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OPTIMAL PARAMETER SELECTION FOR A MACHINE REPAIR SYSTEM
WITH SERVERS VACATION AND CONTROLLING F-POLICY

UMESH KUMARI (1) AND D. C. SHARMA (2)

Abstract. In this article, we proposed an algorithm for determining optimal parameters

of the queueing system that allows server vacation under �-policy. The queueing system

parameters such as the threshold of the �-policy and the system service rate are designed

by minimize the cost associated with the queuing system. We first propose an efficient

algorithm to determine steady-state probabilities of the system, and second, a nonlinear

integer programming problem is formulated to determine optimal system parameters. The

nonlinear integer programming problem is then relaxed to a nonlinear optimization and is

solved using Quasi-Newton’s method. Subsequently, various system performance measures

are studied for different system parameters.

1. Introduction

Now-a-days queueing modeling approaches for machine repair systems with various

threshold policies have found applications in technological and industrial domains such as

communication, production and manufacturing/machining systems. The queueing model

comprises of an arrival process that introduces entities in the queue and the service that

is provided to these entities. A controlled arrival policy restricts the queue that decreases

the waiting time of customers and avoids over burden on the service. Therefore, in real

life scenario, controlled arrival policies are very cost effective. A queueing system with

controlled service (#-policy with vacation [1]) that enables the server to go on vacation
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once the system customers drops below # and resumes its services as the customers in the

system exceeds # . On the contrary, an arrival controlled queueing system is first proposed

by [2] that allows the arrival of customers unless the system reaches its full capacity and

don’t resumes arrival before the customer strength in the system falls below a threshold

level. In addition, [2] establishes an interrelationship between the queueing systems with

�-policy and #-policy. Various researchers have contributed to queueing systems with

�-policy such as [3] proposes an optimal policy of an "/�/1/ queueing system that

considers a �-policy with exponential start-up time, and [4] employs recursive techniques

for obtaining steady state probabilities of a �/"/1/ queueing system with �-policy

having an exponential start-up time.

Recently, an optimal management that includes system performance measures and sen-

sitivity analysis of a finite capacity "/"/1 queueing system with � Policy is explored in

[5] where unsatisfied customers may demand another service besides the essential service.

To generalized further, [6] employs matrix analytic method to determine the steady state

probabilities of a � policy"/"/1/ queueing systemwith working vacation. The optimal

system capacity  and the queue length � for such queueing systems are determined by em-

ploying direct search techniques and optimization approaches like Quasi-Newton method.

Another � policy for a finite capacity for a "/�2/1 queueing system is investigated in [7]

that determines the optimal capacity  by optimizing system performance measures. In the

sequel, various queueing models have been explored such as the arrival control is discussed

in [8].

A rich literature exists on machine repair problems with server vacation [9]. Specifically,

"/"/1 machine repair problem with vacation is explored in [10] , and [11] examines the

reliability characteristics of queueing system with < operating units and B spare with one

repairman is removable and other repairman works according to #-policy. Moreover, [12]

analysed the #-policy machine repair system with spare and reneging. [13] investigates

the machine repair problem with partial server vacation policy in which first server always
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available for giving the service to failed machine while second server works according

#-policy. A optimal value of # is obtained for a defined performance objective and its

sensitivity analysis is also studied. A brief overview of research literature on vacation

queueing systems my be found in [14].

[15] considers the queueing system that comprises of multi servers having distinct vaca-

tion policies with a finite source. [16] studies a deteriorating system that contains servers

with multiple vacation and employs supplementary variable technique to find reliability

indexes. [17] considers a batch arrival queueing system having unreliable server with mul-

tiple vacation, and [18] studies a machine repair system with spares having two repairmen

with partial server vacation policy such that the first repairman is invariably available for

servicing the failed units and the second repairman is allowed to go on vacation if failed

units fall below # . [19] presented a multiple vacation machine repair problem in which

profit optimization is done by employing particle swarm optimization technique to find an

optimal number of standby and operating machines.

