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THE VERTEX DETOUR MONOPHONIC NUMBER OF

A GRAPH∗

P. TITUS (1)∗ AND P. BALAKRISHNAN (2)

Abstract. In this paper we determine bounds for x-detour mono-

phonic number and characterize graphs which realize these bounds.

A connected graph of order p with vertex detour monophonic num-

bers either p−1 or p−2 for every vertex is characterized. It is shown

that for each triple a, b and p of integers with 1 ≤ a ≤ b ≤ p− 4,

there is a connected graph G of order p such that x-monophonic

number is a and x-detour monophonic number is b for some ver-

tex x in G. Also, for integers a, b and p with 1 ≤ a ≤ p − b and

b ≥ 2, there is a connected graph G of order p such that x-detour

monophonic number is a and monophonic eccentricity of x is b for

some vertex x in G.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph

without loops or multiple edges. The order and size of G are denoted

by p and q respectively. For basic graph theoretic terminology we refer

to Harary [4]. For vertices x and y in a connected graph G, the distance
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d(x, y) is the length of a shortest x-y path in G. An x-y path of length

d(x, y) is called an x-y geodesic. The neighborhood of a vertex v is

the set N(v) consisting of all vertices u which are adjacent with v.

The closed neighborhood of a vertex v is the set N [v] = N(u) ∪ {v}.

A vertex v is a simplicial vertex of G if the subgraph induced by its

neighbors is complete. A nonseparable graph is connected, nontrivial,

and has no cut vertices. A block of a graph is a maximal nonseparable

subgraph. A caterpillar is a tree for which the removal of all the end

vertices gives a path. The closed interval I[x, y] consists of all vertices

lying on some x-y geodesic of G, while for S ⊆ V , I[S] =
⋃

x,y∈S

I[x, y].

A set S of vertices is a geodetic set if I[S] = V, and the minimum

cardinality of a geodetic set is the geodetic number g(G). A geodetic

set of cardinality g(G) is called a g-set of G. The geodetic number of

a graph was introduced in [1, 5] and further studied in [2, 3].

The concept of vertex geodomination number was introduced in [6]

and further studied in [7]. Let x be a vertex of a connected graph

G. A set S of vertices of G is an x-geodominating set of G if each

vertex v of G lies on an x-y geodesic in G for some element y in S.

The minimum cardinality of an x-geodominating set of G is defined

as the x-geodomination number of G and is denoted by gx(G). An

x-geodominating set of cardinality gx(G) is called a gx-set of G.

A chord of a path P is an edge joining two non-adjacent vertices

of P . A path P is called monophonic if it is a chordless path. A

longest x-y monophonic path P is called an x-y detour monophonic

path. The closed interval Im[x, y] consists of all vertices lying on some

x-y monophonic path of G. For any two vertices u and v in a connected

graph G, the monophonic distance dm(u, v) from u to v is defined as

the length of a longest u-v monophonic path in G. The monophonic
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eccentricity em(v) of a vertex v in G is em(v) = max{dm(v, u) : u ∈

V (G)}. The monophonic radius, radmG of G is radmG = min{em(v) :

v ∈ V (G)} and the monophonic diameter, diammG of G is diammG =

max{em(v) : v ∈ V (G)}. The monophonic distance was introduced

and studied in [8].

The concept of vertex monophonic number was introduced and stud-

ied in [9]. Let x be a vertex of a connected graph G. A set S of vertices

of G is an x-monophonic set of G if each vertex v of G lies on an x-y

monophonic path in G for some element y in S. The minimum car-

dinality of an x-monophonic set of G is defined as the x-monophonic

number of G and is denoted by mx(G). An x-monophonic set of cardi-

nality mx(G) is called a mx-set of G. The following theorems will be

used in the sequel.

Theorem 1.1. [4] Let v be a vertex of a connected graph G. The

following statements are equivalent :

(1) v is a cut vertex of G.

(2) There exist u and w distinct from v such that v is on every u-w

path.

(3) There exists a partition of the set of vertices V − {v} into subsets

U and W such that for any vertices u ∈ U and w ∈ W , the vertex v is

on every u-w path.

Theorem 1.2. [4] Every non-trivial connected graph has at least two

vertices which are not cut vertices.

