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A PROXIMAL POINT ALGORITHM CONVERGING

STRONGLY TO A MINIMIZER OF A CONVEX

FUNCTION

IZHAR UDDIN (1), CHANCHAL GARODIA (2) AND SAFEER HUSSAIN

KHAN (3)

Abstract. In this paper, we obtain a new modified proximal

point algorithm in the setting of CAT(0) spaces and establish some

strong convergence results of the proposed algorithm. In process,

several relevant results of the existing literature are generalized

and improved.

1. Introduction

Monotone operator theory holds an important place in nonlinear

analysis. It plays a crucial role in convex analysis, optimization, vari-

ational inequalities, semigroup theory and evolution equations. Many

nonlinear operator equations are of the form 0 ∈ A(x), where A is a

monotone operator in a Hilbert space H. A zero of a maximal mono-

tone operator is a solution of variational inequality associated to the

monotone operator also an equilibrium point of an evolution equation

governed by the monotone operator as well as a solution of a mini-

mization problem for a convex function when the monotone operator
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is a subdifferential of the convex function. Therefore, existence and

approximation of a zero of a maximal monotone operator is the center

of consideration of many recent researchers.

The most popular method for approximation of a zero of a maximal

monotone operator is the proximal point algorithm popularly known as

PPA. Its origin goes back to Martinet [29], Rockafellar [32], and Brézis

and Lions [7]. Martinet introduced PPA for variational inequalities

whereas Rockafellar showed the weak convergence of the sequence gen-

erated by the proximal point algorithm to a zero of the maximal mono-

tone operator in Hilbert spaces. Güler’s counterexample [18] showed

that the sequence generated by the proximal point algorithm does not

necessarily converge strongly even if the maximal monotone operator is

the subdifferential of a convex, proper, and lower semicontinuous func-

tion. Following this, Many mathematicians have tried to modify the

PPA in such a way that the new iterative methods generate sequences

which converges strongly ([22, 36, 48, 6]).

The literature on the subject has become too extensive to be even

partially listed here. For some generalization in Hilbert and Banach

spaces the reader can consult ([23, 27, 3, 33, 45]). Recently, many

convergence results for the PPA for solving optimization problems have

been extended from the classical linear spaces such as Euclidean spaces,

Hilbert spaces and Banach spaces to the setting of manifolds ([15, 28,

31, 46]).

Let X be a Hilbert space and f : X → (−∞,∞] be a proper and

convex function. One of the major problems in optimization theory is

to solve x ∈ X such that

f(x) = min
y∈X

f(y).
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We denote by

argmin
y∈X

f(y),

the set of a minimizer of a convex function.

The minimizers of the objective convex functionals in the spaces with

nonlinearity play a crucial role in the branch of analysis and geometry.

Numerous applications in computer vision, machine learning, electronic

structure computation, system balancing and robot manipulation can

be considered as solving optimization problems on manifolds (see [1,

34, 44, 47]).

Owing to the usefulness of PPA, Bačák [5] introduced the proximal

point algorithm in CAT(0) space in 2013. Bačák generalized Brézis

and Lions [7] on the proximal point algorithm in Hilbert spaces to

complete CAT(0) spaces. Inspired by this, numerous results have been

obtained for proximal point algorithm in the setting of CAT(0) spaces

(see [9, 10, 19, 24]).

Recently, a number of iteration schemes have been constructed in

various spaces along with their applications in real world (for e.g. [28]-

[32]). Motivated by the research going on in this direction, we propose

the modified proximal point algorithm using the Thakur iteration pro-

cess [38] for three nonexpansive mappings in CAT(0) spaces and prove

some convergence theorems of the proposed processes under some mild

conditions. Our main results generalize the results of Thakur et al.

[38] from one nonexpansive mapping to three nonexpansive mappings

involving the convex and lower semi-continuous function in CAT(0)

spaces.
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2. Preliminaries

In this section, we will mention some basic concepts, definitions,

notations and few Lemmas for use in the next section.

