ON JENSEN'S ADDITIVE INEQUALITY FOR POSITIVE CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

S. S. DRAGOMIR

ABSTRACT. In this paper we obtain some additive refinements and reverses of Jensen's inequality for positive convex/concave functions of selfadjoint operators in Hilbert spaces. Natural applications for power and exponential functions are provided.

1. Introduction

The famous Young inequality for scalars says that if a, b > 0 and $\nu \in [0, 1]$, then

$$(1.1) a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b$$

with equality if and only if a = b. The inequality (1.2) is also called ν -weighted arithmetic-geometric mean inequality.

We have the following inequality that provides a refinement and a reverse for the celebrated Young's inequality

$$(1.2) \qquad \frac{1}{2}\nu \left(1 - \nu\right) \frac{\left(b - a\right)^2}{\max\left\{a, b\right\}} \le \left(1 - \nu\right) a + \nu b - a^{1 - \nu} b^{\nu} \le \frac{1}{2}\nu \left(1 - \nu\right) \frac{\left(b - a\right)^2}{\min\left\{a, b\right\}}$$

for any a, b > 0 and $\nu \in [0, 1]$.

Received: May 1, 2019 Accepted: Oct. 14, 2019.

 $^{2000\} Mathematics\ Subject\ Classification.\ 47A63,\ 47A30,\ 15A60,\ 26D15,\ 26D10.$

Key words and phrases. Young's Inequality, Convex functions, Jensen's inequality, Selfadjoint operator, Functions of selfadjoint operators.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

This result was obtained in 1978 by Cartwright and Field [2] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

We observe that, if $a, b \in [\gamma, \Delta] \subset (0, \infty)$, then from (1.2) we have

$$(1.3) \qquad \frac{1}{2\Delta}\nu (1-\nu) (b-a)^2 \le (1-\nu) a + \nu b - a^{1-\nu}b^{\nu} \le \frac{1}{2\gamma}\nu (1-\nu) (b-a)^2$$

for $\nu \in [0, 1]$.

Moreover, since

$$\frac{(b-a)^2}{\max\{a,b\}} = \min\{a,b\} \frac{(b-a)^2}{ab} = \min\{a,b\} \left(\frac{b}{a} + \frac{a}{b} - 2\right)$$

and

$$\frac{\left(b-a\right)^{2}}{\min\left\{a,b\right\}} = \max\left\{a,b\right\} \frac{\left(b-a\right)^{2}}{ab} = \max\left\{a,b\right\} \left(\frac{b}{a} + \frac{a}{b} - 2\right),$$

then from (1.2) we have the following inequality as well

(1.4)
$$\frac{1}{2}\nu (1-\nu) \gamma \left(\frac{b}{a} + \frac{a}{b} - 2\right) \le (1-\nu) a + \nu b - a^{1-\nu} b^{\nu}$$
$$\le \frac{1}{2}\nu (1-\nu) \Delta \left(\frac{b}{a} + \frac{a}{b} - 2\right)$$

for any $a, b \in [\gamma, \Delta] \subset (0, \infty)$ and $\nu \in [0, 1]$.

We recall that *Specht's ratio* is defined by [16]

(1.5)
$$S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln \left(h^{\frac{1}{h-1}}\right)} & \text{if } h \in (0,1) \cup (1,\infty), \\ 1 & \text{if } h = 1. \end{cases}$$

It is well known that $\lim_{h\to 1} S(h) = 1$, $S(h) = S(\frac{1}{h}) > 1$ for h > 0, $h \neq 1$. The function is decreasing on (0,1) and increasing on $(1,\infty)$.

In [17], Tominaga also proved the following additive reverse of Young's inequality

$$(1.6) (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le S\left(\frac{a}{b}\right) L\left(a,b\right)$$

where $a, b > 0, \nu \in [0, 1]$ and L(a, b) is the logarithmic mean, namely

$$L\left(a,b\right) := \left\{ \begin{array}{ll} \frac{b-a}{\ln b - \ln a} & \text{if} \quad a \neq b \\ \\ b & \text{if} \quad a = b. \end{array} \right.$$

If for positive numbers a, b we have $a, b \in [\gamma, \Delta] \subset (0, \infty)$ and $\nu \in [0, 1]$, then by (1.6) we get [17]

$$(1.7) (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le S\left(\frac{\Delta}{\gamma}\right) L\left(1, \frac{\Delta}{\gamma}\right)$$

Kittaneh and Manasrah [10], [11] provided a refinement and an additive reverse for Young inequality as follows:

$$(1.8) r\left(\sqrt{a} - \sqrt{b}\right)^2 \le (1 - \nu) a + \nu b - a^{1-\nu} b^{\nu} \le R\left(\sqrt{a} - \sqrt{b}\right)^2$$

where $a, b > 0, \nu \in [0, 1], r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$. The case $\nu = \frac{1}{2}$ reduces (1.8) to an identity.

If
$$a, b \in [\gamma, \Delta] \subset (0, \infty)$$
, then $\left| \sqrt{a} - \sqrt{b} \right| \leq \sqrt{\Delta} - \sqrt{\gamma}$ and by (1.8) we get

$$(1.9) (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le R \left(\sqrt{\Delta} - \sqrt{\gamma}\right)^{2}.$$

In the recent paper [5] we obtained the following reverses of Young's inequality as well:

$$(1.10) (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le \nu (1-\nu) (a-b) (\ln a - \ln b)$$

where $a, b > 0, \nu \in [0, 1]$.

Observe that for $a, b \in [\gamma, \Delta] \subset (0, \infty)$ we have

$$0 \le (a-b)(\ln a - \ln b) = |a-b| |\ln a - \ln b| \le (\Delta - \gamma)(\ln \Delta - \ln \gamma)$$

and by (1.10) we get

$$(1.11) (1 - \nu) a + \nu b - a^{1-\nu} b^{\nu} \le \nu (1 - \nu) (\Delta - \gamma) (\ln \Delta - \ln \gamma).$$

For any a, b > 0 and $\nu \in [0, 1]$ we have [6]

$$(1.12) \qquad \frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^{2} \min\{a,b\} \le (1-\nu) a + \nu b - a^{1-\nu}b^{\nu}$$

$$\le \frac{1}{2}\nu (1-\nu) (\ln a - \ln b)^{2} \max\{a,b\}$$

This inequality was obtained in the case a < b in [1] as well.

