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Abstract. In this paper, we have proposed a prey predator model

with stage structuring in predator. We have incorporated matura-

tion and gestation delay in predator class. The positivity, bound-

edness, existence of equilibrium points and local stability has been

discussed. We have also obtained threshold for maturation and

gestation delay. If 0 < τ1 < τ∗1 then E∗ is locally asymptotically

stable and when τ1 > τ∗1 , Hopf bifurcation exist in the absence of τ .

Further, for τ ≥ 0, E∗ is locally asymptotically stable if 0 < τ < τ∗

and for τ > τ∗, it looss its stability. Finally, permanence of the

system is discussed with numerical example in validation to the

analytical results using MATLAB software.
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1. Introduction

In our ecosystem prey predator plays a key role. For their survival

each individual has to feed on the other. The rate of one species in-

creases with the decrease in the other. Predation is a natural phenom-

ena which is must for maintenance of the nature. If predation does

not takes place then there will be an increase in prey and predators

will die with time and therefore will extinct. Authors [1] proposed a

model on prey predator interaction, where they discussed how does the

predation takes place and what are its consequences. Such interactions

are basically win-loss interaction. In addition to it, our ecosystem also

consist of variety of species which goes through many stages in order

to transform themselves from immature to mature. Such species are

mathematically modelled by compartment modelling called as stage

structured models. For example: Butterflies has to cross three stages

to reach adult phase (i.e. egg, caterpillar and pupa stage). This time

period is known as juvenile period. Various mathematical models with

stage structure have been studied by the scholars [2, 5, 6]. Time delay

also plays a vital role in interacting species models. The time taken

by population to process food, digest it, before searching for new food

is called gestation period. Maturation delay is also a time lag which

denotes the time period required by a population to become mature.

Several mathematical models incorporating different delays have been

studied by authors[9, 3]. More realistic models have been developed by

incorporating delay and stage structuring to study the rich dynamics

of the system [4, 7, 8, 10]. The best biological example showing prey

predator interaction is visible in pest-natural enemy model. For exam-

ple, adult Ladybugs which feeds on aphids, scales and mites to protect

the crop acts as natural enemy. Ladybugs are special predators who
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predate pest only in the adult stage as the larval stage ladybugs are not

capable enough to feed and further only adult lady bugs are capable

to reproduce. Various mathematical models involving stage structure

in prey-predator population have been studied recently [12, 13, 16, 18]

but in all the models, stage structuring has been considered in prey

population. However, recently [17], proposed a mathematical model in

which they assumed that only adult predators attack and consume the

prey and have the ability to reproduce but they considered an anti-

predator defense effect where prey can also attack juvenile and fur-

ther adult predators may help when juvenile predators are attacked

by prey. But, they didn’t incorporate any delay parameters in it.

Hence, motivated by the above literature, we have developed a new

prey-predator mathematical model with stage structuring in predator

population, i.e,juvenile and adult stage. The maturation delay and

gestation delay is incorporated in the predators. Our main question

to be addressed is what happens to the prey population with increase

in maturation delay and gestation delay of predators. Does it stabi-

lize or destabilize the system? The paper is organised as follows: The

mathematical model is proposed in section 2. In section 3, conditions

of existence of boundary and interior equilibrium points are discussed.

Positivity and local stability of the equilibrium points are discussed in

section 4 and 5 respectively. In section 6, permanence of the model is

studied. Finally, in the last section of this paper, numerical simulation

with a set of hypothetical data has been done for the validation of the

analytical results.
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Table 1. Parameters/Variable with meaning

Variable/parameter Meaning

p density of prey population

q1 density of immature predator population

q2 density of mature predator population

a1 attack rate

h handling time and M = a1 ∗ h

r growth rate of prey

r1 growth rate of immature predator

α1 natural death rate of prey population

α2 natural death rate of immature predator population

α3 crowding effect

τ1 maturation delay of predator

τ gestation delay of predator

2. Mathematical Model

In this section, we have proposed our new model incorporating stage

structuring in predator along with maturation and gestation delay to

show a prey-predator interaction which gives the following set of dif-

ferential equations:

dp

dt
= p(t)(r − ap(t)− a1q2(t)

