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ON JENSEN’S ADDITIVE INEQUALITY FOR POSITIVE CONVEX
FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT
SPACES

S. S. DRAGOMIR

ABSTRACT. In this paper we obtain some additive refinements and reverses of
Jensen’s inequality for positive convex/concave functions of selfadjoint operators
in Hilbert spaces. Natural applications for power and exponential functions are

provided.

1. INTRODUCTION

The famous Young inequality for scalars says that if a, b > 0 and v € [0, 1], then
(1.1) a7y < (1—v)a+uvb

with equality if and only if @ = b. The inequality (1.2) is also called v-weighted
arithmetic-geometric mean inequality.
We have the following inequality that provides a refinement and a reverse for the

celebrated Young’s inequality

IN

2
M<(1—V)a+yb—al_”b”

(12) %V (1-v) max {a, b} ~

for any a, b > 0 and v € [0,1].
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This result was obtained in 1978 by Cartwright and Field [2] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

We observe that, if a, b € [y, A] C (0,00), then from (1.2) we have

(1.3) é%ya—uﬂwﬂﬁgq1—ma+m—al%%g%yu—yﬂh—@2
for v € [0,1].

Moreover, since

(b—a)? , (b—a) b a
—— = = byl -—+—-—2
max {a, b} min {a, b} 7 min {a, b} " + 2
and
(b—a)? (b—a)? b a
— = = bpl—+—-—2
i . 0] max {a, b} " max {a, b} -t ;
then from (1.2) we have the following inequality as well
1 b
(1.4) 51/(1—1/)7(——1—%—2)§(1—V)a+yb—a1_”b”
a

1 b a
< _ 22
_21/(1 I/)A(a+b 2>
for any a, b € [y,A] C (0,00) and v € [0, 1].
We recall that Specht’s ratio is defined by [16]

( 1
—B— < if h e (0,1) U (1,00),
eln(hh—l)

(1.5) S (h) =

lifth=1.

\
It is well known that limj, 1S (h) =1, S(h) = S (3) > 1 for h > 0, h # 1. The
function is decreasing on (0, 1) and increasing on (1, 00).

In [17], Tominaga also proved the following additive reverse of Young’s inequality

(1.6) (1-v)at+vhb—a ¥ <S (%) L{(a,b)
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where a, b > 0, v € [0,1] and L (a,b) is the logarithmic mean, namely

an:?na 1f a # b
L(a,b):=
b if a=0b.

If for positive numbers a, b we have a,b € [y, A] C (0,00) and v € [0, 1], then by
(1.6) we get [17]
A A
(1.7) (1—v)a+vb—a "V <S8 (—> L(l,—>
Y Y
Kittaneh and Manasrah [10], [11] provided a refinement and an additive reverse

for Young inequality as follows:
2 2
(1.8) 7”(\/_—\/1;> S(l—y)a—l—yb—al’”b”gR(\/_—\/[;)

where a, b > 0, v € [0,1],7 =min {1 — v,v} and R = max {1 — v,v}. The case v =
reduces (1.8) to an identity.

If a, b€ [y,A] C (0,00), then ’\/5— \/l;’ < VA — /7 and by (1.8) we get

2
(1.9) (1-v)a+uvb—a"b" SR(@—W) :

In the recent paper [5] we obtained the following reverses of Young’s inequality as
well:
(1.10) (1—v)a+vb—a " <v(l—v)(a—0b)(Ina—Inb)

where a, b > 0, v € [0, 1].

Observe that for a, b € [y, A] C (0,00) we have
0<(a—b)(lna—1Inb)=|a—0b||lna—Inb| < (A—7v)(InA —In~)
and by (1.10) we get

(1.11) 1—v)a+vb—a""V <v(1l-v)(A—9)(InA—Inv).
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For any a, b > 0 and v € [0, 1] we have [6]

1
(1.12) o (1 -v)(Ina —Inb)*min{a,b} < (1 —v)a+vb—a "t

< v (1 —v)(Ina—Inb)*max{a,b}

1
2
This inequality was obtained in the case a < b in [1] as well.