Theorem 1.3. [4] Let G be a connected graph with at least three

vertices. The following statements are equivalent :

(1) G is a block.

(2) Every two vertices of G lie on a common cycle.
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Theorem 1.4. [9] Let x be any vertex of a connected graph G. Then

every simplicial vertex of G other than the vertex x (whether x is

simplicial vertex or not) belongs to every mx-set.

Throughout this paper G denotes a connected graph with at least

two vertices.

2. Vertex detour monophonic number

Definition 2.1. Let x be a vertex of a connected graph G. A set

S of vertices of G is an x-detour monophonic set if each vertex u of

G lies on an x-y detour monoponic path in G for some y in S. The

minimum cardinality of an x-detour monophonic set of G is defined as

the x-detour monophonic number of G and is denoted by dmx(G). An

x-detour monophonic set of cardinality dmx(G) is called a dmx-set of

G.

We observe that for any vertex x in G, x does not belong to any

dmx-set of G.

�

�

�

�

� �

Figure 2.1
G
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z u

Example 2.2. For the graph G given in Figure 2.1, the minimum ver-

tex monophonic sets, the vertex monophonic numbers, the minimum

vertex detour monophonic sets and the vertex detour monophonic num-

bers are given in Table 2.1.
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Table 2.1

vertex minimum vertex vertex minimum vertex vertex detour

monophonic monophonic detour mono monophonic

sets number phonic sets number

t {z, w} 2 {z, w} 2

y {z, w} 2 {w, z, t}, {w, z, u} 3

z {w} 1 {u, w}, {w, y} 2

u {z, w, y} 3 {w, z, y} 3

v {z, w} 2 {w, t, z}, {w, u, z} 3

w {z} 1 {t, z}, {z, u} 2

Theorem 2.3. Let x be a vertex of a connected graph G.

(1) Every simplicial vertex of G other than the vertex x (whether x is

simplicial vertex or not) belongs to every dmx-set of G.

(2) No cut vertex of G belongs to any dmx-set of G.

Proof. (1) Let x be a vertex of G. Then x does not belong to any

dmx-set of G. Let u 6= x be a simplicial vertex and Sx a dmx-set

of G. Suppose that u /∈ Sx. Then u is an internal vertex of an x-y

detour monophonic path, say P , for some y ∈ Sx. Let v and w be the

neighbors of u on P . Then v and w are not adjacent and so u is not a

simplicial vertex, which is a contradiction.

(2) Let y be a cut vertex of G. Then by Theorem 1.1, there exists a

partition of the set of vertices V −{y} into two subsets U and W such

that for any pair of vertices u ∈ U and w ∈ W , the vertex y is on every

u-w path. Hence, if x ∈ U , then for any vertex w in W , y lies on every

x-w path so that y is an internal vertex of an x-w detour monophonic

path. Let Sx be any dmx-set of G. Suppose that Sx∩W = ∅. Then for

any w1 ∈ W , there exists an element z in Sx such that w1 lies in some

x-z detour monophonic path P : x = z0, z1, . . . , w1, . . . , zn = z in G.
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Now, the x-w1 subpath of P and w1-z subpath of P both contain y so

that P is not a path in G, which is a contradiction. Hence Sx∩W 6= ∅.

Let w2 ∈ Sx ∩ W . Then y is an internal vertex of an x-w2 detour

monophonic path. If y ∈ Sx, let S = Sx − {y}. It is clear that every

vertex that lies on an x-y detour monophonic path also lies on an x-

w2 detour monophonic path. Hence it follows that S is an x-detour

monophonic set of G, which contradicts the fact that Sx is a minimum

x-detour monophonic set of G. Thus y does not belong to any dmx-set.

Similarly, if x ∈ W , y does not belong to any dmx-set. If x = y, then

obviously y does not belong to any dmx-set. �

Note 2.4. Even if x is a simplicial vertex of G, x does not belong to

any dmx-set.

Theorem 2.5. For any non-trivial tree T with k end vertices, dmx(T ) =

k − 1 or k according as x is an end-vertex or not. In fact, if W is the

set of all end-vertices of T , then W − {x} is the unique dmx-set of T .