1 +Mp(t)
) (2.1)

dq1
dt

= r1q2(t)− α1q1(t)− r1e−d1τ1q2(t− τ1) (2.2)

dq2
dt

= −α2q2(t) + r1e
−d1τ1q2(t− τ1) +

a2p(t− τ)q2(t− τ)

1 +Mp(t− τ)
− α3q

2
2(t)

(2.3)
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where the parameters are defined as per the table above. Further,

we have also considered Holling Type-II functional response to show

the interaction between prey and mature predator which is given by

a1q2(t)
1+Mp(t)

. The term r1e
−d1τ1q2(t− τ1) represent the transformation rate

of immature predator to mature predator.

3. Existence of Equilibrium points

The proposed model (2.1-2.3) has three non-negative equilibrium

points:

(1) Trivial equilibrium E1(0, 0, 0) exists always,

(2) Boundary equilibrium point E2(
r
a
, 0, 0),

(3) Boundary equilibrium point E3(0, q̄1, q̄2), exists only if (H1) :

r1e
−d1τ1 > α2 holds, where

q̄1 =
r1q̄2(1− e−d1τ1)

α1

,

q̄2 =
r1e
−d1τ1 − α2

α3

,

(4) Interior point E∗(p∗, q∗1, q
∗
2), exists if (H2) : Ma1α2 + 2α3Mr >

Ma1r1e
−d1τ1 + α3a+ a1a2 holds, where, r

a
> p∗

q∗1 =
r1q2

∗(1− e−d1τ1)
α1

,

q∗2 =
(r − ap∗)(1 +Mp∗)

a1
,

and p∗ is obtained from the following cubic equation:

α3M
2a(p∗)3+(p∗)2(α3rM+2Ma)−p∗(Ma1α2−Ma1r1e

−d1τ1+2α3Mr−α3a−a1a2)

+a1(r1e
−d1τ1 − α2) = 0



524 VANDANA KUMARI, SUDIPA CHAUHAN ET.AL

By Descarte’s rule of sign, it has atleast one positive root provided that

Ma1α2 + 2α3Mr > Ma1r1e
−d1τ1 + α3a+ a1a2.

Remark 1: It is clear from (H1) that boundary equilibrium E3(0, q̄1, q̄2)

exists if τ1 <
1
d1
log r1

α2
and from (H2) that interior equilibriumE∗(p∗, q∗1, q

∗
2)

exists if τ1 <
1
d1
log Ma1r1

Ma1α2+2α3Mr−α3a−a1a2 .

4. Positivity of the system

In this section, we will discuss the positivity of the system.

Theorem 4.1. The solution of the given model (2.1-2.3) are always

positive, and for all t ≥ 0.

proof. Let us first consider q2(t) for all t ∈ [0, τ ]. Using equation

(2.3) of the model,

dq2
dt

= −α2q2(t) + r1e
−d1τ1q2(t− τ1) +

a2p(t− τ)q2(t− τ)

1 +Mp(t− τ)
− α3q

2
2(t)

(4.1)

By Comparison theorem [14], it follows that for t ∈ [0, τ ],

dq2
dt
≥ q2(t− τ)r1e

−d1τ1 − q2(t)α2 − α3q
2
2(t)

inf q2(t) ≥
−α2 + r1e

−d1τ1

α3

= M1 > 0.

where, r1e
−d1τ1 > α2

Now, from equation (2.1) of the model for t ∈ [0, τ ] we derive that ,

dp(t)

dt
= p(t)(r − ap(t)− a1q2(t)

1 +Mp(t)
)
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dp(t)

dt
≥ p(t)(r − ap(t)− a1M1)

A standard Comparison argument shows that for t ∈ [0, τ ],

inf p(t) ≥ r − a1M2

a
> 0 = M2

where,r > a1M2.

Similarly, we derive from the equation (2.2) of the model that for

t ∈ [0, τ ],

dq1
dt

= r1q2(t)− α1q1(t)− r1e−d1τ1q2(t− τ1)

dq1
dt
≥ r1M1(1− e−d1τ1)− α1q1

inf q1 ≥
r1M1(1− e−d1τ1)

α1

= M3 > 0

This completes the proof.