If a, b € [y,A] C (0,00), then by (1.12) we get

1
(1.13) §y(1 — )y (Ina—Inb)*> < (1 —v)a+vb—a' "V

IN

1
51/(1 —v)A(lna —Inbd)?
for any v € [0,1].

If a, b € [y,A] C (0,00) and v € [0, 1], then we have [7]

(1.14) (1-v)a+vb— a' 7’ < max {tya (V) 9.0 (1 — 1)}
where
(1.15) o (V) = (1 =)y +vA -y VA",

We consider the function f, : [0,00) — [0, 00) defined for v € (0,1) by
fo@)=1—v+ve—2"
For [k, K] C [0, 00) define

£, (k) if K <1,

(1.16) A, (k,K) =< max{f, (k),f (K)} if k<1<K,

£ (K) if 1<k
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and

(£ (K) if K <1,

(1.17) o (k,K) =14 0ifk<1<K,

| fo(B) if 1 <k
In the recent paper [8] we obtained the following refinement and reverse for the
additive Young’s inequality:

(1.18) 6, (k, K)a<(1—v)a+vb—ad " <A, (k,K)a,

for positive numbers a, b with £ € [k, K] C (0, 00) and v € [0, 1] where A, (k, K) and
d, (k, K) are defined by (1.16) and (1.17) respectively.
Now, if a, b € [y,A] C (0,00) and v € [0,1], then & € [%, %] and by (1.18) we

have
(1.19) (1= v)a+vb—al b < max{fy (2).1. (é) } .
Y
and since
_ _AVALY
1, (&) _ (1 I/)A+Al/7 YA
and

F (é) (I =v)y+vA— Ay
“\ g
then by (1.19) we get

(1.20) (1—v)a+uvb—a"V”
_ AV ALl-v - . val—v
Smax{(l I/)A+AV7 YA 7(1 v)y+vA — AVy }a,
g

for any a, b € [y, A] C (0,00) and v € [0, 1].
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Let A: H — H a bounded linear operator on the Hilbert space H. The spectrum
of A denoted in the following by Sp (A) is defined as

Sp(A) :={X € C|A\1y — A is not invertible} ,

where 1p is the identity operator on H.

Let A be a selfadjoint linear operator on a complex Hilbert space (H;(.,.)). The
Gelfand map establishes a *-isometrically isomorphism ® between the set C' (Sp (A))
of all continuous functions defined on the spectrum of A, denoted Sp(A), an the
C*-algebra C* (A) generated by A and the identity operator 15 on H as follows (see
for instance [14, p. 3]):

For any f,g € C (Sp(A)) and any «, 5 € C we have

() ®(af+B8g) = ad(f)+ 50 (g);

(i) @ (fg) =& ()@ (g) and & (F) =D (f)';

(i) (| () = 71 = supespiay [ ()]

(iv) ®(fo) =1y and @ (f;) = A, where fo(t) =1 and f, (t) =1, for t € Sp(A).

With this notation we define

f(A):=®(f) forall feC(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp (A),
then f(t) > 0 for any ¢t € Sp(A) implies that f(A) > 0, i.e. f(A) is a positive
operator on H. Moreover, if both f and g are real valued functions on Sp (A) then

the following important property holds:
(P) f({t)>g(t) forany te€ Sp(A) implies that f(A)>g(A)

in the operator order of B (H).
The following result that provides a vector operator version for the Jensen inequal-

ity is well known, see for instance [13] or [14, p. 5]:
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Theorem 1.1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) C [m, M] for some scalars m, M with m < M. If f is a convez function
on [m, M|, then

(1.21) f((Az,x)) < (f (A) z, )

for each x € H with ||z|| = 1.

As a special case of Theorem 1.1 we have the Holder-McCarthy inequality [12]: Let
A be a selfadjoint positive operator on a Hilbert space H, then

(i) (A"x,x) > (Az,z)" for all r > 1 and x € H with ||z|| = 1;

(i) (A"z,z) < (Az,z)" forall 0 <r <1 and x € H with ||z| = 1;

(iii) If A is invertible, then (A"z,z) > (Ax,x)" for all r < 0 and = € H with
]l = 1.