Proof. Let W be the set of all end-vertices of T . It follows from Theo-

rem 2.3 and Note 2.4 that W −{x} is the unique dmx-set of T for any

end-vertex x in T and W is the unique dmx-set of T for any cut vertex

x in T . Thus W − {x} is the unique dmx-set of T . �

Theorem 2.6. For any vertex x in a connected graph G of order p,

1 ≤ dmx(G) ≤ p− 1.

Proof. It is clear from the definition of dmx-set that dmx(G) ≥ 1.

Also, since the vertex x does not belong to any dmx-set, it follows

that dmx(G) ≤ p− 1. �
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Remark 2.7. The bounds for dmx(G) in Theorem 2.6 are sharp, for

example dmx(C2n) = 1 for any vertex x in C2n, and dmx(Kp) = p− 1

for any vertex x in Kp.

Now we proceed to characterize graphs for which the bounds in The-

orem 2.6 are attained.

Definition 2.8. Let x be any vertex in a connected graph G. A vertex

y in G is said to be an x-detour monophonic superior vertex if for any

vertex z with dm(x, y) < dm(x, z), z lies on an x−y detour monophonic

path.

Table 2.2

vertex t y z u v w

vertex detour monophonic

superior vertices {w} {z} {w} {y, w} {z} {z}

Example 2.9. For the graph G given in Figure 2.1, the vertex detour

monophonic superior vertices are given in Table 2.2.

We give below a property related with monophonic eccentric vertex

of x and x-detour monophonic superior vertex in a graph G.

Theorem 2.10. Let x be any vertex in G. Then every monophonic

eccentric vertex of x is an x-detour monophonic superior vertex.

Proof. Let y be a monophonic eccentric vertex of x so that em(x) =

dm(x, y). If y is not an x-detour monophonic superior vertex, then there

exists a vertex z in G such that dm(x, y) < dm(x, z) and z does not

lie on any x− y detour monophonic path and hence em(x) < dm(x, z),

which is a contradiction. �
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Note 2.11. The converse of Theorem 2.10 is not true. For the even

cycle C2n(n ≥ 3), the eccentric vertex of x is an x-detour monophonic

superior vertex but it is not a monophonic eccentric vertex of x.

Theorem 2.12. Let G be a connected graph. For a vertex x in G,

dmx(G) = 1 if and only if there exists an x-detour monophonic supe-

rior vertex y in G such that every vertex of G is on an x − y detour

monophomic path.

Proof. Let dmx(G) = 1 and S = {y} be a dmx-set of G. If y is not an

x-detour monophonic superior vertex, then there is a vertex z in G with

dm(x, y) < dm(x, z) and z does not lie on any x−y detour monophonic

path. Thus S is not a dmx-set of G, which is a contradiction. The

converse is clear from the definition. �

Theorem 2.13. For any vertex x in a connected graph G of order p,

dmx(G) = p− 1 if and only if deg x = p− 1.

Proof. Let x be any vertex in a connected graph G of order p. Let

dmx(G) = p − 1. Suppose that deg x < p − 1. Then there exists

a vertex u in G which is not adjacent to x. Since G is connected,

there is a detour monophonic path from x to u, say P , with length

greater than or equal to 2. It is clear that (V (G)− V (P )) ∪ {u} is an

x-detour monophonic set of G and hence dmx(G) ≤ p − 2, which is a

contradiction. Conversely, if deg x = p− 1, then all other vertices of G

are adjacent to x and hence all these vertices form the dmx-set. Thus

dmx(G) = p− 1. �

Corollary 2.14. A graph G is complete if and only if dmx(G) = p− 1

for every vertex x in G.
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Theorem 2.15. Let G be a connected graph. Then G = K1+∪mjKj

if and only if dmx(G) = p− 1 or p− 2 for any vertex x in G.

Proof. Let G = K1+∪mjKj. Then G has at most one cut vertex. If G

has no cut vertex, then G = Kp and so by Corollary 2.14, dmx(G) =

p − 1 for every vertex x in G. Suppose that G has exactly one cut

vertex. Then all the remaining vertices are simplicial and hence by

Theorem 2.3, dmx(G) = p− 1 or p− 2 for any vertex x in G.