In the next section, we have proved the local stability of the boundary

and interior equilibrium points using lemmas stated in Appendix.

5. Local Stability

The local behaviour of non negative equilibrium are given in the fol-

lowing theorem:

Theorem 5.1. The local behaviour of equilibrium points of the model

are as follows:

1. The trivial equilibrium E1(0, 0, 0) is always unstable for every τ1 ≥ 0,
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τ ≥ 0.

2. The boundary equilibrium E2(p, 0, 0) is stable if τ1 > τ̄1 and τ ≥ 0

where τ̄1 = 1
d1
log r1

α2
.

3. The boundary equilibrium E3(0, q̄1, q̄2) is stable if τ1 > τ̄ ∗1 where

τ̄ ∗1 = 1
d1
log( r1

α2−2α3q2
) for all τ ≥ 0.

4. If τ1 < τ̄ ∗1 , then the interior equilibrium E∗(p∗, q∗1, q
∗
2) is locally

asymptotically stable for every τ ≥ 0.

The Jacobian corresponding to the system (2.1-2.3) is given by:


r − 2ap− a1q2

(1 +Mp)2
− λ 0

−a1p
1 +Mp

0 −α1 − λ r1 − r1e−(d1+λ)τ1

e−λτ
a2q2

(1 +Mp)2
0 −α2 − 2α3q2 + r1e

−(d1+λ)τ1 +
a2p

1 +Mp
e−λτ − λ


The characteristic equation corresponding to E1(0, 0, 0) is

(r − λ)(−α1 − λ)(−α2 + r1e
−λτ1e−d1τ1 − λ) = 0

Clearly, λ = r which shows that E1 is always unstable for every τ1 ≥ 0,

τ ≥ 0 because it has a positive root.

The characteristic equation corresponding to E2(p, 0, 0) is

(−r − λ)(−α1 − λ)(−α2 +
a2r

a+Mr
e−d1τ + r1e

−λτ1e−d1τ1 − λ) = 0

The eigen values corresponding to above characteristic equation are

λ = −r < 0, λ = −α1 < 0 and λ = r1e
−d1τ1+λ1τ1 − α2 + a2r

a+Mr
e−λτ .

E2(p, 0, 0) is stable if r1e
−d1τ1 + a2r

a+Mr
< α2 which implies τ1 > τ̄1 where



STAGE STRUCTURED PREY PREDATOR MODEL WITH... 527

τ̄1 = 1
d1
log r1

α2
and unstable if τ1 < τ̄1.

Remark 2: Boundary point E3 cannot be stable if E2 exists and vice-

versa.

The characteristic equation corresponding to E3(0, q̄1, q̄2) is:

(r − a1q̄2 − λ)(−α1 − λ)(−α2 + 2α3q̄2 + r1e
λτ1e−d1τ1 − λ) = 0

(−α1 − λ)F1(λ)F2(λ) = 0

The eigen values of the above characteristic equation are λ = −α1 < 0,

λ = r − a1q̄2 and λ = r1e
λτ1e−d1τ1 + 2α3q̄2 − α2. E3 is locally asymp-

totically stable if r < a1q̄2 and r1e
−d1τ1 + 2α3q̄2 < α2, which implies

τ1 > τ̄ ∗1 where τ̄ ∗1 = 1
d1
log( r1

α2−2α3q2
) and τ ≥ 0, otherwise unstable.

(iv) Now we examine the stability of interior equilibrium E∗(p∗, q∗1, q
∗
2).

