈N τnN

(resp. A ∈ ∪n∈N τnω).

(b). A is said to be µ-N (resp. µ-ω) closed in (X, {τn}) if X\A is µ-N (resp.

µ-ω) open in (X, {τn}).

(c). A is said to be s-N open in (X, {τn}) if A ∈< τnN >. That is, A is s-N

open in (X, {τn}) if A is open in the least upper bound topology on X via

{τnN}.

The family of all µ-N (resp. µ-ω) open sets in (X, {τn}) is denoted by µ-N (τn)

(resp. µ-ω(τn)).

Theorem 2.12. (a). Every µ-open set in (a)topological spaces is µ-N -open.

(b). Every µ-N -open set in (a)topological spaces is µ-ω-open.
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Proof. (a). Let A be a µ-open set in an (a)topological space (X, {τn}). Then A ∈

µ(τn). It is obvious that every open set is N -open so τn ⊆ τnN for all n ∈ N. Thus,

µ(τn) ⊆ µ(τnN ) and hence, A ∈ µ(τnN ). So A is µ-N -open.

(b). Let A be a µ-N -open set in an (a)topological space (X, {τn}). Then A ∈ µ(τnN ).

It is obvious that every N -open set is ω-open so τnN ⊆ τnω for all n ∈ N. Thus,

µ(τnN ) ⊆ µ(τnω) and hence, A ∈ µ(τnω). So A is µ-ω-open. �

The following example shows that the converse of Theorem 2.12 is not true.

Example 2.13. Consider the (a)topological space (R, {τn}) where τ1 = τI , τn = τlr

for all n 6= 1. Then clearly R\Q is µ-ω-open but not µ-N -open. It is also observe

that complement of any finite set is µ-N -open but not µ-open.

Theorem 2.14. Let (X, {τn}) be an (a)topological space. Then < τn >N=< τnN >,

where < τn >N denotes the family of all N -open sets in < τn >.

Proof. Let A ∈< τn >N and let x ∈ A. Then there exist U ∈< τn > and finite sets

F ⊆ X such that x ∈ U\F ⊆ A. Since x ∈ U and U ∈< τn >, there exist Un ∈ τn

such that x ∈ ∩n∈N Un ⊆ U , where Un = X for all n except finitely many n, say

n = i1, i2, . . . , ik. For all n 6= i1, i2, . . . , ik, take F = ∅. It is observe that for all

n ∈ N, Un\F ∈ τnN , Un\F = X for all n 6= i1, i2, . . . , ik and x ∈ ∩n∈N (Un\F ) ⊆

(∩n∈N Un)\F ⊆ U\F ⊆ A. It follows that A ∈< τnN >.

Conversely, let A ∈< τnN > and let x ∈ A. Then there exist Un ∈ τnN such

that x ∈ ∩n∈N Un ⊆ A, where Un = X for all n except finitely many n, say n =

i1, i2, . . . , ik. For each n = i1, i2, . . . , ik, there exist Gn ∈ τn and finite sets Fn such

that x ∈ Gn\Fn ⊆ Un. For each n 6= i1, i2, . . . , ik, take Gn = X and Fn = ∅. We

observe that x ∈ ∩n∈N Gn\ ∪n∈N Fn ⊆ ∩n∈N Un ⊆ A. Thus, A ∈< τn >N . �

Theorem 2.15. Let (X, {τn}) be an (a)topological space. Then µ-N (τn) ⊆< τn >N .
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Proof. By Definition 2.11, µ-N (τn) = ∪n∈N τnN ⊆< τnN >. By Theorem 2.14,

< τnN >=< τn >N . Hence, µ-N (τn) ⊆< τn >N . �

In general, inclusion in Theorem 2.15 cannot be replaced by equality. This is shown

by following example.

Example 2.16. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Then any finite interval (a, b) ∈< {τn} >N because (a, b) ∈< {τn} >.

But (a, b) 6∈ µ-N (τn).

Definition 2.17. A set A ⊆ X is said to be quasi-ω-open (q-ω-open) if for each x ∈ A

there exists G ∈ τnω for at least one natural n such that x ∈ G ⊆ A. Equivalently, a

set A ⊆ X is q-ω-open if and only if A ∈ q(τnω).

The family of all quasi-ω-open (q-ω-open) sets in (X, {τn}) is denoted by q-ω(τn)

and a set in (X, {τn}) is q-ω-closed if its complement is q-ω-open.