A metric space (X, d) is said to be a CAT(0) space if it is geodesically

connected, and if every geodesic triangle in X is at least as thin as its

comparison triangle in the Euclidean plane (see more details in [8]). A

complete CAT(0) space is then called a Hadamard space. Euclidean

spaces, Hilbert spaces, the Hilbert ball [17], hyperbolic spaces [26],

R-tress [39] and any complete, simply connected Riemannian manifold

having non-positive sectional curvature are some examples of a CAT(0)

space. Recently, many fixed point theorem has been proved in the

setting of CAT(0) spaces (for example [16, 40, 41, 42, 43]).

Definition 2.1. A subset C of a CAT(0) space X is said to be convex

if C includes every geodesic segment joining ant two of its points, that

is, for any x, y ∈ C, we have [x, y] ⊂ C, where [x, y] := {αx⊕ (1−α)y :

0 ≤ α ≤ 1} is the unique geodesic joining x and y.

Definition 2.2. A mapping T : C → C is said to be non-expansive if

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. The set of all fixed points of T is

denoted by F (T ).

First we state the following Lemma to be used later on.

Lemma 2.1. ([12]) Let (X, d) be a CAT(0) space, then the following

assertions hold:

(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique z ∈ [x, y] such

that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).
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(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z)

and

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

We use the notation (1− t)x⊕ ty for the unique point z of the above

Lemma.

Now, we collect some basic geometric properties, which are instrumen-

tal throughout the discussions.

Let {xn} be a bounded sequence in a complete CAT(0) space X. For

x ∈ X write:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, xn) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is defined as:

A({xn}) = {x ∈ X : r(x, xn) = r({xn})}.

It is well known that, in a complete CAT(0) space, A({xn}) consists of

exactly one point [13]. We now give the definition and some basic prop-

erties of the ∆- convergence which will be fruitful for our subsequent

discussion.

Definition 2.3. ([25]) A sequence {xn} in a CAT(0) space X is said

to be ∆-convergent to a point x ∈ X if x is the unique asymptotic

center of {un} for every subsequence {un} of {xn}. In this case, we

write ∆− limn→∞ xn = x and call x the ∆-limit of {xn}.
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Lemma 2.2. ([25]) Every bounded sequence in a complete CAT(0)

space admits a ∆-convergent subsequence.

Lemma 2.3. ([14]) If C is a closed convex subset of a complete CAT(0)

space X and if {xn} is a bounded sequence in C, then the asymptotic

center of {xn} is in C.

Lemma 2.4. ([12]) Let C be a nonempty closed convex subset of a

complete CAT(0) space (X, d) and T : C → C be a nonexpansive

mapping. If {xn} is a bounded sequence in C such that ∆− limn xn = x

and lim
n→∞

d(Txn, xn) = 0, then x is a fixed point of T.

Lemma 2.5. ([12]) If {xn} is a bounded sequence in a complete CAT(0)

space with A({xn}) = {x}, {un} is a subsequence of {xn} with A({un}) =

{u} and the sequence {d(xn, u)} converges, then x = u.

Definition 2.4. A function f : C → (−∞,∞] defined on a convex

subset C of a CAT(0) space is convex if, for any geodesic γ : [a, b] → C,

the function foγ is convex, i.e., f(αx⊕(1−α)y) ≤ αf(x)+(1−α)f(y)

for all x, y ∈ C.

For some important examples one can refer [4]. Now, a function f

defined on C is said to be lower semi-continuous at x ∈ C if

f(x) ≤ lim inf
n→∞

f(xn)

for each sequence {xn} such that xn → x as n → ∞. A function f is

said to be lower semi-continuous on C if it is lower semi-continuous at

any point in C.

For any λ > 0, define the Moreau-Yosida resolvent of f in CAT(0)

space as follows:

Jλ(x) = argmin
y∈C

[f(y) +
1

2λ
d2(y, x)]
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for all x ∈ C.