If $a, b \in [\gamma, \Delta] \subset (0, \infty)$, then by (1.12) we get

(1.13)
$$\frac{1}{2}\nu (1 - \nu) \gamma (\ln a - \ln b)^{2} \leq (1 - \nu) a + \nu b - a^{1 - \nu} b^{\nu}$$
$$\leq \frac{1}{2}\nu (1 - \nu) \Delta (\ln a - \ln b)^{2}$$

for any $\nu \in [0,1]$.

If $a, b \in [\gamma, \Delta] \subset (0, \infty)$ and $\nu \in [0, 1]$, then we have [7]

$$(1.14) (1 - \nu) a + \nu b - a^{1-\nu} b^{\nu} \le \max \{ \iota_{\gamma, \Delta} (\nu), \iota_{\gamma, \Delta} (1 - \nu) \}$$

where

(1.15)
$$\iota_{\gamma,\Delta}(\nu) := (1-\nu)\gamma + \nu\Delta - \gamma^{1-\nu}\Delta^{\nu}.$$

We consider the function $f_{\nu}:[0,\infty)\to[0,\infty)$ defined for $\nu\in(0,1)$ by

$$f_{\nu}(x) = 1 - \nu + \nu x - x^{\nu}.$$

For $[k, K] \subset [0, \infty)$ define

(1.16)
$$\Delta_{\nu}(k, K) := \begin{cases} f_{\nu}(k) & \text{if } K < 1, \\ \max \{f_{\nu}(k), f_{\nu}(K)\} & \text{if } k \leq 1 \leq K, \\ f_{\nu}(K) & \text{if } 1 < k \end{cases}$$

and

(1.17)
$$\delta_{\nu}(k, K) := \begin{cases} f_{\nu}(K) & \text{if } K < 1, \\ 0 & \text{if } k \le 1 \le K, \\ f_{\nu}(k) & \text{if } 1 < k. \end{cases}$$

In the recent paper [8] we obtained the following refinement and reverse for the additive Young's inequality:

(1.18)
$$\delta_{\nu}(k,K) a \leq (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \leq \Delta_{\nu}(k,K) a,$$

for positive numbers a, b with $\frac{b}{a} \in [k, K] \subset (0, \infty)$ and $\nu \in [0, 1]$ where $\Delta_{\nu}(k, K)$ and $\delta_{\nu}(k, K)$ are defined by (1.16) and (1.17) respectively.

Now, if $a, b \in [\gamma, \Delta] \subset (0, \infty)$ and $\nu \in [0, 1]$, then $\frac{b}{a} \in \left[\frac{\gamma}{\Delta}, \frac{\Delta}{\gamma}\right]$ and by (1.18) we have

$$(1.19) (1-\nu) a + \nu b - a^{1-\nu} b^{\nu} \le \max \left\{ f_{\nu} \left(\frac{\gamma}{\Delta} \right), f_{\nu} \left(\frac{\Delta}{\gamma} \right) \right\} a,$$

and since

$$f_{\nu}\left(\frac{\gamma}{\Delta}\right) = \frac{(1-\nu)\Delta + \nu\gamma - \gamma^{\nu}\Delta^{1-\nu}}{\Delta}$$

and

$$f_{\nu}\left(\frac{\Delta}{\gamma}\right) = \frac{(1-\nu)\gamma + \nu\Delta - \Delta^{\nu}\gamma^{1-\nu}}{\gamma}$$

then by (1.19) we get

$$(1.20) \qquad (1-\nu) a + \nu b - a^{1-\nu} b^{\nu}$$

$$\leq \max \left\{ \frac{(1-\nu) \Delta + \nu \gamma - \gamma^{\nu} \Delta^{1-\nu}}{\Delta}, \frac{(1-\nu) \gamma + \nu \Delta - \Delta^{\nu} \gamma^{1-\nu}}{\gamma} \right\} a,$$

for any $a, b \in [\gamma, \Delta] \subset (0, \infty)$ and $\nu \in [0, 1]$.

Let $A: H \to H$ a bounded linear operator on the Hilbert space H. The spectrum of A denoted in the following by Sp(A) is defined as

$$Sp(A) := \{ \lambda \in \mathbb{C} | \lambda 1_H - A \text{ is not invertible} \},$$

where 1_H is the identity operator on H.

Let A be a selfadjoint linear operator on a complex Hilbert space $(H; \langle .,. \rangle)$. The Gelfand map establishes a *-isometrically isomorphism Φ between the set C(Sp(A)) of all continuous functions defined on the spectrum of A, denoted Sp(A), an the C^* -algebra $C^*(A)$ generated by A and the identity operator 1_H on H as follows (see for instance [14, p. 3]):

For any $f, g \in C(Sp(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have

- (i) $\Phi(\alpha f + \beta g) = \alpha \Phi(f) + \beta \Phi(g)$;
- (ii) $\Phi(fg) = \Phi(f) \Phi(g)$ and $\Phi(\bar{f}) = \Phi(f)^*$;
- (iii) $\|\Phi(f)\| = \|f\| := \sup_{t \in Sp(A)} |f(t)|;$
- (iv) $\Phi(f_0) = 1_H$ and $\Phi(f_1) = A$, where $f_0(t) = 1$ and $f_1(t) = t$, for $t \in Sp(A)$.

With this notation we define

$$f(A) := \Phi(f)$$
 for all $f \in C(Sp(A))$

and we call it the *continuous functional calculus* for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp(A), then $f(t) \geq 0$ for any $t \in Sp(A)$ implies that $f(A) \geq 0$, i.e. f(A) is a positive operator on H. Moreover, if both f and g are real valued functions on Sp(A) then the following important property holds:

(P)
$$f(t) \ge g(t)$$
 for any $t \in Sp(A)$ implies that $f(A) \ge g(A)$

in the operator order of B(H).

The following result that provides a vector operator version for the Jensen inequality is well known, see for instance [13] or [14, p. 5]:

Theorem 1.1. Let A be a selfadjoint operator on the Hilbert space H and assume that $Sp(A) \subseteq [m, M]$ for some scalars m, M with m < M. If f is a convex function on [m, M], then

$$(1.21) f(\langle Ax, x \rangle) \le \langle f(A)x, x \rangle$$

for each $x \in H$ with ||x|| = 1.

As a special case of Theorem 1.1 we have the $H\"{o}lder$ -McCarthy inequality [12]: Let A be a selfadjoint positive operator on a Hilbert space H, then

- (i) $\langle A^r x, x \rangle \ge \langle Ax, x \rangle^r$ for all r > 1 and $x \in H$ with ||x|| = 1;
- (ii) $\langle A^r x, x \rangle \leq \langle Ax, x \rangle^r$ for all 0 < r < 1 and $x \in H$ with ||x|| = 1;
- (iii) If A is invertible, then $\langle A^r x, x \rangle \geq \langle Ax, x \rangle^r$ for all r < 0 and $x \in H$ with ||x|| = 1.