Characteristic equation of E∗ is:

(λ2 + A1λ+ A2) + e−λτ1(B1λ+B2) + e−λτ (C1λ+ C2) = 0

(5.1)

where,

A1 = α2 + 2α3q2 − r + 2ap+ a1q2
(1+Mp)2

A2 = (r − 2ap∗ − a1q∗2
(1+Mp∗)2

)(α2 + 2α3q
∗
2)

B1 = −r1e−d1τ1 , B2 = (r − 2ap∗ − a1q∗2
(1+Mp∗)2

)r1e
−d1τ1



528 VANDANA KUMARI, SUDIPA CHAUHAN ET.AL

C1 = − a2p∗

1+Mp∗
, C2 = r − 2ap∗ a2P ∗

1+Mp∗

We will discuss three cases to study the behaviour of Interior equilib-

rium E∗(p∗, q∗1, q
∗
2).

Case 1:

When τ1 = 0 , τ = 0 then, from equation (5.1) we get.

λ2 + λ(A1 +B1 + C1) + (A2 +B2 + C2) = 0 (5.2)

It follows from the Routh-Hurwitz criterion that the necessary and suf-

ficient conditions for all roots of (5.2) having negative real parts is given

by (A1 + B1 + C1) > 0, (A2 + B2 + C2) > 0. Hence, equilibrium point

E∗(p∗, q∗1, q
∗
2) is locally asymptotically stable under the above condi-

tion.

We begin with the case τ1 = 0 , τ = 0 as it is necessary that the

nontrivial equilibrium point should be locally stable forτ1 = 0 , τ = 0

so that we can obtain the local stability for all non negative values of

delay and further can find the critical value which may destabilize the

system.

Case 2:. If τ1 = 0 and τ > 0, then the polynomial reduces to:

(λ2 + A1λ+ A2) + (B1λ+B2) + e−τλ(C1λ+ C2) = 0

(5.3)

where, p = (A1 +B1), r = (A2 +B2), s = C1, q = C2

Here, we consider τ as the parameter to study the local stability of

interior equilibrium E∗.
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By lemma(A.2), we see that,

1. L1 holds if 2ap∗+α2 + 2α3q
∗
2 +

a1q∗2
(1+Mp∗)2

> r+ r1e
−d1τ1 + a2P ∗

1+Mp∗
(B1)

2. L2 holds if r > 2ap∗ +
a1q∗2

(1+Mp∗)2
(B2)

3. L3 holds if (B1) is true and A1 < α2 + 2α3q
∗
2 and r2 − q∗2 > 0 if

(B2) is true and (r− 2ap∗− a1q∗2
(1+Mp∗)2

)(α2 + r1e
−d1τ1) > (r− 2ap∗) a2p∗

1+Mp∗

Thus, all the roots of the polynomial (5.3) has negative real parts

for all τ > 0 if the above conditions (1-3) holds and E∗ becomes locally

asymptotically stable.

Now, if any one of the above conditions gets violate say r < 2ap∗ +
a1q∗2

(1+Mp∗)2
i.e. r2−q2 < 0, then the system has a pair of purely imaginary

roots say, (λ = ±ιω). Now, we obtain the condition that under what

value of τ , the polynomial (5.3) has a pair of purely imaginary roots.

Therefore, we substitute λ = ±ιω in equation (5.3) and equate its real

and imaginary parts which gives,

− ω2 + (A2 +B2) + C2 cosωτ − C1ω sinωτ − C2
1ω

2 sinωτ2 = 0

(5.4)

and,

(A1 +B1)ωC2 + ωC1C2 cosωτ + C2 sinωτ (5.5)

Eliminating sinωτ and cosωτ2 from (5.4) and (5.5), we get,
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sinωτ =
−C1ω

3 + ωC1(A2 +B2)− (A1 +B1)ωC2

C2
1ω

2 + C2
2

(5.6)

cosωτ =
ω2C2 − (A2 +B2)C2 − (A1 +B1)C1ω

2

C2
2ω

2 + C2
2

(5.7)

Now, let ω0 be a positive root of equation (5.4). From equation (5.3),

we obtain the critical values of τ ,

τ+k =
1

ω0

[cos−1(
ω2
0C2 − (A2 +B2)C2 − (A1 +B1)C1ω

2
0

C2
1 + ω2

0C
2
1

+ 2kΠ]

for every k = 0, 1, 2, .......