[20] first studies queueing system with working vacation where the servers, instead of

stopping its service, reducing its service rate, and it is further generalized in [21] to a

�1/"/1 queuing system with multiple working vacation as well as to a "/�/1 model

in [22]. Subsequently, [23] introduces a new policy which is vacation interruption with

working vacation where a server can terminate the vacation once certain no. of customer

accumulated in the system during vacation period and uses matrix geometric method to

calculated the system steady state. [24] uses a direct search method and Newton’s method

for the performance optimization in queuing systems with working vacation. Recently,

[25] employ matrix method to find steady state probabilities of the � policy queueing

system with working vacation. A detailed survey on the queueing system with various

arrival and service processes considering different vacation models is available in [26]. A

more realistic approach in which [27] investigates a fault tolerant system having multiple

components with a single unreliable server and determine steady state probability using
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successive over relaxation method. More recently, the matrix analytic method for finding

performance measures of the queueing system with single working vacation is explored

in [28]. Some of the recent work on queueing systems with vacation may be found in

[29, 30, 31].

A vast amount of literature has been devoted to mathematical study of queueing systems

with various vacation policies. However, there is no substantial study available on vacation

queueing models with arrival control policy in which the server follows the single vacation

policy. In this article, we have developed a queueing system with randomized arrival

control policy with single vacation policy of the server. We propose an efficient algorithm

to determine steady-state probabilities of the system, and a nonlinear integer programming

problem is proposed to determine optimal system parameters for a given performance

objective. The nonlinear integer programming problem is then relaxed to a nonlinear

optimization and is solved using Quasi-Newton’s method. In addition, various system

performance measures are studied for different system parameters.

2. Model Description

Let us consider M/M/1/K queueing system with �-policy in which the system has "

operating machines and ( warm standby machines. Let us assume that the arrival of failed

units follow the Poisson process with parameter _ and the service of failed units having

FCFS discipline follow the exponential distribution with parameter `. The system has a

capacity of  number of units and the server provides its services according to �-policy

i.e., when the number of customers in the system reaches its capacity  , the arrival of failed

units is suspended until a certain number of failed unit have been served so that the queue

length drops to a predetermined threshold � (0 ≤ � ≤  − 1). Once the queue length

drops below �, the server allows the entry of failed units to the system with a startup time

which is exponentially distributed with parameter V. It is further considered that when an

operating machine fails, it is immediately replaced by a spare machine (if any available)
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with negligible switch over time, and the replaced machine failure rate is identical to those

of an operating machine. Furthermore, we introduce a server vacation scheme in which

when there is no failed machine in the system, the server goes on a vacation having an

exponential vacation rate with parameter [, and whenever any failed unit arrives in the

system, server returns from vacation with rate \ and starts the service.

In order to determine the steady state probabilities of the governing model with expo-

nentially distributed life time and repair time of the operating/standby units and the server

respectively, we construct the Chapman-Kolmogrov equations by using the birth and death

process. Let - (C) denote the number of failed machines in the system at time C and

� (C) B


0, server is busy and failed machines are not allowed

1, server is busy and failed machines are allowed

2, server is on vacation and failed machines are allowed

represents the state of the system at time C. Then,

{(- (C), � (C)) | C ≥ 0}

represents a continuous-time Markov chain (CTMC) with the state space

( B {(=, 9) ∪ ( , 0) : = = 0, 1, 2, . . . ,  − 1 and 9 = 0, 1, 2}.

Moreover,

%=, 9 (C) B %[- (C) = =, � (C) = 9] for = = 0, 1, 2, . . . ,  − 1 and 9 = 0, 1, 2,

denotes the time-dependent state probability when the CTMC is in state {=, 9} at time C,

and the state dependent failure rates are given by

_= B


"_ + (( − =)U, if 0 ≤ = < (

(" + ( − =)_3 , if ( ≤ = <  

0, otherwise
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where _3 is the degraded mode failure rate and U is the failure rate of the standby machines.

After establishing all necessary notions, we are now in a position to define steady state

equations for the queueing system described in Figure 1.