In [3] (see also [4, p. 16]) we obtained the following additive reverse of (1.21):

Theorem 1.2. Let I be an interval and $f: I \to \mathbb{R}$ be a convex and differentiable function on \mathring{I} (the interior of I) whose derivative f' is continuous on \mathring{I} . If A is a selfadjoint operators on the Hilbert space H with $Sp(A) \subset \mathring{I}$, then

$$(1.22) (0 \le) \langle f(A)x, x \rangle - f(\langle Ax, x \rangle) \le \langle f'(A)Ax, x \rangle - \langle Ax, x \rangle \langle f'(A)x, x \rangle$$

$$for \ any \ x \in H \ with \ ||x|| = 1.$$

In the recent paper [9] we established the following multiplicative inequalities:

Theorem 1.3. Let $f:[m,M] \to [0,\infty)$ be a continuous function and assume that

$$(1.23) \qquad 0 < \gamma = \min_{t \in [m,M]} f(t) < \max_{t \in [m,M]} f(t) = \Delta < \infty.$$

Then for any A, a selfadjoint operator with

$$(1.24) m1_H \le A \le M1_H,$$

we have the inequality

$$(1.25) \qquad \frac{(1-\nu) f(\langle Ax, x \rangle) + \nu \langle f(A) x, x \rangle}{\langle f^{\nu}(A) x, x \rangle f^{1-\nu} (\langle Ax, x \rangle)} \le \exp\left[\frac{1}{2}\nu (1-\nu) \left(\frac{\Delta}{\gamma} - 1\right)^{2}\right]$$

for any $x \in H$ with ||x|| = 1, where $\nu \in [0, 1]$.

Moreover, if f is convex on [m, M], then for any $\nu \in [0, 1]$,

(1.26)
$$\frac{f^{\nu}(\langle Ax, x \rangle)}{\langle f^{\nu}(A) x, x \rangle} \le \exp\left[\frac{1}{2}\nu(1 - \nu)\left(\frac{\Delta}{\gamma} - 1\right)^{2}\right]$$

while, if f is concave on [m, M], then

$$(1.27) \qquad \frac{\langle f(A)x,x\rangle}{f(\langle Ax,x\rangle)} \le \exp\left[\frac{1}{2}\nu\left(1-\nu\right)\left(\frac{\Delta}{\gamma}-1\right)^{2}\right] \frac{\langle f^{\nu}(A)x,x\rangle}{f^{\nu}(\langle Ax,x\rangle)}.$$

For some meaningful examples of functions satisfying the above inequalities (1.26)-(1.27), see [9]. For related results, see [15].

Motivated by the above results, in this paper we obtain several additive refinements and reverses of Jensen's inequality for positive convex/concave functions of selfadjoint operators in Hilbert spaces. Natural applications for power functions are provided.

2. Upper Bounds

By using the definition of $\iota_{\gamma,\Delta}(\nu)$ from (1.15), we define for $\gamma, \Delta \in (0,\infty)$ and $\nu \in [0,1]$, the function

(2.1)
$$\varphi(\gamma, \Delta, \nu)$$

$$:= \max \{ \iota_{\gamma, \Delta}(\nu), \iota_{\gamma, \Delta}(1 - \nu) \}$$

$$= \max \{ (1 - \nu) \gamma + \nu \Delta - \gamma^{1 - \nu} \Delta^{\nu}, \nu \gamma + (1 - \nu) \Delta - \gamma^{\nu} \Delta^{1 - \nu} \}.$$

We observe that

$$\varphi(\gamma, \Delta, \nu) = \varphi(\Delta, \gamma, \nu) = \varphi(\gamma, \Delta, 1 - \nu)$$

for γ , $\Delta \in (0, \infty)$ and $\nu \in [0, 1]$.

Using the inequality (1.3) for $(a,b)=(\gamma,\Delta)$ and $(a,b)=(\Delta,\gamma)$ we get

(2.2)
$$\varphi(\gamma, \Delta, \nu) \le \frac{1}{2\gamma} \nu (1 - \nu) (\Delta - \gamma)^2$$

for any $0 < \gamma < \Delta$ and $\nu \in [0,1]$.

From Tominaga's inequality (1.6) we have

$$\varphi\left(\gamma, \Delta, \nu\right) \le S\left(\frac{\Delta}{\gamma}\right) L\left(\gamma, \Delta\right)$$

while from (1.7) we have

$$\varphi\left(\gamma, \Delta, \nu\right) \leq S\left(\frac{\Delta}{\gamma}\right) L\left(1, \frac{\Delta}{\gamma}\right) = \frac{1}{\gamma} S\left(\frac{\Delta}{\gamma}\right) L\left(\gamma, \Delta\right)$$

giving that

(2.3)
$$\varphi(\gamma, \Delta, \nu) \leq S\left(\frac{\Delta}{\gamma}\right) L(\gamma, \Delta) \begin{cases} 1 & \text{if } \gamma \leq 1, \\ \frac{1}{\gamma} & \text{if } \gamma > 1, \end{cases}$$

for any $0 < \gamma < \Delta$ and $\nu \in [0,1]$.

From (1.9) we have

(2.4)
$$\varphi(\gamma, \Delta, \nu) \le \max\{\nu, 1 - \nu\} \left(\sqrt{\Delta} - \sqrt{\gamma}\right)^2$$

for any $0 < \gamma < \Delta$ and $\nu \in [0, 1]$, while from (1.10) we have

(2.5)
$$\varphi(\gamma, \Delta, \nu) \le \nu (1 - \nu) (\Delta - \gamma) (\ln \Delta - \ln \gamma)$$

for any $0 < \gamma < \Delta$ and $\nu \in [0, 1]$.

From (1.13) we also have

(2.6)
$$\varphi(\gamma, \Delta, \nu) \le \frac{1}{2} \nu (1 - \nu) \Delta (\ln \Delta - \ln \gamma)^2$$

for any $0 < \gamma < \Delta$ and $\nu \in [0, 1]$.