In [3] (see also [4, p. 16]) we obtained the following additive reverse of (1.21):

Theorem 1.2. Let [ be an interval and f : I — R be a conver and differentiable
function on I (the interior of I) whose derivative f' is continuous on [.IfAisa

selfadjoint operators on the Hilbert space H with Sp (A) C I, then
(122)  (02)(f(A)w,a) — f ((Az,2)) < (f (A) Az, ) — (Az, @) (f' (A) 2, )
for any x € H with ||z| = 1.

In the recent paper [9] we established the following multiplicative inequalities:

Theorem 1.3. Let f: [m, M| — [0,00) be a continuous function and assume that

1.23 0<~y= i t) < t) = A < 0.
(1.23) v té[%%f() ten[f}%]f() 00

Then for any A, a selfadjoint operator with
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we have the inequality

(- f ) svf ey [1 AN
(1:29) P Az o (A O [2 -0 (3 1>]

for any x € H with ||z|| = 1, where v € [0, 1].

Moreover, if f is convex on [m, M|, then for any v € [0,1],

£ ({Az, z)) 1 A\
(1.26) 7 (A) 1) < exp [51/(1 — V) (; - 1> ]

while, if f is concave on [m, M|, then

Ay 1 AN (A )
20 A p[z -0 (3 1)]fv<<Ax,x>>'

For some meaningful examples of functions satisfying the above inequalities (1.26)-
(1.27), see [9]. For related results, see [15].

Motivated by the above results, in this paper we obtain several additive refinements
and reverses of Jensen’s inequality for positive convex/concave functions of selfadjoint

operators in Hilbert spaces. Natural applications for power functions are provided.

2. UPPER BOUNDS
By using the definition of ¢, A (v) from (1.15), we define for v, A € (0,00) and

v € [0, 1], the function
21 eAY)

=max {t, A (V),tya (1 — 1)}

=max {(1 —v)y+vA —7y""AY vy + (1 —v) A —"A7}.
We observe that

90(77Aa’/) :¢(A777V) = 90(77A71 - V)

for v, A € (0,00) and v € [0,1].
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Using the inequality (1.3) for (a,b) = (v, A) and (a,b) = (A, ) we get

(2.2) o (1A ) < %uu — 1) (A=)

for any 0 <y < A and v € [0, 1].

From Tominaga’s inequality (1.6) we have

whﬁkﬂés(é>LmA)

while from (1.7) we have

(v, Av)< S (é) L (1,3) ~Ls (é) L(y,A)

v gl

giving that

1 ify <1,
(2.3) wh%LWSS(%)LWA)
% if v > 1,
for any 0 <y < A and v € [0,1].
From (1.9) we have
(2.4) o (7,4, v) <max{y,1 —v} <\/Z - ﬁ)z

for any 0 <y < A and v € [0, 1], while from (1.10) we have
(2.5) (1, Av)<v(1l-v)(A=7)(InA—1Iny)

for any 0 <y < A and v € [0, 1].

From (1.13) we also have

(2.6) o (v, Av) < %1/ (1—v)A(InA —1Iny)®

for any 0 <y < A and v € [0,1].

609
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Therefore, by the inequality (1.14), we can state that for any a, b € [y, A] C (0, 00)

(with v < A) we have the following reverse of Young’s inequality
(2.7) (I=v)a+vb—a ™0 < (v, A,v) <O (7,A,v)

for any v € [0, 1], where, as pointed out above, the upper bound ® (v, A, v) can be

one of the right hand side of the inequalities (2.2)-(2.6), namely

28)  O(nAw) =
1 ify <1,
1 9 A
—v(l—v)(A—x ,S(—)L v, A
(=B =2" $(2)16.4)
% if v > 1,

max {11 - v} (VA= /7)), v(1 =) (A=) (nA~Tnm),
%I/(l —v)A(InA —1nn)?,

for any 0 <y < A and v € [0,1].