To make sure the occurrence of the Hopf bifurcation, it is needed to

check the transversality condition[15]. Without loss of generality, the

time delay τ is chosen as the bifurcation parameter. The necessary

condition for the existence of the Hopf bifurcation is that the critical

eigenvalues cross the imaginary axis with non-zero velocity. Differenti-

ating λ with respect to τ of (5.2) we obtain,

dλ

dτ
=

λe−λτ (λs+ q)

2λ+ p+ se−λτ − τ2e−λτ (sλ+ q)

or,

(
dλ

dτ
)−1 =

2λ+ p+ se−λτ

λe−λτ (sλ+ q)
− τ

λ

By simple calculations, we can see that,

Re[(
dλ

dτ
)−1]τ=(τ0)+ > 0
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Noting that,

Sign{Re[dλ
dτ

]τ=(τ0)+} = Sign{Re[(dλ
dτ

)−1]τ=(τ0)+} > 0

Therefore, when the delay τ is near its critical τ+0 , then the root of

equation (5.3) crosses the imaginary axis from left to right. When

τ = τ+0 , there exists a pair of purely imaginary roots for equation

(5.3) and all the other roots having negative real parts. Thus, the

transversality condition required for the Hopf bifurcation is proved. In

the next case, we would study the effect of both the delays on the local

stability of the system.

Case 3: τ1 > 0 and τ = 0.

The proof is obvious as above.

Case 4: τ1 > 0 and τ > 0.

We first state a result regarding the real part of the roots of the equation

(5.1) to study the local stability of the E∗ of system (2.1-2.3).

Proposition: If all roots of equation (5.1) have negative real parts

for some τ > 0, then there exists a τ ∗1 (τ) > 0 such that all roots of

equation (5.1) (that is, with τ > 0) have negative real parts when

τ1 < τ ∗1 (τ).

By using the above proposition and letting the following assumptions

using lemma (A.2):

(r1e
−d1τ1)2 + ((r − 2ap∗ − a1q∗2

(1+Mp∗)2
)(α2 + 2α3q

∗
2) + (r − 2ap∗ a2P ∗

1+Mp∗
)) <

(α2 + 2α3q2 − r + 2ap+ a1q2
(1+Mp)2

− a2p∗

1+Mp∗
)2,

s2 − p2 + 2r < 0

and
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(r − 2ap∗ − a1q∗2
(1+Mp∗)2

)(α2 + 2α3q
∗
2) + r − 2ap∗ a2P ∗

1+Mp∗
> (r − 2ap∗ −

a1q∗2
(1+Mp∗)2

)r1e
−d1τ1 , then, r2−q2 > 0. we can state the following theorem:

Theorem 5.2. Suppose (B1), (B2), and r > 2ap∗+
a1q∗2

(1+Mp∗)2
holds and

τ ∈ [0, τ+0 ). Then the interior equilibrium point E∗(p∗, q∗1, q
∗
2) is locally

asymptotically stable when τ1 ∈ [0, τ̄ ∗1 ).

To prove the above theorem, Again, let τ1 ∈ [0, τ̄11) and τ > 0.

Suppose, the characteristic equation (5.1) has purely imaginary root

ιω(ω > 0), then we can obtain:

− ω2 + A2 +B2 cosωτ1 −B1ω sinωτ1 + C2 cosωτ − C1ω sinωτ = 0

(5.8)

ωA1 +B1ω cosωτ1 +B2 sinωτ1 + C1ω cosωτ + C2 sinωτ = 0

(5.9)

From (5.8) and (5.9), we have,

ω4 + Āω3 + B̄ω2 + C̄ω + D̄ = 0 (5.10)