Therefore, by the inequality (1.14), we can state that for any $a, b \in [\gamma, \Delta] \subset (0, \infty)$ (with $\gamma < \Delta$) we have the following reverse of Young's inequality

$$(2.7) (1 - \nu) a + \nu b - a^{1-\nu} b^{\nu} \le \varphi (\gamma, \Delta, \nu) \le \Phi (\gamma, \Delta, \nu)$$

for any $\nu \in [0,1]$, where, as pointed out above, the upper bound $\Phi(\gamma, \Delta, \nu)$ can be one of the right hand side of the inequalities (2.2)-(2.6), namely

$$(2.8) \qquad \Phi\left(\gamma, \Delta, \nu\right) := \\ \frac{1}{2\gamma} \nu \left(1 - \nu\right) \left(\Delta - \gamma\right)^{2}, \ S\left(\frac{\Delta}{\gamma}\right) L\left(\gamma, \Delta\right) \begin{cases} 1 & \text{if } \gamma \le 1, \\ \frac{1}{\gamma} & \text{if } \gamma > 1, \end{cases} \\ \max\left\{\nu, 1 - \nu\right\} \left(\sqrt{\Delta} - \sqrt{\gamma}\right)^{2}, \ \nu\left(1 - \nu\right) \left(\Delta - \gamma\right) \left(\ln \Delta - \ln \gamma\right), \\ \frac{1}{2} \nu \left(1 - \nu\right) \Delta \left(\ln \Delta - \ln \gamma\right)^{2}, \end{cases}$$

for any $0 < \gamma < \Delta$ and $\nu \in [0, 1]$.

Theorem 2.1. Let $f:[m,M] \to [0,\infty)$ be a continuous function and assume that it satisfies the condition (1.23). Then for any A, a selfadjoint operator with the property (1.24), we have the inequality

$$(2.9) 0 \le (1 - \nu) f(\langle Ax, x \rangle) + \nu \langle f(A) x, x \rangle - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$
$$\le \varphi(\gamma, \Delta, \nu) \le \Phi(\gamma, \Delta, \nu)$$

for any $x \in H$ with ||x|| = 1.

Moreover, if f is convex on [m, M], then

$$(2.10) f^{1-\nu}(\langle Ax, x \rangle) \left[f^{\nu}(\langle Ax, x \rangle) - \langle f^{\nu}(A)x, x \rangle \right] \le \varphi(\gamma, \Delta, \nu) \le \Phi(\gamma, \Delta, \nu)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

Proof. Let $t \in [m, M]$ and $x \in H$ with ||x|| = 1. Then f(t), $f(\langle Ax, x \rangle) \in [\gamma, \Delta]$ and by (2.7) we have

$$(2.11) \ (1-\nu) f(\langle Ax, x \rangle) + \nu f(t) - f^{1-\nu} (\langle Ax, x \rangle) f^{\nu}(t) \le \varphi(\gamma, \Delta, \nu) \le \Phi(\gamma, \Delta, \nu)$$

for any $t \in [m, M]$, $\nu \in [0, 1]$ and $x \in H$ with ||x|| = 1.

If we use the functional calculus for the operator A with $m1_H \leq A \leq M1_H$, then by (2.11) we get

$$(2.12) \qquad (1 - \nu) f(\langle Ax, x \rangle) 1_H + \nu f(A) - f^{1-\nu} (\langle Ax, x \rangle) f^{\nu}(A)$$

$$\leq \varphi(\gamma, \Delta, \nu) 1_H \leq \Phi(\gamma, \Delta, \nu) 1_H$$

for any $\nu \in [0, 1]$ and $x \in H$ with ||x|| = 1.

If we take in (2.12) the inner product over $y \in H$ with ||y|| = 1, then we get

$$(2.13) \qquad (1 - \nu) f(\langle Ax, x \rangle) + \nu \langle f(A) y, y \rangle - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) y, y \rangle$$

$$\leq \varphi(\gamma, \Delta, \nu) \leq \Phi(\gamma, \Delta, \nu)$$

for any $\nu \in [0,1]$, which by taking y=x, implies the desired inequality (2.9).

If f is convex on [m, M], then by Jensen's inequality we have $f(\langle Ax, x \rangle) \le \langle f(A)x, x \rangle$, for $x \in H$ with ||x|| = 1, then

$$f(\langle Ax, x \rangle) - f^{1-\nu}(\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

$$\leq (1 - \nu) f(\langle Ax, x \rangle) + \nu \langle f(A) x, x \rangle - f^{1-\nu}(\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

$$\leq \varphi(\gamma, \Delta, \nu) \leq \Phi(\gamma, \Delta, \nu),$$

which implies the desired result (2.10).

Remark 2.1. If for some $\nu \in (0,1)$ the function f^{ν} is concave, then $\langle f^{\nu}(A) x, x \rangle \leq f^{\nu}(\langle Ax, x \rangle)$ for any $x \in H$ with ||x|| = 1. Therefore by (2.10) we have the meaningful

inequality

$$(2.14) \quad 0 \le f^{1-\nu} \left(\langle Ax, x \rangle \right) \left[f^{\nu} \left(\langle Ax, x \rangle \right) - \langle f^{\nu} \left(A \rangle x, x \rangle \right] \le \varphi \left(\gamma, \Delta, \nu \right) \le \Phi \left(\gamma, \Delta, \nu \right)$$

for any $x \in H$ with ||x|| = 1.

If we consider the convex function $f(t) = t^r$, $r \ge 1$ and take $\nu \in (0,1)$ with $r\nu < 1$, then the function f^{ν} is concave and by (2.14) we get for any $x \in H$ with ||x|| = 1 that

(2.15)
$$0 \le \langle Ax, x \rangle^{(1-\nu)r} \left[\langle Ax, x \rangle^{\nu r} - \langle A^{\nu r} x, x \rangle \right] \le \varphi \left(m^r, M^r, \nu \right)$$
$$\le \Phi \left(m^r, M^r, \nu \right),$$

where $m1_H \leq A \leq M1_H$ with 0 < m < M. Since $\langle Ax, x \rangle^{(1-\nu)r} \geq m^{(1-\nu)r}$ for any $x \in H$ with ||x|| = 1, then by (2.15) we get the following additive reverse of the Hölder-McCarthy inequality

$$(2.16) \qquad (0 \leq) \langle Ax, x \rangle^{\nu r} - \langle A^{\nu r} x, x \rangle \leq \frac{1}{m^{(1-\nu)r}} \varphi\left(m^r, M^r, \nu\right)$$
$$\leq \frac{1}{m^{(1-\nu)r}} \Phi\left(m^r, M^r, \nu\right)$$

for any $x \in H$ with ||x|| = 1.