Definition 2.18. A set A ⊆ X is said to be quasi-N -open (q-N -open) if for each

x ∈ A there exists G ∈ τnN for at least one natural n such that x ∈ G ⊆ A.

Equivalently, a set A ⊆ X is q-N -open if and only if A ∈ q(τnN ).

The family of all quasi-N -open (q-N -open) sets in (X, {τn}) is denoted by q-N (τn)

and a set in (X, {τn}) is q-N -closed if its complement is q-N -open.

Theorem 2.19. A set A ⊆ X is q-N -open if and only if for each x ∈ A, there exists

U ∈ µ(τn) and a finite set F ⊆ X such that x ∈ U\F ⊆ A.

Proof. Let A be a q-N -open set and let x ∈ A. Then for each n ∈ N there exists

Un ∈ τnN such that A = ∪n∈N Un. Without loss of generality assume that x ∈ U1.

Since U1 ∈ τ1N , there exists U ∈ τ1 and finite set F ⊆ X such that x ∈ U\F ⊆ U1.

Also U ∈ τ1 ⊆ µ(τn) and U1 ⊆ A. Thus, there exist U ∈ µ(τn) and a finite set F ⊆ X
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such that x ∈ U\F ⊆ A.

Conversely, suppose that for each x ∈ A there exists Ux ∈ µ(τn) and a finite set

Fx ⊆ X such that x ∈ Ux\Fx ⊆ A. Let Vn = ∪{Ux\Fx : Ux ∈ τn}. It is observe that

Vn ∈ τnN for all n ∈ N and A = ∪n∈N Vn. Thus, A is q-N -open. �

Theorem 2.20. For an (a)topological space (X, {τn}), following results hold :

(a). µ-N (τn) ⊆ q-N (τn).

(b). q-(τn) ⊆ q-N (τn).

(c). q-N (τn) ⊆< τn >N .

(d). The family of all q-N -open sets is closed under arbitrary union.

(e). The family of all q-N -closed sets is closed under arbitrary intersection.

(f). q-N (τn) ⊆ q-ω(τn).

Proof. (a). Since µ(τn) ⊆ q(τn), µ(τnN ) ⊆ q(τnN ). Also µ(τnN ) = µ-N (τn) and

q(τnN ) = q-N (τn). So µ-N (τn) ⊆ q-N (τn).

(b). Since τn ⊆ τnN for all n, q-(τn) ⊆ q-(τnN ). But q-(τnN ) = q-N (τn), so q-(τn) ⊆ q-

N (τn).

(c). since q-(τn) ⊆< τn >, q-(τnN ) ⊆< τnN >. Also q-(τnN ) = q-N (τn) and <

τnN >=< τn >N . So q-N (τn) ⊆< τn >N .

(d). Since q-N (τn) = q-(τnN ) and q-(τnN ) is closed under arbitrary union, so the

family of all q-N -open sets is closed under arbitrary union.

(e). Follows by part (d).

(f). In (a)topological spaces (X, {τn}), every N -open set is ω-open. Thus, q-N (τn) ⊆

q-ω(τn). �

Following example shows that inclusion in part (a). of Theorem 2.20 cannot be

replaced by equality, in general.
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Example 2.21. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Then the set A = (−∞, 1) ∪ (2,∞) is a q-N -open set but not a

µ-N -open set.

Following example shows that inclusion in part (b). of Theorem 2.20 cannot be

replaced by equality, in general.

Example 2.22. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Then the set A = (−∞, 0)\{−1} is a q-N -open set but not q-open.

Following example shows that inclusion in part (c). of Theorem 2.20 cannot be

replaced by equality, in general.

Example 2.23. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Let A = (a, b) be any finite interval. Then A ∈< τn >⊆< τn >N , but

A 6= q-N (τn).

Following example shows that the family of all q-N -open sets in an (a)topological

space does not form a topological space, in general.

Example 2.24. Consider the (a)topological space (R, {τn}) where τ1 = τlr, τn = τrr

for all n 6= 1. Let A = (−∞, 1), B = (0,∞). Both A and B are q-N -open sets in

(R, {τn}) but A ∩B is not a q-N -open set in (R, {τn}).

Theorem 2.25. In an (a)topological space, q(τn) forms a topology if and only if

q(τn) =< {τn} >.