Conversely, suppose that dmx(G) = p− 1 or p− 2 for any vertex x

in G. If p = 2, then G = K2 = K1 + K1. If p ≥ 3, then by Theorem

1.2, there exists a vertex x, which is not a cut vertex of G. If G has

two or more cut vertices, then by Theorem 2.3, dmx(G) ≤ p−3, which

is a contradiction. Thus, the number of cut vertices k of G is at most

one.

Case 1: k = 0. Then the graph G is a block. If p = 3, G = K3 =

K1+K2. For p ≥ 4, we claim that G is complete. If G is not complete,

then there exist two vertices x and y in G such that d(x, y) ≥ 2. By

Theorem 1.3, x and y lie on a common cycle and hence x and y lie

on a smallest cycle C : x, x1, . . . , y, . . . , xn, x of length at least 4. If

dm(x, y) = 2, then V (G)−{x, x1, xn} is an x-detour monophonic set of

G and so dmx(G) ≤ p− 3, which is a contradiction to the assumption.

If dm(x, y) > 2, then let P be an x−y detour monophonic path of order

at least 4. Clearly (V (G)− V (P )) ∪ {y} is an x-detour monophonic

set of G and so dmx(G) ≤ p− 3, which is a contradiction. Hence G is

the complete graph Kp and so G = K1 +Kp−1.

Case 2: k = 1. Let x be the cut vertex of G. If p = 3, then

G = P3 = K1 + mjK1, where
∑

mj = 2. If p ≥ 4, we claim that

G = K1 + ∪mjKj, where
∑

mj ≥ 2. It is enough to prove that every

block of G is complete. Suppose there exists a block B, which is not
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complete. Let u and v be two vertices in B such that d(u, v) ≥ 2.

Then by Theorem 1.3, both u and v lie on a common cycle so that

u and v lie on a smallest cycle of length at least 4. Then as in Case

1, dmu(G) ≤ p − 3, which is a contradiction. Thus every block of G

is complete so that G = K1 + ∪mjKj, where K1 is the vertex x and
∑

mj ≥ 2. �

Theorem 2.16. Let G be a connected graph of order p ≥ 3 with

exactly one cut vertex. Then G = K1 + ∪mjKj, where
∑

mj ≥ 2 if

and only if dmx(G) = p− 1 or p− 2 for any vertex x in G.

Proof. The proof is contained in Theorem 2.15. �

Now, Corollary 2.14 and Theorem 2.15 lead to the natural question

whether there exists a graph G for which dmx(G) = p − 2 for every

vertex x in G. This is answered in the next theorem.

Theorem 2.17. There is no graph G of order p with dmx(G) = p− 2

for every vertex x in G.

Proof. If dmx(G) = p − 2 for every vertex x in G, then use Theorem

2.15 to get G = K1+∪mjKj. If x is K1, then use Theorem 2.13 to get

dmx(G) = p − 1. But this contradicts the assumption. Thus there is

no graph G with dmx(G) = p− 2 for every vertex x in G. �

Theorem 2.18. For any non-trivial tree T with monophonic diameter

dm,

dmx(T ) = p − dm or p − dm + 1 for any vertex x in T if and only

if T is a caterpiller.

Proof. Let T be any non-trivial tree. Let P : v0, v1, . . . , vdm be a mono-

phonic path of length dm. Let k be the number of end vertices of T
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and l be the number of internal vertices of T other than v1, . . . , vdm−1
.

Then dm−1+ l+k = p. By Theorem 2.5, dmx(T ) = k or k−1 for any

vertex x in T . Hence dmx(T ) = p − dm − l + 1 or p − dm − l for any

vertex x in T . Hence dmx(T ) = p− dm + 1 or p− dm for any vertex x

in T if and only if l = 0, if and only if all the internal vertices of T lie

on the monophonic diametral path P , if and only if T is a caterpillar.

�

Theorem 2.19. For any vertex x in the cycle Cn (n ≥ 3), dmx(Cn) = 1

or 2 according as n is even or odd.