3. Some Inequalities Via Cartwright-Field Result

By making use of the Cartwright-Field celebrated inequalities we can state the following result:

Theorem 3.1. Let $f:[m,M] \to [0,\infty)$ be a continuous function and assume that it satisfies the condition (1.23). Then for any A, a selfadjoint operator with the property

(1.24), we have the inequality

$$(3.1) \qquad (0 \leq) \frac{1}{2\Delta} \nu \left(1 - \nu\right) \left(\left\langle f\left(A\right)x, x\right\rangle - f\left(\left\langle Ax, x\right\rangle\right)\right)^{2}$$

$$\leq \frac{1}{2\Delta} \nu \left(1 - \nu\right) \left(\left\langle f^{2}\left(A\right)x, x\right\rangle - 2f\left(\left\langle Ax, x\right\rangle\right) \left\langle f\left(A\right)x, x\right\rangle + f^{2}\left(\left\langle Ax, x\right\rangle\right)\right)$$

$$\leq (1 - \nu) f\left(\left\langle Ax, x\right\rangle\right) + \nu \left\langle f\left(A\right)x, x\right\rangle - f^{1-\nu} \left(\left\langle Ax, x\right\rangle\right) \left\langle f^{\nu}\left(A\right)x, x\right\rangle$$

$$\leq \frac{1}{2\gamma} \nu \left(1 - \nu\right) \left(\left\langle f^{2}\left(A\right)x, x\right\rangle - 2f\left(\left\langle Ax, x\right\rangle\right) \left\langle f\left(A\right)x, x\right\rangle + f^{2}\left(\left\langle Ax, x\right\rangle\right)\right)$$

for any $x \in H$ with ||x|| = 1.

Moreover, if f is convex on [m, M], then

$$(3.2) \qquad (0 \le) \frac{1}{2\Delta} \nu (1 - \nu) \left(\langle f(A) x, x \rangle - f(\langle Ax, x \rangle) \right)^{2}$$
$$\le \langle f(A) x, x \rangle - f^{1-\nu} \left(\langle Ax, x \rangle \right) \langle f^{\nu}(A) x, x \rangle$$

and

$$(3.3) f^{1-\nu}\left(\langle Ax, x\rangle\right) \left[f^{\nu}\left(\langle Ax, x\rangle\right) - \langle f^{\nu}\left(A\right)x, x\rangle\right]$$

$$\leq \frac{1}{2\gamma}\nu\left(1-\nu\right)\left(\langle f^{2}\left(A\right)x, x\rangle - 2f\left(\langle Ax, x\rangle\right)\langle f\left(A\right)x, x\rangle + f^{2}\left(\langle Ax, x\rangle\right)\right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

If f is concave on [m, M], then

$$(3.4) \qquad (0 \le) \frac{1}{2\Delta} \nu (1 - \nu) \left(f \left(\langle Ax, x \rangle \right) - \langle f (A) x, x \rangle \right)^{2}$$

$$\le f^{1-\nu} \left(\langle Ax, x \rangle \right) \left[f^{\nu} \left(\langle Ax, x \rangle \right) - \langle f^{\nu} (A) x, x \rangle \right]$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

Proof. Let $t \in [m, M]$ and $x \in H$ with ||x|| = 1. Then f(t), $f(\langle Ax, x \rangle) \in [\gamma, \Delta]$ and by (1.3) we have

$$(3.5) 0 \leq \frac{1}{2\Delta} \nu \left(1 - \nu\right) \left(f^{2}\left(t\right) - 2f\left(\langle Ax, x \rangle\right) f\left(t\right) + f^{2}\left(\langle Ax, x \rangle\right)\right)$$

$$\leq \left(1 - \nu\right) f\left(\langle Ax, x \rangle\right) + \nu f\left(t\right) - f^{1-\nu}\left(\langle Ax, x \rangle\right) f^{\nu}\left(t\right)$$

$$\leq \frac{1}{2\gamma} \nu \left(1 - \nu\right) \left(f^{2}\left(t\right) - 2f\left(\langle Ax, x \rangle\right) f\left(t\right) + f^{2}\left(\langle Ax, x \rangle\right)\right)$$

for any $t \in [m, M]$ and $x \in H$ with ||x|| = 1.

If we use the functional calculus for the operator A with $m1_H \leq A \leq M1_H$, then by (3.5) we get

$$(3.6) 0 \leq \frac{1}{2\Delta} \nu \left(1 - \nu\right) \left(f^{2}\left(A\right) - 2f\left(\langle Ax, x \rangle\right) f\left(A\right) + f^{2}\left(\langle Ax, x \rangle\right) 1_{H}\right)$$

$$\leq \left(1 - \nu\right) f\left(\langle Ax, x \rangle\right) 1_{H} + \nu f\left(A\right) - f^{1-\nu} \left(\langle Ax, x \rangle\right) f^{\nu}\left(A\right)$$

$$\leq \frac{1}{2\gamma} \nu \left(1 - \nu\right) \left(f^{2}\left(A\right) - 2f\left(\langle Ax, x \rangle\right) f\left(A\right) + f^{2}\left(\langle Ax, x \rangle\right) 1_{H}\right)$$

for any $x \in H$ with ||x|| = 1.

If we take the inner product in (3.6) over $y \in H$ with ||y|| = 1, then we get

$$(3.7) 0 \leq \frac{1}{2\Delta} \nu \left(1 - \nu\right) \left(\left\langle f^{2}\left(A\right)y, y\right\rangle - 2f\left(\left\langle Ax, x\right\rangle\right) \left\langle f\left(A\right)y, y\right\rangle + f^{2}\left(\left\langle Ax, x\right\rangle\right)\right)$$

$$\leq \left(1 - \nu\right) f\left(\left\langle Ax, x\right\rangle\right) + \nu \left\langle f\left(A\right)y, y\right\rangle - f^{1-\nu}\left(\left\langle Ax, x\right\rangle\right) \left\langle f^{\nu}\left(A\right)y, y\right\rangle$$

$$\leq \frac{1}{2\gamma} \nu \left(1 - \nu\right) \left(\left\langle f^{2}\left(A\right)y, y\right\rangle - 2f\left(\left\langle Ax, x\right\rangle\right) \left\langle f\left(A\right)y, y\right\rangle + f^{2}\left(\left\langle Ax, x\right\rangle\right)\right),$$

which by taking y = x, produces the second, third and fourth inequalities in (3.1). By Hölder-McCarthy inequality we have

$$\langle f^2(A) x, x \rangle > \langle f(A) x, x \rangle^2$$

for any $x \in H$ with ||x|| = 1, which implies that

$$\langle f^{2}(A) x, x \rangle - 2f(\langle Ax, x \rangle) \langle f(A) x, x \rangle + f^{2}(\langle Ax, x \rangle)$$

$$\geq \langle f(A) x, x \rangle^{2} - 2f(\langle Ax, x \rangle) \langle f(A) x, x \rangle + f^{2}(\langle Ax, x \rangle)$$

$$= (\langle f(A) x, x \rangle - f(\langle Ax, x \rangle))^{2}$$

proving the first inequality in (3.1).