where,

Ā = 2C1 sinωτ + 2B1 sinωτ1,

B̄ = B2
1 +C2

1 − 2A2− 2B2 cosωτ1−C2 cosωτ + 2B1C1 sinωτ1 sinωτ2 +

2A1B1 cosωτ + 2A1C1 cosωτ2 + 2B1C1 cosωτ1 cosωτ

C̄ = 2A2B1 sinωτ1−2A2C1 sinωτ−2B2C1 cosωτ1 sinωτ2−2B1C2 sinωτ1 cosωτ+

2A1B1 sinωτ1+2A1C2 sinωτ+2B1C2 cosωτ1 sinωτ2+2B2C1 sinωτ1 cosωτ



STAGE STRUCTURED PREY PREDATOR MODEL WITH... 533

D̄ = A2
2 +B2

2 + 2A2B2 cosωτ1 + 2A2C2 cosωτ2 + 2B2C2 cosωτ1 cosωτ +

2B2C2 sinωτ1 sinωτ

Now, we define

F (ω) = ω4 + Āω3 + B̄ω2 + C̄ω+D̄ and assume that Ma1α2 +2α3Mr >

Ma1r1e
−d1τ1 + α3a + a1a2 hold. It is easy to check thatF (0) < 0

and F (∞) = ∞. We can obtain that equation (5.10) has finite posi-

tive roots ω1, ω2, ........ωk. For every fixed ωi, i = 1, 2, 3, ........, k, there

exists a sequence (τ ji (τ1)|j = 1, 2, 3.....), such that (5.10) holds. Let

τ0(τ1) = min(τ ji (τ1)|i = 1, 2......., k; j = 1, 2, 3.....; τ1 ∈ [0, τ̄ ∗1 )). When

τ1 = τ10, then (5.1) has a pair of purely imaginary roots ±ιω0. The

critical value of τ is given by:

τ0(τ1) =
1

ω0
cos−1(

A

B
)

whereA = (−ω0)2(−C2+A1C1+B1C1 cosω0τ1+C
2
1 cosω0τ)−ω0((−B1C2+

B2C1) sinω0τ1)− (B2C2 cosω0τ1 + C2
2 cosω0τ), B = C2

2 + C2
1

If τ1 = 0, then τ0 = τ+0 . Now we define τ+1 = max(τ0(τ1)|τ1ε[0, τ̄11)).

We can also show that,

Re[
dλ

dτ
]τ1=τ+1 6= 0 (5.11)

Thus from the above discussion, the theorem take the following form:

Theorem 5.3. (i) The interior equilibrium E∗ is locally asymptotically

stable for all τ ≥ 0 and τ1 ∈ [0, τ+1 ).
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(ii) the interior equilibrium E∗ is unstable when τ ≥ τ+ and the sys-

tem undergoes a hopf bifurcation at E∗ when τ1 = τ+1 for all τ ≥ 0.

Hence, we have proved the local stability of the interior equilibrium

point.

6. Permanence of the Model

In this section, we will discuss the permanence of the system.

Theorem 6.1. The system (2.1-2.3) is permanent in the following set

Ω = {m1 ≤ p ≤M1,m2 ≤ q1 ≤M2,m3 ≤ q2 ≤M3}

where,

M1 =
r

a
,M2 =

r1e
−d1τ1 + a2

a

α3

,M3 =
r1M2

α1

,m1 =
M2

M1

,

m2 =
a2S − α2

α3

,m3 =
r1m2(1− e−d1τ1)

α1

proof. We consider equation (2.1) of the model i.e

dp(t)

dt
= p(t)(r − ap(t)− a1q2(t)

1 +Mp(t)
)

dp(t)

dt
≤ p(t)r − ap2(t)

Then by comparison argument, it follows that,

lim sup
t→∞

p(t) ≤ r

a
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Thus, for every ε > 0 sufficiently small, 3 T11 > 0 in such a manner

that if t ≥ T11, then

p(t) ≤ r

a
+ ε = M1 (6.1)

Now on considering equation (2.3), we get,

dq2
dt

= −α2q2(t) + r1e
−d1τ1q2(t− τ1) +

a2p(t− τ)q2(t− τ)

1 +Mp(t− τ)
− α3(q

2
2(t))

dq2(t)

dt
≤ r1e

−d1τ1q2(t) +
a2pq2(t)

1 +Mp
− α3(q2(t))

2

Then by comparison argument, it follows that,

lim supt→∞q2(t) ≤
r1e
−d1τ1 + a2

a
r

α3

thus, for every ε > 0 sufficiently small, 3 T12 > T11 + τ in such a man-

ner that if t ≥ T12,

q2(t) ≤
r1e
−d1τ1 + a2

a
r

α3

+ ε = M2 (6.2)