Now, we list few results which will be frequently used throughout

the text.

Lemma 2.6. ([4]) Let (X, d) be a complete CAT(0) space and f : X →

(−∞,∞] be a proper, convex and lower semi-continuous function, then

the set F (Jλ) of the fixed point of the resolvent Jλ associated with f

coincides with the set argmin
y∈C

f(y) of minimizers of f .

Lemma 2.7. ([21]) For any λ > 0, the resolvent Jλ of f is nonexpan-

sive.

Lemma 2.8. ([2]) Let (X, d) be a complete CAT(0) space and f : X →

(−∞,∞] be a proper, convex and lower semi-continuous function, then

for all x, y ∈ X and λ > 0, we have

1

2λ
d2(Jλx, y)−

1

2λ
d2(x, y) +

1

2λ
d2(x, Jλx) + f(Jλx) ≤ f(y).

Lemma 2.9. ([21, 30]) Let (X, d) be a complete CAT(0) space and

f : X → (−∞,∞] be a proper, convex and lower semi-continuous

function. Then the following identity holds:

Jλx = Jµ(
λ− µ

λ
Jλx⊕

µ

λ
x)

for all x ∈ X and λ > µ > 0.

3. Main Results

Lemma 3.1. Let (X, d) be a complete CAT(0) space and C be a

nonempty closed convex subset of X. Let f : X → (−∞,∞] be a proper

convex and lower semi-continuous function and T1, T2, T3 : C → C be

three nonexpansive mappings with F (T1) ∩ F (T2) ∩ F (T3) 6= φ and

ω := F (T1) ∩ F (T2) ∩ F (T3) ∩ argmin
y∈X

f(y) 6= φ.
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Let {αn}, {βn}, {γn} be sequences in (0, 1) with 0 < a ≤ αn, βn, γn ≤

b < 1 for all n ∈ N and for some a, b constants in (0, 1) and {λn} be

a sequence with λn ≥ λ > 0 for all n ∈ N and for some λ. Let {xn} be

the sequence generated in the following manner:

wn = argmin
y∈X

[f(y) +
1

2λn

d2(y, xn)]

zn = (1− γn)wn ⊕ γnT1wn

yn = (1− βn)zn ⊕ βnT2zn

xn+1 = (1− αn)T2zn ⊕ αnT3yn

(3.1)

for each n ∈ N. Then, the following statements hold:

(i) lim
n→∞

d(xn, p) exists for all p ∈ ω,

(ii) lim
n→∞

d(xn, wn) = 0,

(iii) lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.

Proof. Let p ∈ ω. Then, p = T1p = T2p = T3p and f(p) ≤ f(y) for all

y ∈ C. Therefore, we have

f(p) +
1

2λn

d2(p, p) ≤ f(y) +
1

2λn

d2(y, p)

for all y ∈ C and hence p = Jλn
p for each n ∈ N.

(i) Note that wn = Jλn
xn and Jλn

is nonexpansive map for each

n ∈ N. So, we have

d(wn, p) = d(Jλn
xn, Jλn

p) ≤ d(xn, p). (3.2)
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Also, by (3.1) and (3.2), we get

d(zn, p) = d((1− γn)wn ⊕ γnT1wn, p)

≤ (1− γn)d(wn, p) + γnd(T1wn, p)

≤ (1− γn)d(wn, p) + γnd(wn, p)

= d(wn, p)

≤ d(xn, p) (3.3)

and

d(yn, p) = d((1− βn)zn ⊕ βnT2zn, p)

≤ (1− βn)d(zn, p) + βnd(T2zn, p)

≤ (1− βn)d(zn, p) + βnd(zn, p)

= d(zn, p)

≤ d(wn, p)

≤ d(xn, p). (3.4)