Theorem 2.1. Let f: [m, M] — [0,00) be a continuous function and assume that it
satisfies the condition (1.23). Then for any A, a selfadjoint operator with the property
(1.24), we have the inequality

(2.9) 0<(1=v)f({Az,z)) +v(f(A)z,z) = [ (Az,2)) (" (A) 7, )

<e(nAY) <@ (v, A )

for any x € H with ||z| = 1.

Moreover, if f is convex on [m, M], then
(210) 17 ((Aw,2) [ ((Az,2)) = (fY (A) 2, 2)] <o (1, A,0) <D (7,4,v)

for any v € [0,1] and for any x € H with ||x| = 1.
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Proof. Let t € [m, M| and = € H with ||z|| = 1. Then f(t), f ((Az,x)) € [y, A] and
by (2.7) we have

(2.11) (1 =) f((Az,2)) +vf (1) = [ ((Az,2)) [ (1) S ¢ (1, A,0) S @ (7,A,v)

for any ¢t € [m, M], v € [0,1] and x € H with x| = 1.
If we use the functional calculus for the operator A with mly < A < M1y, then
by (2.11) we get
(2.12) (1 =) f ({(Az,2)) 1z +vf (A) = [ ((Az,2)) 7 (A)
Se(1,A V)1l <O (v, A v) 1y

for any v € [0,1] and x € H with |z|| = 1.

If we take in (2.12) the inner product over y € H with [|y|| = 1, then we get

(2.13) (1= v) f ((Az,2)) + v (f (A) y,y) — [ ((Az,2)) (f* (A) y. 9)

<A v) < (1,A )

for any v € [0, 1], which by taking y = z, implies the desired inequality (2.9).
If f is convex on [m,M], then by Jensen’s inequality we have f({(Az,z)) <
(f (A)z,z), for x € H with ||z|| = 1, then
f((Az,2)) = 17" ((Az, 2)) (f* (A) 2, 2)
< (1 -v) f((Az,2)) +v(f (A) z,2) — f17 ({Az,2)) {f* (A) 2, 2)

<e(nAY) <@(1,Av),
which implies the desired result (2.10). O

Remark 2.1. If for some v € (0, 1) the function f" is concave, then (f* (A)z,z) <
¥ ((Ax, z)) for any x € H with ||z|| = 1. Therefore by (2.10) we have the meaningful
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imequality
(2.14)  0< f17" ((Az,2)) [f* ((Az,2)) = (f" (A) z,2)] < 0 (7,4,0) < (7, 4,v)

for any x € H with ||z| = 1.

If we consider the convex function f (t) =t", r > 1 and take v € (0,1) with rv < 1,
then the function f" is concave and by (2.14) we get for any x € H with ||z| = 1
that

(2.15) 0 < (Az, z) " [(Az, )" — (A2, 2)] < @ (m", M",v)

S @ (mr7 Mr) I/) Y

where mly < A < M1y with 0 < m < M. Since <Aa;,x)(17”)r > m=)" for any
x € H with ||z|]| = 1, then by (2.15) we get the following additive reverse of the

Hélder-McCarthy inequality

1
(2.16) (0 <) (Az,z)"" — (A"z,x) < o (m",M",v)

1

< a2, M y)

for any x € H with ||z| = 1.

3. SOME INEQUALITIES VIA CARTWRIGHT-FIELD RESULT

By making use of the Cartwright-Field celebrated inequalities we can state the

following result:

Theorem 3.1. Let f : [m, M] — [0,00) be a continuous function and assume that it

satisfies the condition (1.23). Then for any A, a selfadjoint operator with the property
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(1.24), we have the inequality

(B1) (09 =v(1—v) (f (A)x.2) - f ((Az,2)))

2A
< (1= v) f ((Az,2)) + v (f (A) 2, 2) = [ ((Az, 2)) (A 2, 2)

< %V 1—v) ({f*(A) z,z) — 2f ((Az,2)) (f (A) z,2) + f* ((Az,z)))

for any x € H with ||z| = 1.