2.1. Steady state equations. The steady state model of the queueing system, see Figure

1, is derived by balancing the in-flow and the out-flow rates of birth and death processes,

and is given by

0, 0 1, 0 2, 0 � − 1, 0 �, 0 � + 1, 0  − 1, 0  , 0

0, 1 1, 1 2, 1 � − 1, 1 �, 1 � + 1, 1  − 1, 1

0, 2 1, 2 2, 2 � − 1, 2 �, 2 � + 1, 2  − 1, 2

`````

V V V V V
````

_�_�−1_1_0

_ −1

_�_�−1_1_0

[ \ \ \ \ \ \

Figure 1. Queueing system
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� = 0



`%1,0 = V%0,0

`%=+1,0 = (` + V)%=,0; 1 ≤ = ≤ �

%=+1,0 = %=,0; � + 1 ≤ = ≤  − 1

_ −1% −1,1 = `% ,0

(2.1a)

� = 1



`%1,1 + V%0,0 = (_0 + [)%0,1

_=−1%=−1,1 + `%=+1,1 + V%=,0 + \%=,2 = (_= + `)%=,1; 1 ≤ = ≤ �

_=−1%=−1,1 + `%=+1,1 + \%=,2 = (_= + `)%=,1; � + 1 ≤ = ≤  − 2

_ −2% −2,1 + \% −1,2 = (_ −1 + `)% −1,1

(2.1b)

� = 2


[%0,1 = _0%0,2

_=%=,2 = (\ + _=+1)%=+1,2 1 ≤ = ≤  − 3

_ −2% −2,2 = \% −1,2

(2.1c)

normalizing condition:

 ∑
==0

%=,0 +
2∑
9=1

 −1∑
==0

%=, 9 = 1.

(2.1d)

It is worth noting that the algebraic system (2.1) is linear in probabilities %=,0 for = = 0, . . .  ,

and %=, 9 , for = = 0, . . .  − 1 and 9 = 1, 2. In general, algorithms for solving linear systems

have cubic computational complexity with the size of the system. However, due to special

structure and sparsity of the linear system (2.1), it has linear computational complexity.
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We now propose a technique to solve the linear system (2.1) with linear computational

complexity:
Algorithm 1: Newton’s method for solution of the state space system
Result: %=,0 for = = 0, . . . ,  , and %=, 9 for = = 0, . . .  − 1 and 9 = 1, 2.

Initialize: %0,0 = U > 0, %0,1 = V > 0, :0 =  , and : 9 =  − 1 for 9 = 1, 2.

for 9 = 0 to 2 do

for = = 0 to : 9 do
Evaluate %=, 9 in terms of %0,0 and %0,1 using system (2.1).

end

end

Evaluate:

�
(
%0,0, %0,1

)
B

©­«
_ −1% −1,1 − `% ,0∑ 

==0 %=,0 +
∑2
9=1

∑ −1
==0 %=, 9 − 1

ª®¬
Find %0,0 and %0,1 using Newton’s update:

©­«
%0,0

%0,1

ª®¬ = ©­«
%0,0

%0,1

ª®¬ + ��−1 (
%0,0, %0,1

)
�

(
%0,0, %0,1

)
.

for 9 = 0 to 2 do

for = = 0 to : 9 do
Evaluate %=, 9 in terms of %0,0 and %0,1 using system (2.1).

end

end

Note that the algorithm 1 need only$ ( ) evaluations where  is the number of non-zero

elements in the Linear system. Therefore, the algorithm 1 solves the linear system (2.1)

with optimal computational complexity.
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3. System Performance

For a given set of parameters, we solve the linear system (2.1) and subsequently evaluate

the performance of the queueing system.

3.1. Performance Measures. Let us introduce some important system performance mea-

sures by using steady state probabilities %8, 9 for M/M/1/K queuing system with F-policy.

• Expected number of failed machines in the system

� (=) =
2∑
9=0

 −1∑
==0

=%=, 9 +  % ,0.