Now on using equation (2.2) of the model, we get

dq1
dt

= r1q2(t)− α1q1(t)− r1e−d1τ1q2(t− τ1)

dq1
dt
≤ r1q2(t)− α1q1(t)
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On solving the differential equation we get,

lim supt→∞q1(t) ≤
r1M2

α1

Therefore, for every ε > 0 sufficiently small, 3 T1 = T12 + τ in such a

manner that if t ≥ T1,

q1(t) ≤
r1M2

α1

+ ε = M3 (6.3)

Again from the equation (2.1) of the system we derive that,

dp(t)

dt
= p(t)(r − ap(t)− a1q2(t)

1 +Mp(t)
)

dp

dt
≥ −(apM1 +

a1M2

p
)

lim inf
t→∞

p(t) ≥ −M2

M1

for every ε > 0, arbitrarily small, their exist T2 > T1 such that t > T2

p(t) ≥ −M2

M1

− ε = m1 (6.4)

From equation (2.3) it follows that,

dq2(t)

dt
= −α2q2(t) + r1e

−d1τ1q2(t− τ1) +
a2p(t− τ)q2(t− τ)

1 +Mp(t− τ)
− α3q

2
2(t)

dq2(t)

dt
≥ −α2q2(t) +

a2m1q2(t− τ)

1 +Mm1)
− α3(q

2
2(t)

dq2(t)

dt
≥ a2Sq2(t− τ)− α2q2(t)− α3q

2
2(t)
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Now, by Comparison argument we get,

lim inf
t→∞

q2(t) ≥
a2S − α2

α3

for every ε > 0, arbitrarily small, their exist T3 > T2 + τ such that

t > T3,

q2(t) ≥
a2S − α2

α3

− ε = m2 (6.5)

It follows from the equation (2.2) that,

dq1
dt

= r1q2(t)− α1q1(t)− r1e−d1τ1q2(t− τ1)

dq1
dt
≥ r1m2 − α1q1(t)− r1e−d1τ1m2

On solving the differential equation we get,

lim inf
t→∞

q1(t) ≥
r1m2(1− e−d1τ1)

α1

(6.6)

for every ε > 0, arbitrarily small, their exist T4 > T3 + τ such that

t > T4,

q1(t) ≥
r1m2(1− e−d1τ1)

α1

− ε = m3 (6.7)

Therefore, we have obtained the greatest lower bound and the least up-

per bounds of p, q1, q2. This completes the permanence of the system.
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7. Numerical Simulation

In this section, we have presented numerical simulation of the system

with different hypothetical values as given in the table below to vali-

date our theoretical results. The values are

Parameter r a a1 r1 α1 d1 α2 a2 α3 M

Values 1 0.2 0.6 0.7 0.1 0.2 0.2 2 0.06 20
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Figure 1. The interior equilibrium E∗ is asymptotically

stable when τ1 = 3 and τ = 0.018
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Figure 2. Behaviour of the system at τ1 = 6 and τ = 0.018
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Here all the parametric values are taken per week. We have observed

that E∗ is asymptotically stable for maturation delay τ1 = 3 and ges-

tation delay τ = 0.018(Figure 1). As we increase the maturation delay

τ1 = 6, keeping the gestation delay τ fixed for the same set of initial

conditions, we observe a slight periodic solution in the system but it

stabilizes in long run(Figure 2). Now we further increase maturation

delay τ1 = 7 and we observe the existence of Hopf bifurcation in the
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Figure 3. At τ1 = 7 and τ = 0.018 the interior equilibrium

E∗ looses its stability
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Figure 4. Bifurcating periodic solution occurs at τ1 = 9

and τ = 0.018
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system which validates our analytical results of Case 3 . Thus, it con-

cludes that E∗ is locally asymptotically stable if 0 < τ1 < τ ∗1 = 7

and has Hopf bifurcation when τ1 > τ ∗1 = 7(Figure 3, 4). Now, we

keep maturation delay in the stable region as per case 3 i.e τ1 = 3

and modulate gestation delay. At τ = 0.01, we observe that E∗ is
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Figure 5. Existence of the Hopf Bifurcation for τ1 = 3 and