Proof. Let Cn : u1, u2, . . . , un, u1 be the cycle of order n. Let x be any

vertex in Cn, say x = u1. If n is even, then Sx = {un

2
+1} is an x-detour

monophonic set and so dmx(Cn) = 1. If n is odd, then Sx = {u2, u3}

is a minimum x-detour monophonic set and so dmx(Cn) = 2. �

Theorem 2.20. Let Wn = K1 + Cn−1 (n ≥ 5) be the wheel.

(1) If n = 5, then dmx(Wn) = n − 1 or 1 according as x is K1 or x is

in Cn−1.

(2) If n is odd and n ≥ 7, then dmx(Wn) = n− 1 or 2 according as x

is K1 or

x is in Cn−1.

(3) If n is even, then dmx(Wn) = n− 1 or 3 according as x is K1 or

x is in Cn−1.

Proof. Let Cn−1 : u1, u2, . . . , un−1, u1 be a cycle of order n−1 ≥ 4 and u

be the vertex of K1. If x = u, then by Theorem 2.13, dmx(Wn) = n−1.

Let x be any vertex in Cn−1, say x = u1. If n = 5, then every vertex

of Wn lies on an x-u3 detour monophonic path and so {u3} is an x-

detour monophonic set of Wn. Hence it follows that dmx(Wn) = 1. If



576 P. TITUS AND P. BALAKRISHNAN

n ≥ 7 and n is odd, then no 1-element subset of V (Wn) is an x-detour

monophonic set of Wn. Since {un+1

2

, u} is an x-detour monophonic set

ofWn, it follows that dmx(Wn) = 2. If n is even, then neither 1-element

nor 2-element subset of V (Wn) will form an x-detour monophonic set

of G. It is clear that {u, u2, u3} is an x-detour monophonic set of G

and so dmx(G) = 3. �

Theorem 2.21. Let Kn1,n2,... ,nk
(ni ≥ 2) be a complete k-partite graph

with partition (V1, V2, . . . , Vk). Then dmx(Kn1,n2,... ,nk
) is ni−1 accord-

ing as x ∈ Vi. Moreover, if n1 = n2 = . . . = nk = r + 1, then

dmx(Kn1,n2,... ,nk
) = r for every vertex x in Kn1,n2,... ,nk

.

Proof. Let x ∈ Vi. Then it is clear that Vi−{x} is a minimum x-detour

monophonic set of G and so dmx(Kn1,n2,... ,nk
) = ni − 1. �

For a vertex v in a graph G, the link L(v) of v is the subgraph

induced by the neighbors of v.

Theorem 2.22. For every integer k ≥ 1 and every k graphsG1, G2, . . . , Gk,

there exists a connected graph G with a unique dmx-set {v1, v2, . . . , vk}

for some x in G such that L(vi) = Gi for 1 ≤ i ≤ k.

Proof. We construct a graph G with the desired property. For each

integer i (1 ≤ i ≤ k), let Fi = K2 +Gi, where V (K2) = {ui, vi}. Then

the graph G is constructed from the graph Fi by adding a new vertex x

and the k edges xui (1 ≤ i ≤ k). Thus in G, L(vi) = Gi for 1 ≤ i ≤ k.

If k = 1, then every vertex of G lies on an x− v1 detour monophonic

path and hence S = {v1} is the unique minimum x-detour monophonic

set of G. If k ≥ 2, then x is a cut-vertex of G. Now, we show that every

x-detour monophonic set of G contains an element of every component

of G − {x}. Suppose that there is an x-detour monophonic set S of
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G such that S contains no vertex of a component, say B, of G− {x}.

Let v ∈ V (B). Since S is an x-detour monophonic set, there exists an

element y ∈ S such that v lies in some x-y detour monophonic path

P : x, y1, . . . , v, . . . , yn = y in G. Now the x-v subpath of P and v-y

subpath of P both contain x and it follows that P is not a path, which

is a contradiction. Thus every x-detour monophonic set of G contains

an element of every component of G− {x} and so dmx(G) ≥ k.

Let S = {v1, v2, . . . , vk}. Clearly S is an x-detour monophonic set

of G and so dmx(G) = k.