If f is convex, then by Jensen's inequality we have $\langle f(A)x, x \rangle \geq f(\langle Ax, x \rangle)$ for any $x \in H$ with ||x|| = 1. Using the first two inequalities in (3.1) we get

$$(3.8) \qquad (0 \leq) \frac{1}{2\Delta} \nu (1 - \nu) \left(\langle f(A) x, x \rangle - f(\langle Ax, x \rangle) \right)^{2}$$

$$\leq \frac{1}{2\Delta} \nu (1 - \nu) \left(\langle f^{2}(A) x, x \rangle - 2f(\langle Ax, x \rangle) \langle f(A) x, x \rangle + f^{2}(\langle Ax, x \rangle) \right)$$

$$\leq (1 - \nu) f(\langle Ax, x \rangle) + \nu \langle f(A) x, x \rangle - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

$$\leq \langle f(A) x, x \rangle - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

proving the inequality (3.2).

From the fourth inequality in (3.1) we have

$$(3.9) f^{1-\nu}\left(\langle Ax, x\rangle\right) \left(f^{\nu}\left(\langle Ax, x\rangle\right) - \langle f^{\nu}\left(A\right)x, x\rangle\right)$$

$$= f\left(\langle Ax, x\rangle\right) - f^{1-\nu}\left(\langle Ax, x\rangle\right) \langle f^{\nu}\left(A\right)x, x\rangle$$

$$\leq (1-\nu) f\left(\langle Ax, x\rangle\right) + \nu \langle f\left(A\right)x, x\rangle - f^{1-\nu}\left(\langle Ax, x\rangle\right) \langle f^{\nu}\left(A\right)x, x\rangle$$

$$\leq \frac{1}{2\gamma} \nu \left(1-\nu\right) \left(\langle f^{2}\left(A\right)x, x\rangle - 2f\left(\langle Ax, x\rangle\right) \langle f\left(A\right)x, x\rangle + f^{2}\left(\langle Ax, x\rangle\right)\right)$$

for any $x \in H$ with ||x|| = 1, proving the inequality (3.3).

If f is concave on [m, M], then by the first two inequalities in (3.1) we get

$$(3.10) \qquad (0 \leq) \frac{1}{2\Delta} \nu (1 - \nu) \left(\langle f(A) x, x \rangle - f(\langle Ax, x \rangle) \right)^{2}$$

$$\leq \frac{1}{2\Delta} \nu (1 - \nu) \left(\langle f^{2}(A) x, x \rangle - 2f(\langle Ax, x \rangle) \langle f(A) x, x \rangle + f^{2}(\langle Ax, x \rangle) \right)$$

$$\leq (1 - \nu) f(\langle Ax, x \rangle) + \nu \langle f(A) x, x \rangle - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

$$\leq f(\langle Ax, x \rangle) - f^{1-\nu} (\langle Ax, x \rangle) \langle f^{\nu}(A) x, x \rangle$$

$$= f^{1-\nu} (\langle Ax, x \rangle) [f^{\nu} (\langle Ax, x \rangle) - \langle f^{\nu}(A) x, x \rangle]$$

for any $x \in H$ with ||x|| = 1, proving the inequality (3.4).

Remark 3.1. The function $f(t) = t^r$, $r \ge 1$ is convex on \mathbb{R}_+ . Then for any $\nu \in [0, 1]$ and a selfadjoint operator $m1_H \le A \le M1_H$ with 0 < m < M we have from (3.2) that

(3.11)
$$(0 \le) \frac{1}{2M^r} \nu (1 - \nu) \left(\langle A^r x, x \rangle - \langle Ax, x \rangle^r \right)^2$$
$$\le \langle A^r x, x \rangle - \langle Ax, x \rangle^{(1-\nu)r} \langle A^{\nu r} x, x \rangle$$

for any $x \in H$ with ||x|| = 1.

If we take in (3.11) $\nu = \frac{1}{2}$, then we get the inequality

$$(3.12) (0 \le) \frac{1}{8M^r} \left(\langle A^r x, x \rangle - \langle Ax, x \rangle^r \right)^2 \le \langle A^r x, x \rangle - \langle Ax, x \rangle^{r/2} \left\langle A^{r/2} x, x \right\rangle$$

for any $x \in H$ with ||x|| = 1.

If we take r = 2 in (3.11), then we get

$$(3.13) \qquad (0 \le) \frac{1}{2M^2} \nu (1 - \nu) \left(\left\langle A^2 x, x \right\rangle - \left\langle A x, x \right\rangle^2 \right)^2$$

$$\le \left\langle A^2 x, x \right\rangle - \left\langle A x, x \right\rangle^{2(1-\nu)} \left\langle A^{2\nu} x, x \right\rangle$$

for any $x \in H$ with ||x|| = 1.

The function $f(t) = t^q$, $q \in (0,1)$ is concave on \mathbb{R}_+ . Then for any $\nu \in [0,1]$ and a selfadjoint operator $m1_H \le A \le M1_H$ with 0 < m < M we have from (3.4)

$$(3.14) \qquad (0 \leq) \frac{1}{2M^q} \nu (1 - \nu) \left(\langle Ax, x \rangle^q - \langle A^q x, x \rangle \right)^2$$

$$\leq \langle Ax, x \rangle^{(1-\nu)q} \left[\langle Ax, x \rangle^{\nu q} - \langle A^{\nu q} x, x \rangle \right]$$

for any $x \in H$ with ||x|| = 1.

Since $\langle Ax, x \rangle^{(1-\nu)q} \leq M^{(1-\nu)q}$ for any $x \in H$ with ||x|| = 1, then by (3.14) we have

$$(3.15) \qquad (0 \le) \frac{1}{2M^{(2-\nu)q}} \nu \left(1 - \nu\right) \left(\langle Ax, x \rangle^q - \langle A^q x, x \rangle\right)^2 \le \langle Ax, x \rangle^{\nu q} - \langle A^{\nu q} x, x \rangle$$

for any $x \in H$ with ||x|| = 1.