Therefore, by using (3.3) and (3.4), we have

d(xn+1, p) = d((1− αn)T2zn ⊕ αnT3yn, p)

≤ (1− αn)d(T2zn, p) + αnd(T3yn, p)

≤ (1− αn)d(zn, p) + αnd(yn, p)

≤ (1− αn)d(zn, p) + αnd(zn, p)

≤ d(xn, p). (3.5)

This shows that lim
n→∞

d(xn, p) exists and so we assume that

lim
n→∞

d(xn, p) = c ≥ 0. (3.6)
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(ii) Next, we show that lim
n→∞

d(xn, wn) = 0. By Lemma 2.8, we get

1

2λn

{d2(wn, p)− d2(xn, p) + d2(xn, wn)} ≤ f(p)− f(wn).

Since f(p) ≤ f(wn) for each n ∈ N, it follows that

d2(xn, wn) ≤ d2(xn, p)− d2(wn, p). (3.7)

So, in order to show that lim
n→∞

d(xn, wn) = 0, it is sufficient to show

that

lim
n→∞

d(wn, p) = c.

Now, from (3.3) and (3.5), we have

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(zn, p)

≤ d(wn, p).

Hence, we get c ≤ lim inf
n→∞

d(wn, p).

Also, from (3.2), we see that

lim sup
n→∞

d(wn, p) ≤ c.

Therefore, we have

lim
n→∞

d(wn, p) = c. (3.8)

This shows that

lim
n→∞

d(xn, wn) = 0, (3.9)

which proves (ii).

(iii) Now, we show that

lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0.
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On using Lemma 2.1 and nonexpansiveness of T , we obtain

d2(zn, p) = d2((1− γn)wn ⊕ γnT1wn, p)

≤ (1− γn)d
2(wn, p) + γnd

2(T1wn, p)− γn(1− γn)d
2(wn, T1wn)

≤ (1− γn)d
2(wn, p) + γnd

2(wn, p)− γn(1− γn)d
2(wn, T1wn)

= d2(wn, p)− γn(1− γn)d
2(wn, T1wn)

≤ d2(wn, p)− a(1− b)d2(wn, T1wn)),

which yields

d2(wn, T1wn) ≤
1

a(1− b)
[d2(wn, p)− d2(zn, p)]. (3.10)

Now, from (3.4), we have

lim sup
n→∞

d(yn, p) ≤ c

and from (3.5), we get

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(yn, p),

which is equivalent to

d(xn, p) ≤
1

αn

(d(xn, p)− d(xn+1, p)) + d(yn, p)

≤
1

a
(d(xn, p)− d(xn+1, p)) + d(yn, p).

Since d(xn+1, p) ≤ d(xn, p) and αn ≥ a > 0 for all n ∈ N, we deduce

that

c ≤ lim inf
n→∞

d(yn, p),

which yields

lim
n→∞

d(yn, p) = c. (3.11)
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We see that, from (3.3) and (3.6), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(xn, p) = c (3.12)

and from (3.4) and (3.10), we get

c = lim inf
n→∞

d(yn, p) ≤ lim inf
n→∞

d(zn, p). (3.13)

Thus, from (3.11) and (3.12), we have

lim
n→∞

d(zn, p) = c. (3.14)

From (3.8), (3.10) and (3.14), it follows that

d2(wn, T1wn) → 0 as n → ∞,

i.e.,

lim
n→∞

d(wn, T1wn) = 0. (3.15)

Now, triangle inequality, nonexpansiveness of T , (3.9) and (3.15) yields

d(xn, T1xn) ≤ d(xn, wn) + d(wn, T1wn) + d(T1wn, T1xn)

≤ d(xn, wn) + d(wn, Twn) + d(wn, xn)

→ 0 (3.16)

as n → ∞.