• Expected number of operating machines in the system

� (>) = " −
2∑
9=0

 −1∑
==(

(= − ()%=, 9 − ( − ()% ,0.

• Expected number of standby machines in the system

� (B) =
2∑
9=0

(∑
==0
(( − =)%=, 9 .

• Probability that the server is on vacation

%({) =
 −1∑
==0

%=,2.

• Probability that the server is busy

%(1) =
1∑
9=0

 −1∑
==0

%=, 9 + % ,0.

• Probability that the server is idle

• Probability that the server allows the failed machines to join the system

%( 5 ) =
 ∑
==0

%=,1 +
 ∑
==0

%=,2.
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• Probability that the system is blocked

%(3) =
 ∑
==0

%=,0.

3.2. Cost optimization. Let us define the operating cost of the system that is the sum of

all performance measures multiplied by a constant factor. The cost associated with each

performance measure is given as:

• �ℎ ≡ Holding cost per unit time for each failed machine

• �B ≡ cost per unit time for spare machine

• �> ≡ cost per unit time for operating machine

• �1 ≡ Cost per unit time for the busy server

• �3 ≡ Fixed cost per unit time when the system is blocked

• � 5 ≡ Cost per unit time for allowing customers to enter the system

• �< ≡ Cost per unit time for providing the service with rate `

• �: ≡ Fixed cost associated to the capacity of the system

• �4 ≡ Fixed cost per unit time due to vacation rate \

• �1C ≡ Cost per unit time for setup of the server

Therefore, the operating cost of the system in steady state is given by

(3.1)
� =�ℎ � (=) + �B ∗ � (B) + �> ∗ � (>) + �1 %(1) + �{ ∗ %({) + �3 %(3)

+ �8 ∗ %(8) + � 5 %( 5 ) + �< ` + �: + �4[ + �1CV

One of the key ingredients in design of a queueing system is to find a right set of parameters

such that the system operating cost (3.1) is minimal. Suppose we wish to design a queueing

system in which the queue length threshold � and the service time ` are to be chosen such

that the operating cost (3.1) of that queueing system is minimal. The constrained static
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optimization for minimizing the system operating cost is given by

(3.2)

minimize
{�,`}

�(�, `)

subject to


0 ≤ ` ≤ 6,

1 ≤ � ≤ (,

� ∈ N.

It is evident that the optimization problem (3.2) is a mixed integer nonlinear program as

� ∈ N, and therefore, standard optimization techniques can’t be employed directly. However

the cost function (3.1) in the feasible region allows its convex extension to the reals along

�. Such convex relaxation of the integer programming problem (3.2) leads to a nonlinear

programming problem which is relatively easy to solve as compared to the integer program.

To fix notation, let us define

b�c B sup
~

{~ ∈ N | ~ ≤ �} , and d�e B inf
~
{~ ∈ N | ~ ≥ �} .

Let us define the convex extension and establish the fact that an optimal solution of the

relaxed problem corresponds to a solution of the integer programming problem (3.2). The

convex extension of the cost is given by:

(3.3)

R≥0 ×R 3 (�, `) ↦→ �̃(�, `) B �(b�c, `) + (� − b�c) (�(d�e, `) −�(b�c, `)) ∈ R≥0.

Therefore the nonlinear programming corresponding to the integer program (3.2) for the

cost function (3.3) is defined as

(3.4)

minimize
{�,`}

�̃(�, `)

subject to


0 ≤ ` ≤ 6,

1 ≤ � ≤ (.
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Lemma 3.1. Suppose the cost function (3.3) is convex in the feasible region

Ω̃ B {(�, `) ∈ R≥0 × R | 1 ≤ � ≤ ( and 0 ≤ ` ≤ 6} ,

and (�∗, `∗) be an optimal solution of the nonlinear programming problem (3.4). Then the

set

Ω∗ B {(d�∗e, `∗), (b�∗c, `∗)} ,

characterizes optimal solutions of the integer programming problem (3.2).