Proof. Let us suppose that q(τn) =< τn >. Since < τn > is a topology on X, q(τn)

forms a topology on X.

Conversely, suppose that q(τn) forms a topology on X. Since q(τn) ⊆< τn >, it is

sufficient to show that < τn >⊆ q(τn). Let A ∈< τn > and x ∈ A be arbitrary.
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Then there exist Ux
n ∈ τn such that x ∈ ∩n∈N Ux

n ⊆ A, where Ux
n = X for all

except finitely many n ∈ N. Since Ux
n ∈ τn ⊂ q(τn) and q(τn) is a topology on X,

∩n∈N Ux
n ∈ q(τn) as ∩n∈N Ux

n is just a finite intersection of member of q(τn). This

implies that A = ∪x∈A ∩n∈N Ux
n , where ∩n∈N Ux

n ∈ q(τn). Since q(τn) is a topology

on X, A ∈ q(τn). Thus, < τn >⊆ q(τn) and hence proved. �

Theorem 2.26. In an (a)topological space, q-N (τn) forms a topology if and only if

q-N (τn) =< τn >N .

Proof. Let us suppose that q-N (τn) =< τn >N . Since < τn >N=< τnN > and

< τnN > is a topology on X, q-N (τn) forms a topology on X.

Conversely, suppose that q-N (τn) forms a topology on X. Since q-N (τn) ⊆< τnN >,

it is sufficient to show that < τnN >⊆ q-N (τn). Let A ∈< τnN > and x ∈ A be

arbitrary. Then there exist Ux
n ∈ τnN such that x ∈ ∩n∈N Ux

n ⊆ A, where Ux
n = X

for all except finitely many n ∈ N. Since Ux
n ∈ τnN ⊂ q-N (τn) and q-N (τn) is a

topology on X, ∩n∈N Ux
n ∈ q-N (τn) as ∩n∈N Ux

n is just a finite intersection of member

of q-N (τn). This implies that A = ∪x∈A ∩n∈N Ux
n , where ∩n∈N Ux

n ∈ q-N (τn). Since

q-N (τn) is a topology on X, A ∈ q-N (τn). Thus, < τnN >⊆ q-N (τn) and hence

proved. �

Definition 2.27. A cover α of an (a)topological space (X, {τn}) is said to be :

(a). {τn}-open if α ⊆ µ(τn).

(b). p-open if it is {τn}-open and α contains at least one non empty member of

each τn.

Definition 2.28. An (a)topological space (X, {τn}) is said to be :

(a). s-compact if every {τn}-open cover of (X, {τn}) has a finite subcover.

(b). p-compact if every p-open cover of (X, {τn}) has a finite subcover.
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Theorem 2.29. Let (X, {τn}) be an (a)topological space and let A = {W\F : W ∈

µ(τn) and F ⊆ X is a finite set }. Then (X, {τnN}) is s-compact if and only if every

cover of X consists of elements of A has a finite subcover.

Proof. Suppose that (X, {τnN}) is s-compact and let F be a cover of X with F ⊆ A.

Since F ⊆ A ⊆ ∪n∈N τnN = µ(τnN ). This implies that F is a {τnN}-open cover of

(X, {τnN}). Since (X, {τnN}) is s-compact, there exists a finite family of members of

F covers X.

Conversely, let F = {Fα : α ∈ ∆} be a {τnN}-open cover of (X, {τnN}). Then for

each α ∈ ∆, Fα ∈ ∪n∈N τnN . That is, Fα ∈ τnN for some n ∈ N. Therefore, there

exists Aα ∈ µ(τn) and finite sets Bα such that Fα = Aα\Bα. Thus Fα ∈ A and hence

F ⊆ A. By hypothesis, F has a finite subcover. Hence, (X, {τnN}) is s-compact. �

Theorem 2.30. For an (a)topological space (X, {τn}), the following statements are

equivalent :

(a). (X, {τn}) is s-compact.

(b). (X, {τnN}) is s-compact.

(c). Each cover of X of members of q-N (τn) has a finite subcover.

(d). Each cover of X of members of q(τn) has a finite subcover.