Moreover, if f is convex on [m, M], then

(3:2) (0<) i’/ (1=v) ({f (A z,2) - [ ({Az,2)))"

< (f(A)z,2) — [ ((Az, 2)) (/" (A) 2, 2)

and

(3.3) [ ({Az,2) [fY ((Az,2)) = (f" (A) 2, 2)]

< 5o (1=0) (£ ()2 = 2 ({Av,a)) (] (A)2,2) + 2 (s, )

for any v € [0,1] and for any x € H with ||x| = 1.

If f is concave on [m, M], then

(34) (0<) 5 (1= ) (F (A, ) — (F (4)2,2))°

< 77 (A, 2) [f” ((Az, ) — (7 (A) 2, 2)]

for any v € [0,1] and for any x € H with ||x| = 1.
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Proof. Let t € [m, M| and x € H with ||z|| = 1. Then f(t), f ((Az,x)) € [y, A] and
by (1.3) we have

1

(3.5) 0 < oxv(L=v) (f* (1) = 2f ((Az,2)) [ (1) + * ((Az, 2)))

(L= v) f ((Az,2)) +vf (t) — 177 ((Az,2)) £ (1)

< %uu — V) (F2(1) = 2f ((Az,2)) £ () + 2 ((Az,2)))

IN

for any t € [m, M] and z € H with ||z| = 1.
If we use the functional calculus for the operator A with mly < A < M1y, then
by (3.5) we get

(36)  0< o (L) (2 (A) = 27 (Ar,2)) £ (A) + (A, )) Ln)
< (1= v) f ({Aw,2)) Lg + vf (A) = F1 ({Az,2)) f7 (A)

< 50 (1=0) (£ (4) =2 ((Av.a)) £ (A) + F* ((Aw,)) 1)

for any x € H with ||z|| = 1.

If we take the inner product in (3.6) over y € H with [|y|| = 1, then we get

37 0< iV(l —v) ((f* (A y.y) — 2f (Az,2)) (f (A) y,9) + * ({Az, 2)))
< (=) f({(Az,2)) +v(f (A yy) — 77 (Az,2)) (f" (A y,y)

= % (1=v) (2 (A) y,y) — 2f (A, ) ([ (A) y,y) + [* ((Az,2)))

which by taking y = z, produces the second, third and fourth inequalities in (3.1).
By Holder-McCarthy inequality we have

(P (A)a,z) > (f (A)z,2)%,
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for any x € H with ||z|| = 1, which implies that

(2 (A)z,z) —2f ((Az,2)) (f (A) 2, 2) + [* ((Az, 7))
> (f(A)z,2)” = 2f ((Az,2)) (f (A) z,2) + f? ((Az, )
= ((f (A z,2) — f ((Az, 2)))"

proving the first inequality in (3.1).

If f is convex, then by Jensen’s inequality we have (f (A)z,x) > f((Az,x)) for
any € H with [|z|| = 1. Using the first two inequalities in (3.1) we get

(38)  (0=5)5xv(A-v) (f(A)z2) — f ((Az, z)))?

proving the inequality (3.2).

From the fourth inequality in (3.1) we have

(3.9)  F7(Ara)) (f (Arx)) — (f* (A) 2, a))
— [ ({Aa,2)) = 1= ((Az.)) (f* (A) 2, 2)
< (1—v) F (A, 2) + v (f (A) 2,2) — 1= ((Ax,2)) (f* (A) 2, 2)
< 5o (1=0) (P ()2 = 2 ({An,a)) (f (A)2,2) + £ (As, )

for any x € H with ||z|| = 1, proving the inequality (3.3).
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If f is concave on [m, M], then by the first two inequalities in (3.1) we get

(3.10)  (0<) iv (1 =v) ({f (A) z,2) — [ ({Az,2)))"

< iv (1= v) ((f* (A) 2, z) — 2f ((Az,2)) (f (A) 2,2) + f* ((Az, 2)))
<(1-v)f({Az,z)) +v(f (A)z,2) — [ (Az, 2)) (" (A) 2, )
< f ((Az,2)) — [ ((Az, 2)) (" (4) 2, 2)

=177 ((Az, 2)) [f* ((Az, 2)) — (f" (A) 2, )]
for any € H with ||z|| = 1, proving the inequality (3.4). O

Remark 3.1. The function f (t) =t", r > 1 is convex on R,. Then for any v € [0,1]
and a selfadjoint operator mly < A < M1y with 0 < m < M we have from (3.2)
that

1
2Mr
< (A"z,z) — (Az, z) (A, x)

(3.11) (0 <) v(1—v) (A2, z) — (Az,2)")’

for any x € H with ||z| = 1.