Proof. Let

Ω B {(�, `) ∈ N × R | 1 ≤ � ≤ ( and 0 ≤ ` ≤ 6} .

be the feasible region of the integer programming problem (3.2). Note that if �∗ ∈ N∩[1, 6]

then the claim trivially holds true. Suppose (�∗, `∗) ∈ Ω̃ \ Ω is an optimal point of the

optimization problem (3.4), i.e.,

�̃(�∗, `∗) ≤ �̃(�, `) for all (�, `) ∈ Ω.

It is easy to conclude, in particular, for b�∗c < �∗ < d�∗e that

�̃(�∗, `∗) ≤ �̃(d�∗e, `∗) and �̃(�∗, `∗) ≤ �̃(b�∗c, `∗).(3.5)

Therefore, by definition of C̃, i.e.,

(3.6)
�̃(�, `) B �(b�c, `) + (� − b�c) (�(d�e, `) −�(b�c, `))

= �(d�e, `) + (� − d�e) (�(d�e, `) −�(b�c, `))

and (3.5), one gets(
�̃(d�∗e, `∗) − �̃(b�∗c, `∗)

)
≥ 0 and

(
�̃(d�∗e, `∗) − �̃(b�∗c, `∗)

)
≤ 0.(3.7)

Consequently, using (3.7) and (3.6), it is easy to conclude that

�̃(�∗, `∗) = �̃(d�∗e, `∗) = �̃(b�∗c, `∗).



MACHINE REPAIR PROBLEM WITH F-POLICY 637

Hence, we proved that the setΩ∗ characterizes optimal points of the nonlinear programming

(3.4). Further, we know that Ω ⊂ Ω̃ and

�(�, `) = �̃(�, `) for all (�, `) ∈ Ω,

and hence, for each (�̃, ˜̀) ∈ Ω∗,

�(�̃, ˜̀) ≤ �(�, `) for all (�, `) ∈ Ω.

This proves the assertion. �

The optimization (3.4) is solved using nonlinear programming techniques such as interior

point methods, sequential quadratic program (SQP). We have conducted our numerical

experiments in MATLAB using its optimization toolbox.

Remark 1. It is worth noting that the proposed algorithm for solving the linear system to

determine steady-state probabilities has the optimal computational complexity and there-

fore, the optimization (3.4) is computationally less intensive as compared to the existing

literature.

4. Numerical Experiments

The following system parameters have been considered for the numerical experiments:

" = 10, ( = 5, _3 = 4.5, _ = 2, \ = 4,

U = 5, V = 1, [ = 5,  = 15, � = 2.

The cost factors associated with performance measures are

�ℎ = 50, �B = 10, �> = 30, �1 = 500, �< = 1, �4 = 0,

�{ = 500, �3 = 100, �8 = 200, � 5 = 10, �1C = 0, �: = 0.
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Under these set of system constants, the cost function (3.1) is convex in the feasible region

Ω̃ B {(�, `) ∈ R≥0 × R | 1 ≤ � ≤ ( and 0 ≤ ` ≤ 6} ,

as is shown in Figure 2. The optimal set of parameters (�∗, `∗) = (2, 4.01) are obtained

by solving the nonlinear program (3.4) in MATLAB. Moreover, we illustrate variations in

Figure 2. The queueing system operating cost.

the expected number of failed machines in the system � (=) with different set of system

parameters. Note that the � (=) is convex in nature along `, and it increases with increase in

 and � but decreases with increase in parameters " and _3 , see Figure 3. In an identical

manner, � (=) is concave in nature along _, and it increases with increase in  and � but

decreases with increase in parameters " and _3 , see Figure 4.
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6.5
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(=
)
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Figure 3. Change in � (=) along `.
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Figure 4. Change in � (=) along _.

5. Conclusion and Future work

In this article, we proposed a novel algorithm to determine an optimal policy for the

queueing system that allows server vacation under �− policy. The proposed algorithm is
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computationally less intensive as compared to existing algorithms. In Future, we would like

to employ to proposed algorithm to various queuing systems and study various performance

measures of such queuing systems.
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