Proof. (a) ⇒ (b) : Let (X, {τn}) be s-compact. Let A = {W\F : W ∈ µ(τn) and

F ⊆ X is a finite set} and let F ⊆ A be a cover of X. Let F = {Wα\Fα : α ∈ ∆,

Wα ∈ µ(τn) and Fα ⊆ X is a finite set}. Then X = ∪α∈∆ Wα\Fα. This implies

that X = ∪α∈∆ Wα. By part (a.), there exists a finite set ∆1 ⊆ ∆ such that

{Wα : α ∈ ∆1} covers X. Let H = ∪α∈∆1
Fα. For each x ∈ H, choose αx ∈ ∆ such

that x ∈ Wαx\Fαx. Thus, {Wαx\Fαx : x ∈ H}∪{Wα\Fα : α ∈ ∆1} is a finite subcover

of F .

(b) ⇒ (c) : Suppose (X, {τnN}) is s-compact and let F = {Fα : α ∈ ∆} be a cover of

X consists of elements of q-N (τn). For each α ∈ ∆, there exist Anα ∈ τnN such that



QUASI-N -OPEN SETS IN (a)TOPOLOGICAL SPACES 515

Fα = ∪n∈N Anα. Since {Fα : α ∈ ∆} covers X and {Anα : n ∈ N, α ∈ ∆} ⊆ µ(τnN ).

By (b), there exists a finite set ∆1 ⊆ ∆ such that {Anα : n ∈ N, α ∈ ∆1} covers X. It

follows that {Fα : α ∈ ∆1} is a finite subcover of F .

(c) ⇒ (d) : Let F be a cover of X with F ⊆ q(τn). Since q(τn) ⊆ q-N (τn), then

F ⊆ q-N (τn). Therefore, by part (c), F has a finite subcover.

(d) ⇒ (a) : Let F be a cover of X with F ⊆ µ(τn). Since µ(τn) ⊆ q(τn), by part

(d) every cover of X with members of µ(τn) has a finite subcover. It follows that

(X, {τn}) is s-compact. �

Theorem 2.31. Let (X, {τn}) be an (a)topological space. Then (X, {τn}) is p-

compact if and only if (X, {τnN}) is p-compact.

Proof. Let (X, {τn}) be p-compact. Let F = {Fα : α ∈ ∆} be a p-open cover of

(X, {τnN}). For each n ∈ N, there exist αn ∈ ∆ such that Fαn
∈ τnN\{∅}. For

each α ∈ ∆, there exists an indexed set ωα such that Fαn
= ∪β∈ωα

Aβ\Bβ where

{Aβ : β ∈ ωα} ⊆ τn for some n ∈ N and {Bβ : β ∈ ωα} is a family of finite subsets ofX.

For every n ∈ N, choose βn ∈ ωαn
such that Aβ ∈ τn\{∅}. Thus, {Aβ : β ∈ ∪α∈∆ ωα}

is a p-open cover of (X, {τn}). Since (X, {τn}) is p-compact, then there exists a finite

set ∆1 ⊆ ∆ such that for every α ∈ ∆1, there exists a finite set γα ⊆ ωα such that

{Aβ : β ∈ ∪α∈∆1
γα} covers X. Take G = {Bβ : β ∈ ∪α∈∆1

γα}. For each x ∈ G,

choose αx ∈ ∆ such that x ∈ Fαx
. Then we have {Fα : α ∈ ∆1} ∪ {Fαx

: x ∈ G} is a

finite subcover of F .

Conversely, (X, {τn}) ⊆ (X, {τnN}), every p-open cover of (X, {τn}) is also a p-open

cover of (X, {τnN}) and thus every p-open cover of (X, {τn}) has a finite subcover.

Hence, (X, {τn}) is p-compact. �

Theorem 2.32. Let (X, {τn}) be an s-compact (a)topological space. Then every q-

N -closed subset in (X, {τn}) is s-compact in (X, {τn}).
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Proof. Let (X, {τn}) be an s-compact (a)topological space and A is a q-N -closed

subset in (X, {τn}). Let F be a {τn}-open cover of A. Then F ⊆ q(τn) ⊆ q-N (τn).

since X\A is q-N -open, F ∪ {X\A} ⊆ q-N (τn) is a cover of X. Since (X, {τn}) is a

s-compact, (X, {τnN}) is also s-compact. So F ∪{X\A} has a finite subcover say H.

Thus H\{X\A} is a finite subcover of A and hence A is s-compact in (X, {τn}). �
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