Similarly, we get

d2(yn, p) = d2((1− βn)zn ⊕ βnT2zn, p)

≤ (1− βn)d
2(zn, p) + βnd

2(T2zn, p)− βn(1− βn)d
2(zn, T2zn)

≤ (1− βn)d
2(zn, p) + βnd

2(zn, p)− βn(1− βn)d
2(zn, T2zn)

= d2(zn, p)− βn(1− βn)d
2(zn, T2zn)

≤ d2(zn, p)− a(1− b)d2(zn, T2zn)),
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which yields

d2(zn, T2zn) ≤
1

a(1− b)
[d2(zn, p)− d2(yn, p)].

Using (3.11) and (3.14), we get

lim
n→∞

d(zn, T2zn) = 0. (3.17)

Now, we have

d(xn, T2xn) ≤ d(xn, zn) + d(zn, T2zn) + d(T2zn, T2xn)

≤ 2d(xn, zn) + d(zn, T2zn). (3.18)

Also,

d(xn, zn) ≤ d(xn, wn) + d(wn, zn)

and

d(wn, zn) = d(wn, (1− γn)wn ⊕ γnT1wn)

≤ (1− γn)d(wn, wn) + γnd(wn, T1wn)

= γnd(wn, T1wn).

Using (3.15), we obtain

lim
n→∞

d(wn, zn) = 0, (3.19)

which yields

lim
n→∞

d(xn, zn) = 0. (3.20)

Thus, using (3.18) we have

lim
n→∞

d(xn, T2xn) = 0. (3.21)
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Now, consider

d2(xn+1, p) = d2((1− αn)T2zn ⊕ αnT3yn, p)

≤ (1− αn)d
2(T2zn, p) + αnd

2(T3yn, p)− αn(1− αn)d
2(T2zn, T3yn)

≤ (1− αn)d
2(zn, p) + αnd

2(yn, p)− αn(1− αn)d
2(T2zn, T3yn)

≤ d2(xn, p)− a(1− b)d2(T2zn, T3yn),

which implies that

lim
n→∞

d(T2zn, T3yn) = 0. (3.22)

Observe that

d(yn, xn) = d((1− βn)zn ⊕ βnT2zn, xn)

≤ (1− βn)d(zn, xn) + βnd(T2zn, xn)

and

d(T2zn, xn) ≤ d(T2zn, zn) + d(zn, xn).

From (3.17) and (3.20), we get

lim
n→∞

d(T2zn, xn) = 0,

which gives

lim
n→∞

d(yn, xn) = 0. (3.23)
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Again by triangle inequality, (3.9), (3.15), (3.16), (3.17), (3.19),

(3.22) and (3.23), we obtain

d(xn, T3xn) ≤ d(xn, T1xn) + d(T1xn, T1wn) + d(T1wn, wn) + d(wn, zn)

+ d(zn, T2zn) + d(T2zn, T3yn) + d(T3yn, T3xn)

≤ d(xn, T1xn) + d(xn, wn) + d(T1wn, wn) + d(wn, zn)

+ d(zn, T2zn) + d(T2zn, T3yn) + d(yn, xn)

→ 0 as n → ∞.

This completes the proof. Next, we prove the ∆-convergence of our

iteration.

Theorem 3.1. Let (X, d) be a complete CAT(0) space and C be a

nonempty closed convex subset of X. Let f : X → (−∞,∞] be a proper

convex and lower semi-continuous function and T1, T2, T3 : C → C are

three nonexpansive mappings with F (T1) ∩ F (T2) ∩ F (T3) 6= φ and

ω := F (T1) ∩ F (T2) ∩ F (T3) ∩ argmin
y∈X

f(y) 6= φ.