Next, we show that S is a unique dmx-set of G. Assume, to the

contrary, that S ′ is a dmx-set of G distinct from S. Clearly S ′ must

contain exactly one vertex from each subgraph Fi (1 ≤ i ≤ k). Since

S 6= S ′, we may assume that v1 /∈ S ′. Since u1 is a cut vertex of G, it

follows from Theorem 2.3 that y ∈ S for some vertex y in G1. Since

dm(z, u1) = 1 for any z in G1, v1 is not an internal vertex of any detour

monophonic path from x, which is a contradiction. �

The graph G constructed in the proof of Theorem 2.22 has a cut-

vertex and so is not 2-connected. However, we can extend Theorem

2.22 by modifying the structure of the graph G in the proof of Theorem

2.22 to construct a 2-connected graph with the properties described in

Theorem 2.22.

Theorem 2.23. For every integer k ≥ 1 and every k graphsG1, G2, . . . , Gk

of order at least two, there exists a 2-connected graph G with a unique

dmx-set {v1, v2, . . . , vk} for some x in G such that L(vi) = Gi for

1 ≤ i ≤ k.

Proof. For each integer i (1 ≤ i ≤ k), let Fi = K3+Gi, where V (K3) =

{ui, vi, wi}. Then a 2-connected graph G is constructed from the graph
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Fi by adding a new vertex x and the 4k new edges xui, xwi, uiwi and

uiwi+1 for 1 ≤ i ≤ k, where the subscripts are expressed modulo k.

For k = 3, the graph G is shown in Figure 2.2. Thus in G, L(vi) = Gi

for 1 ≤ i ≤ k. Now claim that every x-detour monophonic set of G

contains an element of every Fi(1 ≤ i ≤ k). Suppose that there is

an x-detour monophonic set S of G such that S contains no vertex of

some Fi, say F1. Let y ∈ V (G1). Since S is an x-detour monophonic

set, there exists an element w ∈ S such that y lies in some x - w

detour monophonic path P in G. Since {u1, w1} is a cut set of G and

it separate F1 from G, the path P contains both the vertices u1 and w1

and so P is not a detour monophonic path, which is a contradiction.

Thus every x-detour monophonic set of G contains an element of every

Fi(1 ≤ i ≤ k) and hence dmx(G) ≥ k. Let S = {v1, v2, . . . , vk}. Since

every vertex of Fi lies on an x - vi detour monophonic path, S is an

x-detour monophonic set of G and so dmx(G) = k.

Next, we show that S is the unique dmx-set of G. Assume, to the

contrary, that S ′ is a dmx-set of G distinct from S. Clearly S ′ must

contain exactly one vertex from each subgraph Fi(1 ≤ i ≤ k). Since

S 6= S ′, we may assume that v1 /∈ S ′. Since dm(x, y) ≤ 2 for any

y ∈ V (F1)−{v1} and dm(x, v1) = 3, we have v1 is not an internal vertex

of any detour monophonic path from x, which is a contradiction. �

�
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Next we present a theorem, which gives the relation between mx(G)

and dmx(G) of a graph G.

Theorem 2.24. Let x be any vertex in a connected graph G. Then

1 ≤ mx(G) ≤ dmx(G) ≤ p− 1.

Proof. It is clear from the definition of mx-set that mx(G) ≥ 1. Since

every x-detour monophonic set is an x-monophonic set, we havemx(G) ≤

dmx(G). Also, since the vertex set x does not belong to any dmx-set,

it follows that dmx(G) ≤ p− 1. �

The bounds of Theorem 2.24 are sharp. The cycle C2n(n ≥ 2) has

mx(C2n) = dmx(C2n) = 1 for every vertex x in C2n. Also, the non-

trivial path Pn has mx(Pn) = dmx(Pn) = 1 for an end-vertex x in

Pn. For any vertex x in the complete graph Kp(p ≥ 2), mx(Kp) =

dmx(Kp) = p− 1. Also, all the inequalities in Theorem 2.24 are strict.

For the graph G given in Figure 2.1, my(G) = 2, dmy(G) = 3 and

p = 6 so that 1 < mx(G) < dmx(G) < p.

Corollary 2.25. Let x be any vertex in a connected graph G. If

dmx(G) = 1, then mx(G) = 1.