If we use the second Cartwright-Field inequality that holds for any $a, b \in [\gamma, \Delta]$ and $\nu \in [0, 1]$, namely

$$\frac{1}{2}\nu\left(1-\nu\right)\gamma\left(\frac{b}{a}+\frac{a}{b}-2\right) \le \left(1-\nu\right)a+\nu b-a^{1-\nu}b^{\nu}$$

$$\le \frac{1}{2}\nu\left(1-\nu\right)\Delta\left(\frac{b}{a}+\frac{a}{b}-2\right)$$

we can state the following result as well:

Theorem 3.2. With the assumptions of Theorem 3.1 we have

$$(3.16) \quad \frac{1}{2}\gamma\nu\left(1-\nu\right)$$

$$\times \left(\left\langle f^{1/2}\left(A\right)x,x\right\rangle f^{-1/2}\left(\left\langle Ax,x\right\rangle\right) - \left\langle f^{-1/2}\left(A\right)x,x\right\rangle f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)^{2}$$

$$\leq \frac{1}{2}\gamma\nu\left(1-\nu\right)\left(\left\langle f\left(A\right)x,x\right\rangle f^{-1}\left(\left\langle Ax,x\right\rangle\right) + f\left(\left\langle Ax,x\right\rangle\right)\left\langle f^{-1}\left(A\right)x,x\right\rangle - 2\right)$$

$$\leq (1-\nu)f\left(\left\langle Ax,x\right\rangle\right) + \nu\left\langle f\left(A\right)x,x\right\rangle - f^{1-\nu}\left(\left\langle Ax,x\right\rangle\right)\left\langle f^{\nu}\left(A\right)x,x\right\rangle$$

$$\leq \frac{1}{2}\Delta\nu\left(1-\nu\right)\left(\left\langle f\left(A\right)x,x\right\rangle f^{-1}\left(\left\langle Ax,x\right\rangle\right) + f\left(\left\langle Ax,x\right\rangle\right)\left\langle f^{-1}\left(A\right)x,x\right\rangle - 2\right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

Moreover, if f is convex on [m, M], then

$$(3.17) \qquad (0 \leq) \frac{1}{2} \gamma \nu (1 - \nu)$$

$$\times \left(\left\langle f^{1/2} (A) x, x \right\rangle f^{-1/2} (\left\langle Ax, x \right\rangle) - \left\langle f^{-1/2} (A) x, x \right\rangle f^{1/2} (\left\langle Ax, x \right\rangle) \right)^{2}$$

$$\leq \left\langle f (A) x, x \right\rangle - f^{1-\nu} (\left\langle Ax, x \right\rangle) \left\langle f^{\nu} (A) x, x \right\rangle$$

and

$$(3.18) \quad f^{1-\nu}\left(\langle Ax, x\rangle\right) \left[f^{\nu}\left(\langle Ax, x\rangle\right) - \langle f^{\nu}\left(A\right)x, x\rangle\right]$$

$$\leq \frac{1}{2}\Delta\nu \left(1-\nu\right) \left(\langle f\left(A\right)x, x\rangle\right) f^{-1}\left(\langle Ax, x\rangle\right) + f\left(\langle Ax, x\rangle\right) \left\langle f^{-1}\left(A\right)x, x\right\rangle - 2\right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1. If f is concave on [m,M], then

$$(3.19) \qquad (0 \leq) \frac{1}{2} \gamma \nu (1 - \nu)$$

$$\times \left(\left\langle f^{1/2} (A) x, x \right\rangle f^{-1/2} (\left\langle Ax, x \right\rangle) - \left\langle f^{-1/2} (A) x, x \right\rangle f^{1/2} (\left\langle Ax, x \right\rangle) \right)^{2}$$

$$\leq f^{1-\nu} \left(\left\langle Ax, x \right\rangle \right) \left[f^{\nu} \left(\left\langle Ax, x \right\rangle \right) - \left\langle f^{\nu} (A) x, x \right\rangle \right]$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

The proof follows along the lines of the proof in Theorem 3.1 and we omit the details.

4. Related Results

By the use of the Kittaneh-Manasrah inequality (1.8) we have:

Theorem 4.1. With the assumptions of Theorem 3.1 we have

$$(4.1) r\left(\left\langle f^{1/2}\left(A\right)x,x\right\rangle - f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)^{2}$$

$$\leq r\left(\left\langle f\left(A\right)x,x\right\rangle + f\left(\left\langle Ax,x\right\rangle\right) - 2\left\langle f^{1/2}\left(A\right)x,x\right\rangle f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)$$

$$\leq (1-\nu)f\left(\left\langle Ax,x\right\rangle\right) + \nu\left\langle f\left(A\right)x,x\right\rangle - f^{1-\nu}\left(\left\langle Ax,x\right\rangle\right)\left\langle f^{\nu}\left(A\right)x,x\right\rangle$$

$$\leq R\left(\left\langle f\left(A\right)x,x\right\rangle + f\left(\left\langle Ax,x\right\rangle\right) - 2\left\langle f^{1/2}\left(A\right)x,x\right\rangle f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1, where $r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

Moreover, if f is convex on [m, M], then

$$(4.2) r\left(\left\langle f^{1/2}\left(A\right)x,x\right\rangle - f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)^{2}$$

$$\leq \left\langle f\left(A\right)x,x\right\rangle - f^{1-\nu}\left(\left\langle Ax,x\right\rangle\right)\left\langle f^{\nu}\left(A\right)x,x\right\rangle$$

and

$$(4.3) f^{1-\nu}(\langle Ax, x \rangle) \left[f^{\nu}(\langle Ax, x \rangle) - \langle f^{\nu}(A)x, x \rangle \right]$$

$$\leq R \left(\langle f(A)x, x \rangle + f(\langle Ax, x \rangle) - 2 \langle f^{1/2}(A)x, x \rangle f^{1/2}(\langle Ax, x \rangle) \right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

If f is concave on [m, M], then

$$(4.4) r\left(\left\langle f^{1/2}\left(A\right)x,x\right\rangle - f^{1/2}\left(\left\langle Ax,x\right\rangle\right)\right)^{2}$$

$$\leq f^{1-\nu}\left(\left\langle Ax,x\right\rangle\right)\left[f^{\nu}\left(\left\langle Ax,x\right\rangle\right) - \left\langle f^{\nu}\left(A\right)x,x\right\rangle\right]$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

The function $f(t) = t^p$, $p \ge 1$ is convex on \mathbb{R}_+ . Then for any $\nu \in [0,1]$ and a positive selfadjoint operator A we have from (4.2) that

$$(4.5) r\left(\langle A^{p/2}x, x\rangle - \langle Ax, x\rangle^{p/2}\right)^2 \le \langle A^p x, x\rangle - \langle Ax, x\rangle^{(1-\nu)p} \langle A^{\nu p}x, x\rangle$$

for any $x \in H$ with ||x|| = 1, where $r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

If we take in (4.5) $\nu = \frac{1}{2}$, then we get the inequality

$$(4.6) \qquad \frac{1}{2} \left(\left\langle A^{p/2} x, x \right\rangle - \left\langle A x, x \right\rangle^{p/2} \right)^2 \le \left\langle A^p x, x \right\rangle - \left\langle A x, x \right\rangle^{p/2} \left\langle A^{p/2} x, x \right\rangle$$

for any $x \in H$ with ||x|| = 1.