If we take in (3.11) v = 3, then we get the inequality

(3.12) (0 <) ﬁ (ATz, z) — (Az, 2)")* < (A"z,z) — (Az, )" (A", 2)

for any x € H with ||z| = 1.
If we take r =2 in (8.11), then we get

(3.13) (0<) =~=v (1 —v) ((A%,2) — (Az, 2)%)"

2M?
< (A’z,z) — (Az, z)*) (A2, )

for any x € H with ||z| = 1.
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The function f(t) =1t%, q € (0,1) is concave on Ry. Then for any v € [0,1] and a
selfadjoint operator mly < A < M1y with 0 < m < M we have from (3.4)

(3.14) (0 <) v(1—v) ((Az,2)? — (A%, z))’

2Ma
< (Az, 2) U [( Az, 1) — (A2, 1))

for any x € H with ||z| = 1.
Since (Az, z)™T < MO for any & € H with ||z|| = 1, then by (3.14) we have

(315)  (0< 1—v) ((Az,2)? — (A%, z))* < (Az,2)"? — (A%, )

) o’ (

for any x € H with ||z| = 1.

If we use the second Cartwright-Field inequality that holds for any a, b € [y, A]

and v € [0, 1], namely
1 b
5u(1—u)’y(—+%—2) <(1-v)a+uvb—a"b

y(l—u)A(g+%—2)

IN
DO | —

we can state the following result as well:

Theorem 3.2. With the assumptions of Theorem 3.1 we have

(3.16) %w (1-v)
X (S (A) ) £ (A 2)) = (572 (A) ) £ (A, )’
< 5w (L= 2) (f ()2, 2) 7 ((Az,2)) + ] ((Az, ) (7 (A)2.2) ~2)
< (1=0) £ (A, 2) + v {(F (A) 2,0) = £ ((Az,2)) ( (A) 2, )
< 580 (1) (U (4) 2, 2) 7 (A, ) + f (A, 2)) (7 (4),2) = 2)

for any v € [0,1] and for any x € H with ||x| = 1.
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Moreover, if f is convex on [m, M], then

(3.17) (0 <) %’yy (1-v)
X (S (A)w,m) f772 (A, ) = (72 (A) 2, ) 172 (A, 2)))
< (f(A)z,2) = [ ((Az, 2)) (/" (A) 2, 2)

(3.18) 17 ((Az,2)) [f” ((Az,2)) — (f" (A) z,2)]
Av (1 —v) ({f (A z,2) [ (Az,2)) + f ((Az,2)) (f " (A) 2, 2) — 2)

for any v € [0,1] and for any x € H with ||x| = 1.

If f is concave on [m, M], then

(319)  (0<) %w (1—)
x ((f2 (A)a, ) 72 ((Az, ) — (f72 (A) 2, 2) f12 (A, 2)))
< U (A @) [ ((Az, 2) = (7 (A) 2, 2)]

for any v € [0,1] and for any x € H with ||z| = 1.

The proof follows along the lines of the proof in Theorem 3.1 and we omit the

details.

4. RELATED RESULTS

By the use of the Kittaneh-Manasrah inequality (1.8) we have:
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Theorem 4.1. With the assumptions of Theorem 3.1 we have

(4.1) r (Y2 (A) o, z) — 172 ((Ax, 2)))°

<r ((f(A)z,z) + f ((Az,z)) = 2(f/? (A) 2, ) f1/? ((Az, z)))

< (L—v) f((Az, ) + v (f (A) 2 2) = 177 ((Az,2)) (f* (A) 2, 2)

< R({f(A)x,z) + f ((Az,z)) — 2 (f* (A) 2, 2) f/* ((Az, 7))
for any v € [0,1] and for any x € H with ||z|| = 1, where r = min {1 — v, v} and
R=max{l —v,v}.