Let {αn}, {βn}, {γn} be sequences in (0, 1) with 0 < a ≤ αn, βn, γn ≤

b < 1 for all n ∈ N and for some a, b constants in (0, 1) and {λn} be

a sequence with with λn ≥ λ > 0 for all n ∈ N and for some λ. If {xn}

is the sequence defined by (3.1), then {xn} ∆-converges to an element

of ω.
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Proof. In fact, it follows from (3.9) and Lemma 2.13 that

d(Jλxn, xn) ≤ d(Jλxn, wn) + d(wn, xn)

= d(Jλxn, Jλn
xn) + d(wn, xn)

= d(Jλxn, Jλ(
λn − λ

λn

Jλn
xn ⊕

λ

λn

xn)) + d(wn, xn)

≤ d(xn, (1−
λ

λn

)Jλn
xn ⊕

λ

λn

xn) + d(wn, xn)

≤ (1−
λ

λn

)d(xn, Jλn
xn) +

λ

λn

d(xn, xn) + d(wn, xn)

= (1−
λ

λn

)d(xn, wn) + d(wn, xn)

→ 0

as n → ∞. By Lemma 3.1, we have lim
n→∞

d(xn, p) exists for all p ∈ ω,

and lim
n→∞

d(xn, T1xn) = lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = 0. Let

Wω({xn}) =: ∪A({un}), where union is taken over all subsequences

{un} over {xn}. In order to show the ∆-convergence of {xn} to a point

of ω, firstly we will prove Wω({xn}) ⊂ ω and thereafter argue that

Wω({xn}) is a singleton set.

To show Wω({xn}) ⊂ F (T ), let y ∈ Wω({xn}). Then, there exists a

subsequence {yn} of {xn} such that A({yn}) = y. By Lemma 2.2,

there exists a subsequence {zn} of {yn} such that ∆ − lim
n

zn = z and

z ∈ C. By Lemma 2.4, z ∈ ω. So, y = z by Lemma 2.5. This shows

that Wω({xn}) ⊂ ω. Now it is left to show that Wω({xn}) consists

of single element only. For this, let {yn} be a subsequence of {xn}.

Again, by using Lemma 2.2, we can find a subsequence {zn} of {yn}

such that ∆ − lim
n

zn = z. Let A({yn}) = y and A({xn}) = x. It is

enough to show that z = x. Since z ∈ ω, by Lemma 3.1, {d(xn, z)} is

convergent. Again, by Lemma 2.5, we have z = x which proves that

Wω({xn}) = {x}. Hence the conclusion follows.
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If T1 = T2 = T3 = T in Theorem 3.1, then we obtain the following

result.

Corollary 3.1. Let (X, d) be a complete CAT(0) space and C be a

nonempty closed convex subset of X. Let f : X → (−∞,∞] be a

proper convex and lower semi-continuous function and T : C → C

be a nonexpansive mapping with F (T ) 6= φ and

ω := F (T ) ∩ argmin
y∈X

f(y) 6= φ.

Let {αn}, {βn}, {γn} be a sequences in (0, 1) with 0 < a ≤ αn, βn, γn ≤

b < 1 for all n ∈ N and for some a, b constants in (0, 1) and {λn} be a

sequence with λn ≥ λ > 0 for all n ∈ N and for some λ. If {xn} is the

sequence generated in the following manner:

wn = argmin
y∈X

[f(y) +
1

2λn

d2(y, xn)]

zn = (1− γn)wn ⊕ γnTwn

yn = (1− βn)zn ⊕ βnTzn

xn+1 = (1− αn)Tzn ⊕ αnTyn

for each n ∈ N, then {xn} ∆-converges to an element of ω.

Since every real Hilbert space H is a complete CAT(0) space. The

following result can be obtained from Theorem 3.1.

Corollary 3.2. Let C be a nonempty closed and convex subset of real

Hilbert space H. Suppose that T1, T2, T3, f, {αn}, {βn}, {γn}, {λn}, {λ}

and ω satisfy all the hypothesis in Theorem 3.1. If {xn} is the sequence
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generated in the following manner:

wn = argmin
y∈X

[f(y) +
1

2λn

‖y − xn‖
2]

zn = (1− γn)wn + γnT1wn

yn = (1− βn)zn + βnT2zn

xn+1 = (1− αn)T2zn + αnT3yn

for each n ∈ N, then {xn} converges weakly to an element in ω.