If we take p = 1 in (4.5), then we get

$$(4.7) r\left(\langle Ax, x\rangle^{1/2} - \langle A^{1/2}x, x\rangle\right)^{2} \le \langle Ax, x\rangle - \langle Ax, x\rangle^{1-\nu} \langle A^{\nu}x, x\rangle$$

for any $x \in H$ with ||x|| = 1.

If $A \leq M1_H$, then $\langle Ax, x \rangle^{1-\nu} \leq M^{1-\nu}$ for $\nu \in (0, 1)$ and $x \in H$ with ||x|| = 1, and since

$$\langle Ax, x \rangle - \langle Ax, x \rangle^{1-\nu} \langle A^{\nu}x, x \rangle = \langle Ax, x \rangle^{1-\nu} (\langle Ax, x \rangle^{\nu} - \langle A^{\nu}x, x \rangle)$$

then by (4.7) we get

$$(4.8) \frac{r}{M^{1-\nu}} \left(\langle Ax, x \rangle^{1/2} - \langle A^{1/2}x, x \rangle \right)^2 \le \langle Ax, x \rangle^{\nu} - \langle A^{\nu}x, x \rangle$$

for any $x \in H$ with ||x|| = 1.

Finally, if we use the logarithmic inequality (1.13) we can state the following result as well:

Theorem 4.2. With the assumptions of Theorem 3.1 we have

$$(4.9) \qquad \frac{1}{2}\nu\left(1-\nu\right)\gamma\left(\ln\left(\langle f\left(A\right)x,x\rangle\right)-\langle\ln f\left(A\right)x,x\rangle\right)^{2}$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)\gamma$$

$$\times\left(\langle\ln^{2}f\left(A\right)x,x\rangle-2\langle\ln f\left(A\right)x,x\rangle\ln\left(\langle f\left(A\right)x,x\rangle\right)+\ln^{2}\left(\langle f\left(A\right)x,x\rangle\right)\right)$$

$$\leq (1-\nu)f\left(\langle Ax,x\rangle\right)+\nu\langle f\left(A\right)x,x\rangle-f^{1-\nu}\left(\langle Ax,x\rangle\right)\langle f^{\nu}\left(A\right)x,x\rangle$$

$$\leq \frac{1}{2}\nu\left(1-\nu\right)\Delta$$

$$\times\left(\langle\ln^{2}f\left(A\right)x,x\rangle-2\langle\ln f\left(A\right)x,x\rangle\ln\left(\langle f\left(A\right)x,x\rangle\right)+\ln^{2}\left(\langle f\left(A\right)x,x\rangle\right)\right)$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1, where $r = \min\{1 - \nu, \nu\}$ and $R = \max\{1 - \nu, \nu\}$.

Moreover, if f is convex on [m, M], then

(4.10)
$$\frac{1}{2}\nu (1 - \nu) \gamma \left(\ln \left(\langle f(A) x, x \rangle\right) - \langle \ln f(A) x, x \rangle\right)^{2}$$
$$\leq \langle f(A) x, x \rangle - f^{1-\nu} \left(\langle Ax, x \rangle\right) \langle f^{\nu}(A) x, x \rangle$$

and

$$(4.11) f^{1-\nu} (\langle Ax, x \rangle) [f^{\nu} (\langle Ax, x \rangle) - \langle f^{\nu} (A) x, x \rangle]$$

$$\leq \frac{1}{2} \nu (1 - \nu) \Delta$$

$$\times (\langle \ln^2 f(A) x, x \rangle - 2 \langle \ln f(A) x, x \rangle \ln (\langle f(A) x, x \rangle) + \ln^2 (\langle f(A) x, x \rangle))$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

If f is concave on [m, M], then

(4.12)
$$\frac{1}{2}\nu (1 - \nu) \gamma \left(\ln \left(\langle f(A) x, x \rangle\right) - \langle \ln f(A) x, x \rangle\right)^{2}$$
$$\leq f^{1-\nu} \left(\langle Ax, x \rangle\right) \left[f^{\nu} \left(\langle Ax, x \rangle\right) - \langle f^{\nu} (A) x, x \rangle\right]$$

for any $\nu \in [0,1]$ and for any $x \in H$ with ||x|| = 1.

Acknowledgement

The author would like to thank the anonymous referees for their valuable suggestions that have been implemented in the final version of the manuscript.

References

- [1] H. Alzer, C. M. da Fonseca and A. Kovačec, Young-type inequalities and their matrix analogues, Linear and Multilinear Algebra, 63 (2015), Issue 3, 622-635.
- [2] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, *Proc. Amer. Math. Soc.*, **71** (1978), 36-38.

- [3] S. S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. *J. Inequal. Appl.* **2010**, Art. ID 496821, 15 pp.
- [4] S. S. Dragomir, Operator Inequalities of the Jensen, Čebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6.
- [5] S. S. Dragomir, A note on Young's inequality, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, to appear, see http://link.springer.com/article/10.1007/s13398-016-0300-8. Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 126. [http://rgmia.org/papers/v18/v18a126.pdf].
- [6] S. S. Dragomir, A note on new refinements and reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 131. [http://rgmia.org/papers/v18/v18a131.pdf].
- [7] S. S. Dragomir, Two new reverses of Young's inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 158. [http://rgmia.org/papers/v18/v18a158.pdf].
- [8] S. S. Dragomir, Additive refinements and reverses of Young's operator inequality with applications, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. A 165. [http://rgmia.org/papers/v18/v18a165.pdf].
- [9] S. S. Dragomir, On Jensen's multiplicative inequality for positive convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 19 (2016), Art.
- [10] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [11] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Linear Multilinear Algebra, 59 (2011), 1031-1037.
- [12] C. A. McCarthy, c_p , Israel J. Math., 5(1967), 249-271.
- [13] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
- [14] J. Pečarić, T. Furuta, J. Mićić Hot and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
- [15] M. Sababheh, Convexity and matrix means, Linear Algebra and its Applications, Volume 506, 1 October 2016, Pages 588-602.
- [16] W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), pp. 91-98.
- [17] M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 583-588.

- Mathematics, College of Engineering and Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

-School of Computer Science and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

 $Email\ address : \verb"sever.dragomir@vu.edu.au"$