Moreover, if f is convex on [m, M], then
(4.2) r (Y2 (A)z, ) — 72 ((Ax, 2)))°
<

(f (A)z,2) = [ ((Az, 2)) (f* (A) 2, 7)

(43) 7 ((Az, @) [ ((Az,2)) = (7 (A) 2, 2)]
< R((f(A) z,2) + f (Az,2)) = 2(f? (A) 2, 2) f1/* ((Az, 2)))
for any v € [0,1] and for any x € H with ||z|| = 1.
If f is concave on [m, M], then

2

(4.4) r (<f1/2 (A) m,x> — f1/2 (<Am,x)))
< [ ((Az @) [fY ((Az, 2) = (f7 (A) 2, 2)]

for any v € [0,1] and for any x € H with ||x| = 1.

The function f(t) = t?, p > 1 is convex on R;. Then for any v € [0,1] and a

positive selfadjoint operator A we have from (4.2) that

(4.5) r <<Ap/2x,x> — (Aa:,x)p/2>2 < APz, x) — (Az, ) TP (AP 1)
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for any € H with ||z|| = 1, where r = min {1 — v,v} and R = max {1l — v,v}.

If we take in (4.5) v = 3, then we get the inequality
1 2
(4.6) 3 <<Ap/2x,x> — <A:L',at>p/2> < (APz, 1) — (Az, z)P/ (APz, z)

for any x € H with ||z|| = 1.

If we take p =1 in (4.5), then we get
2
(4.7) r <<Ax,x)1/2 — (AY?g, x>> < (Az,z) — (Az,z)" " (A%z, z)
for any € H with ||z|| = 1.
If A< Mly, then (Az,z)" ™" < M for v € (0,1) and = € H with ||z| = 1, and
since
(Az,z) — (Az,2) 7" (A%z, ) = (Az,2) 7" ((Az,z)" — (A¥z, z))

then by (4.7) we get

.
M-

(4.8) ((Ax, z)/? — <A1/2x, x>>2 < (Az,z)" — (A’x, 1)

for any = € H with ||z|| = 1.
Finally, if we use the logarithmic inequality (1.13) we can state the following result

as well:

Theorem 4.2. With the assumptions of Theorem 3.1 we have

(19)  Zr(1= )y (n({(f (A)z,2)) — {In f (A) 2, 2))°
< v(l-v)y
X (0 f (A) ) =2 f (A) 2,2 I (F (4) 2,0) + 0 ((F (4) 2,2)))

IN

(1—v) f((Az,z)) + v (f (A) z,2) — [ ((Az,2)) (f* (A) 2, )
< %1/ (1-v)A

x (W f (A) ) = 2{In f (A), ) I ((f (A),2) + 0 ({F (A) ,2)))
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for any v € [0,1] and for any x € H with ||z|| = 1, where r = min {1 — v, v} and
R =max{l—v,v}.
Moreover, if f is convex on [m, M], then
1
(4.10) Sv (L= v)y (n ({ (A)w.2)) — (0 f (A)z.2))°

< (f (A)z,z) — 177 ((Az, 2)) (f" (A) z,2)

and

(4.11) 7 ((Az,2)) [f" ((Az, 2)) = (" (A) 2, 2)]

<-v(l-v)A

1
2
x ((In® f(A)z,z) —2(In f (A) z,z) In ((f (A) 2, 2)) + In* (({f (A) 2, z)))
for any v € [0,1] and for any x € H with ||z| = 1.
If f is concave on [m, M], then
(112 S (1= ) (n ((f (A) 7)) — (i f (4)7,2))°
< 7 ((Az, ) [ ((Aw, 7)) = (7 (A) 2, 2)]

for any v € [0,1] and for any x € H with ||z| = 1.
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