Next, we establish the strong convergence theorems of our iteration.

Theorem 3.2. Under the hypothesis of Theorem 3.1, the sequence

{xn} converges to an element of ω if and only if lim inf
n→∞

d(xn, ω) = 0.

Proof. If the sequence {xn} converges to a point x ∈ ω, then it can be

easily seen that lim inf
n→∞

d(xn, ω) = 0.

For the converse part, since

d(xn+1, p) ≤ d(xn, p)

for all p ∈ ω, it follows that

d(xn+1, ω) ≤ d(xn, ω)

Therefore, lim
n→∞

d(xn, ω) exists and lim
n→∞

d(xn, ω) = 0.

Now, we prove that {xn} is a Cauchy sequence in C. Let ε >0 be

arbitrarily chosen. Since lim inf
n→∞

d(xn, ω) = 0, there exists n0 such that

for all n ≥ n0, we have

d(xn, ω) <
ε

4
.

In particular,

inf{d(xn0
, p) : p ∈ ω} <

ε

4
,
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so there must exist a p ∈ ω such that

d(xn0
, p) <

ε

2
.

Thus, for m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p) < 2d(xn0
, p) < 2

ε

2
= ε

which shows that {xn} is a cauchy sequence. Thus, {xn} converges to

a point x∗ in X and so d(x∗, ω) = 0. Since ω is closed, we have x∗ ∈ ω

which completes the proof.

Let C be a nonempty closed convex subset of a CAT(0) space (X, d).

A family {P,Q,R, S} of mappings is said to satisfy condition (Ω) if

there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0

and f(r) > 0 for all r ∈ (0,∞) such that

d(x, Px) ≥ f(d(x, F ))

or

d(x,Qx) ≥ f(d(x, F ))

or

d(x,Rx) ≥ f(d(x, F ))

or

d(x, Sx) ≥ f(d(x, F ))

for all x ∈ X, where F = F (P ) ∩ F (Q) ∩ F (R) ∩ F (S).

Theorem 3.3. Under the hypothesis of Theorem 3.1, suppose that the

family {T1, T2, T3, Jλ} satisfy the condition (Ω). Then the sequence {xn}

defined by (3.1) strongly converges to an element of ω.
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Proof. From Lemma 3.1, we have lim
n→∞

d(xn, p) exists for all p ∈ ω. This

implies that lim
n→∞

d(xn, ω) exists.

Also, by the condition (Ω), we have

lim
n→∞

f(d(xn, ω)) ≤ lim
n→∞

d(xn, T1xn) = 0

or

lim
n→∞

f(d(xn, ω)) ≤ lim
n→∞

d(xn, T2xn) = 0

or

lim
n→∞

f(d(xn, ω)) ≤ lim
n→∞

d(xn, T3xn) = 0

or

lim
n→∞

f(d(xn, ω)) ≤ lim
n→∞

d(xn, Jλxn) = 0.

Thus, we have

lim
n→∞

f(d(xn, ω)) = 0.

By using the property of f , we get lim
n→∞

d(xn, ω) = 0. Thus, the proof

follows from Theorem 3.2.

A mapping T : C → C is said to be semi-compact if any sequence

{xn} in C satisfying d(xn, Txn) → 0 as n → ∞ has a convergent

subsequence.

Theorem 3.4. Under the hypothesis of Theorem 3.1, suppose that T1

or T2 or T3 or Jλ is semi-compact. Then the sequence {xn} defined by

(3.1) strongly converges to an element of ω.