τ = 0.01
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Figure 6. Behaviour of the system at τ1 = 3 and τ = 0.017
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aysmptotically stable(Figure 5,6). As we increase the gestation delay

τ = .017, keeping the maturation delay fixed, still we get a stabilized

system but as we increase τ = 0.018, we obtain periodic solution for

the system. Thus, it verifies our analytical results of Case 4 that if

τ1 > 0 and τ < τ ∗ = .018 then E∗ is stable and if τ ≥ τ ∗ = .018, Hopf

bifurcation occurs(Figure 7).

8. Conclusion

To sum up, in this paper, we have studied the effect of maturation delay

and gestation delay on the dynamics of prey predator model with stage

structuring in predator. We have studied the existence of boundary

and interior equilibrium points and the positivity of the model.Next,

we have discussed the local stability of the trivial, boundary and in-

terior equilibrium point. We have discussed three cases for the local

stability analysis of E∗ :

Case 1. τ1 = τ = 0

Case 2. τ1 = 0, τ > 0
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Figure 7. Behaviour of the system when τ = 0.018
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Case 3, τ1 > 0, τ = 0

Case 4. τ1 > 0, τ > 0

From the local stability of Case 2,3 and Case 4, we have obtained

the bifurcating parameter τ10 and τ0 = τ . We have shown that E∗

is asymptotically stable if the maturation delay 0 < τ1 < τ ∗1 and has

Hopf bifurcation when τ1 > τ ∗1 . Further, we have also proved that if

τ1 > 0 and τ < τ ∗ then E∗ is asymptotically stable and if τ ≥ τ ∗ then,

Hopf bifurcation occurs. The permanence of the system using com-

parison theorem is also obtained by evaluating the least upper bound

and greatest lower bound of all the three population (p, q1, q2). At last,

numerical example has been given to validate our theoretical results.

From the above analysis, we conclude that as we increase the matura-

tion delay , the prey population gradually decreases and may extinct

in longer run and further, increase in gestation delay destabilizes the

system. Hence, in the case of pest-natural enemy model, it is worth

increasing the maturation delay as it would help in eradication of the

pest population.

Appendix A. Known Results

Lemma A.1. Let’s consider the following equation:

dP (t)

dt
= xP (t− T )− yP (t)− zP 2(t)

where x, y, z and T are positive constants , P (t) > 0 for t ∈ [−T, 0].,

then we have (i) if x > y then limt→∞ P (t) = x−y
z

(ii) if x < y then limt→∞ P (t) = 0
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We know, transcendental polynomial equation of second degree is

λ2 + pλ+ r + (sλ+ q)e−λτ1 = 0 (A.1)

From the above equation we assume:

(L1)p+ s > 0

(L2)q + r > 0

(L3) either (s2 − p2 − 2r)2 < 0 and (r2 − q2) > 0 or (s2 − p2 − 2r)2 <

4(r2 − q2)

(L4) either (s2−p2−2r)2 = 4(r2−q2) and s2−p2−2r > 0 or r2−q2 < 0

(L5) r2 − q2 > 0, s2 − p2 − 2r > 0 and (s2 − p2 − 2r)2 > 4(r2−2).

Lemma A.2. For equation (A.1), we have,

(i) If (L1) − (L3) hold,then all roots of equation (A.1) have negative

real parts for all τ ≥ 0.

(ii) If (L1), (L2) and (L4) hold and τ = τ+j , then equation (A.1) has a

pair of purely imaginary roots ±ιω+. When τ = τ+j , then all roots of

(5) except ±ιω+ have negative real parts.

(iii) If (L1), (L2) and (L5) hold and τ = τ+j (τ = τ−j , respectively), then

equation (A.1) has a pair of purely imaginary roots ±ιω+ (±ιω+, re-

spectively). Furthermore, when τ = τ+j (τ−j ,respectively), then all roots

of (A.1) except ±ιω+ (±ιω−, respectively) have negative real parts.
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