Proof. This follows from Theorem 2.24. �

Theorem 2.26. Let x be any vertex in a connected graph G of order

p. Then dmx(G) ≤ p− em(x).

Proof. Let x be any vertex in G and y a monophonic eccentric vertex

of x. Then dm(x, y) = em(x). Let P : x = x0, x1, x2, . . . , xn = y be an

x-y detour monophonic path in G. Let S = V (G)−{x0, x1, . . . , xn−1}.

Since each xi(0 ≤ i ≤ n − 1) lies on an x-y detour monophonic path,

S is an x-detour monophonic set of G so that dmx(G) ≤ p− em(x). �
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Remark 2.27. The bound in Theorem 2.26 is sharp. For any vertex

x in the odd cycle C2n+1, em(x) = 2n − 1 and dmx(C2n+1) = 2. Thus

dmx(C2n+1) = p− em(x).

Theorem 2.28. For each triple a, b and p of integers with 1 ≤ a ≤ b ≤

p − 4, there is a connected graph G of order p such that mx(G) = a

and dmx(G) = b for some vertex x in G.

Proof. Case 1. 1 ≤ a = b ≤ p− 4. Let G be a tree of order p with a+1

end-vertices. Let x be an end-vertex of G. Then G has the desired

properties.

Case 2. 1 ≤ a < b ≤ p− 4. Let G be a graph obtained from the cycle

Cp−b+1 : u1, u2, . . . , up−b+1, u1 of order p − b + 1 by (i) adding a new

vertices v1, v2, . . . , va and joining each vertex vi(1 ≤ i ≤ a) to up−b; and

(ii) adding b − a− 1 new vertices w1, w2, . . . , wb−a−1 and joining each

wi(1 ≤ i ≤ b−a−1) to every vertex y ∈ {u1, u2, . . . , up−b}. The graph

G has order p and is shown in Figure 2.3. Let S = {v1, v2, . . . , va}

be the set of all simplicial vertices of G. Then by Theorems 1.4 and

2.3, every x-monophonic set and every x-detour monophonic set of G

contains S for the vertex x = u1. It is clear that every vertex of G

lies on an x-vi (1 ≤ i ≤ a) monophonic path so that mx(G) = a. It is

clear that S is not an x-detour monophomic set of G. Also, it is easily

seen that wi(1 ≤ i ≤ b− a− 1) is not an internal vertex of any detour

monophonic path starting from x. Thus every x-detour monophonic

set of G contains S1 = S ∪ {w1, w2, . . . , wb−a−1}. Since every vertex

ui(1 ≤ i ≤ p − b) lies on an x-v1 detour monophonic path and the

vertex up−b+1 lies on an x-u3 detour monophonic path, S1 ∪ {u3} is an

x-detour monophonic set of G. Hence dmx(G) = b. �
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.

Theorem 2.29. For integers a, b and p with 1 ≤ a ≤ p− b and b ≥ 2,

there is a connected graph G of order p such that dmx(G) = a and

em(x) = b for some vertex x in G.

Proof. Let Pb+1 : u1, u2, . . . , ub+1 be a path of order b + 1. Let G

be the graph obtained from Pb+1 by adding p − b − 1 new vertices

v1, v2, . . . , va−1, w1, w2, . . . ,

wp−b−a and joining each vi(1 ≤ i ≤ a − 1) to ub; also joining each

wi(1 ≤ i ≤ p − b − a) to both u1 and u3. The graph G has order p

and is shown in Figure 2.4. Let x = u1 be a vertex in G. Then, clearly

em(x) = b. If b ≥ 3, then S = {v1, v2, . . . , va−1, ub+1} is the set of

all end vertices of G. Since every vertex of G lies on an x - y detour

monophonic path for some y ∈ S and by Theorem 2.3, S is the unique

minimum x-detour monophonic set of G. Hence dmx(G) = |S| = a.

If b = 2, then S ′ = S − {u3} is the set of all end-vertices of G. By

Theorem 2.3, every x-detour monophonic set of G contains S ′. Also,

it is easily seen that S ′ is not an x-detour monophonic set of G and so
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dmx(G) > a − 1. Then S ′ ∪ {u3} is an x-detour monophonic set of G

and so dmx(G) = a. �
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