Proof. Suppose that T1 is semi-compact. By Lemma 3.1(iii), we have

lim
n→∞

d(xn, T1xn) = 0.
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Thus, there exists a subsequence {xnk
} of {xn} such that {xnk

} → p∗ ∈

X. Since

lim
n→∞

d(xn, T2xn) = lim
n→∞

d(xn, T3xn) = lim
n→∞

d(xn, Jλxn) = 0,

we have d(p∗, T2p
∗) = d(p∗, T3p

∗) = 0 and d(p∗, Jλp
∗) = 0, which shows

that p∗ ∈ ω. In other cases, we can prove the strong convergence of

{xn} to an element of ω. This completes the proof.

4. Numerical Example

In this section, we give the numerical example to show the conver-

gence of our iteration scheme and support our main theorem in a space

of real numbers.

Let X = R with the Euclidean norm and C = {x : −3 ≤ x ≤ 3}. For

each x ∈ C, we define mappings T1, T2 and T3 on C as follows:

T1(x) =
x

2
,

T2(x) =
x

3

and

T3(x) =
x

4
.

Clearly, T1, T2 and T3 are nonexpansive mappings.

Also, for each x ∈ C, we define f : C → (−∞,∞] by

f(x) = x2.

We can easily check that f is a proper convex and lower semi-continuous

function.

We choose αn = n
n+5

, βn = 2

n+3
and γn = n+2

n+3
. Also, we set λn = 1

2
∀

n. It can be observed that all the assumptions of Theorem 3.1 are
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satisfied. Using the algorithm (3.1) with the initial points x1 = 2,

x1 = 0.5 and x1 = −1, we obtain the following table of iteration values:

Step When x1 = 2 When x1 = 0.5 When x1 = −1

1 2 0.5 -1

2 0.190972222222 0.0477430555556 -0.0954861111111

3 0.0166418650794 0.00416046626984 -0.00832093253968

4 0.00136515299479 0.000341288248698 -0.000682576497396

5 0.000107313614103 0.0000268284035258 -0.0000536568070515

6 8.17427919926 × 10−6 2.04356979981 × 10−6 −4.08713959963 × 10−6

7 6.07795731707 × 10−7 1.51948932927 × 10−7 −3.03897865853 × 10−7

8 4.43395427887 × 10−8 1.10848856972 × 10−8 −2.21697713944 × 10−8

9 3.18523098228 × 10−9 7.9630774557 × 10−10 −1.59261549114 × 10−9

10 2.25936523049 × 10−10 5.64841307622 × 10−11 −1.12968261524 × 10−10

11 1.58571491357 × 10−11 3.96428728393 × 10−12 −7.92857456787 × 10−12

12 1.10294663751 × 10−12 2.75736659378 × 10−13 −5.51473318755 × 10−13

13 7.61249443929 × 10−14 1.90312360982 × 10−14 −3.80624721964 × 10−14

14 5.21899710998 × 10−15 1.30474927749 × 10−15 −2.60949855499 × 10−15

15 3.55711103334 × 10−16 8.89277758336 × 10−17 −1.77855551667 × 10−16

16 2.41189145104 × 10−17 6.02972862761 × 10−18 −1.20594572552 × 10−17

17 1.62786500345 × 10−18 4.06966250863 × 10−19 −8.13932501726 × 10−19

18 1.09418426084 × 10−19 2.73546065211 × 10−20 −5.47092130421 × 10−20

19 7.3274638586 × 10−21 1.83186596465 × 10−21 −3.6637319293 × 10−21

20 4.89060060896 × 10−22 1.22265015224 × 10−22 −2.44530030448 × 10−22

Next, the following graph shows the convergence behaviour of itera-

tion (3.1) for the above example.

5. Conclusion

It is clear from the graph as well as iteration table that our sequence

(3.1) converges to 0 which is the fixed point of T1, T2, T3 and minimizer
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of f(x). Our main results extend the corresponding main results of

Cholamjiak et al. [9] and Sombut et al. [35]. Indeed, we present a

new modified proximal point algorithm for solving convex minimization

problem as well as common fixed point problem for three nonexpansive

mappings in CAT(0) spaces.
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