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A MINI REVIEW OF DIMENSIONAL EFFECTS ON

ASYMPTOTIC MEAN INTEGRATED SQUARED ERROR AND

EFFICIENCIES OF SELECTED BETA KERNELS

I. U. SILOKO(1), E. A. SILOKO(2) AND O. IKPOTOKIN(3)

Abstract. The asymptotic mean integrated squared error (AMISE) is one of the

popular performance measures in density estimation. The popularity of the AMISE

in kernel estimation is because of its consideration of dimensions while other per-

formance measures are dimensionless. This error criterion comprises of two com-

ponents whose contributions are determine by the bandwidth. This paper briefly

discusses the effects of dimension on the performances and efficiencies of some ker-

nel functions of the beta polynomial family using the asymptotic mean integrated

squared error. The results of the study show that as the power of the kernel function

increases, the AMISE increases and with decrease in the efficiency as the power and

dimensions increases. Also an increase in dimensions resulted in increase in AMISE

but decreases with increase in sample sizes

1. Introduction

Data smoothing which involves analysis and virtualizations of data is a fundamental

and important aspect of statistics. Data smoothing technique considers inferences and

conclusions about the set of distributions. One of the widely used nonparametric data

analytic tools is the kernel estimator. Kernel density estimators are nonparametric

data smoothing techniques in density estimation. The popularity of the kernel density
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estimator is due to its simplicity of implementation and interpretation of results.

The kernel estimators are of wide applicability in nonparametric density estimation

techniques and even form the bedrock in semiparametric estimation [5]. One of the

advantages of the kernel estimators as nonparametric estimators is their flexibility

in modeling a given set of observations unlike the parametric estimators that are

rigid and are affected by bias specification. However, the flexibility of nonparametric

estimators has resulted in high computational cost which limited their uses. Due to

the statistical importance of the kernel estimators in data analysis and visualization,

they have become the most widely studied amongst the classes of estimators in this

family [1, 12]. The univariate kernel estimator has its compact form as

(1.1) f̂(x) =
1

nhx

n
∑

i=1

K

(

x−Xi

hx

)

where K(.) and hx > 0 are the kernel function and bandwidth or smoothing param-

eter while Xi are the data to be analysed with n representing the total number of

the observations. The kernel estimator in Equation (1.1) has been of wide applica-

bility in many fields such as archaeology, banking, climatology, economics, genetics,

hydrology, and physiology [14]. The shape of the resulting estimates of the data is

determined by the kernel function while the level of smoothness of f̂(x) is regulated

by the magnitude of the smoothing parameter. A small value of hx will lead to under-

smoothing while large value of hx yields a smoother estimate but might not reveal the

important features that are present in the set of observations. A major disadvantage

of the kernel estimator is its biasness especially with long tail density but this prob-

lem can be avoided by adopting the adaptive smoothing parameter methods. The

estimator in Equation (1.1) possesses the nonnegativity property and every kernel

function must satisfy these assumptions

∫

K(x)dx = 1
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(1.2)

∫

xK(x)dx = 0

∫

x2K(x)dx = µ2(K)2 < ∞

In the assumptions in Equation (1.2), it is expected that every kernel function must

be a probability density function which must integrate to one with a zero mean while

its variance denoted by µ2(K)2 < ∞ must not be zero [9].

Generally, in Equation (1.1), proper implementation of the estimator is dependent

on accurate selection of the smoothing parameter. Bandwidths selection is critical in

kernel methods and has attracted the attention of researchers over the years; how-

ever there is no generally acceptable selection method. Recent data based smoothing

parameter selectors can be found in the following articles [2, 6, 10]. The smoothing

parameter is the major determinant when measuring the performance of any kernel

function. In kernel density estimation, performance simply means the closeness of a

kernel density estimate to its target density.

The aim of this paper is to investigate the effect of dimension on the performance

and efficiencies of some selected kernels from the beta polynomial family using the

asymptotic mean integrated squared error as the criterion function which shall hence-

forth be referred to as AMISE. There are other global measures of discrepancies but

the AMISE has an advantage of being the best mathematically explained measure

that considers the dimensions of the kernel function.

2. Asymptotic MISE Approximations and Multivariate Kernel

Estimator.

The mean integrated squared error with its two components is the commonest

optimality criterion function and is given by

(2.1) MISE
(

f̂(x)
)

=

∫

V ar
(

f̂(x)
)

dx+

∫

Bias2
(

f̂(x)
)

dx
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There is usually the bias-variance trade-off between the terms of the AMISE, the bias

can be reduced while the variance increases and vice versa, by varying the magnitude

of the smoothing parameter. If the smoothing parameter is small, it gives a smaller

value of the bias and the variance increases resulting in an undersmoothed curve and

with large value of the smoothing parameter, it gives a smaller variance while the

bias increases resulting in an oversmoothed density estimate [11]. The exact form of

the mean integrated squared error in Equation (2.1) is obtained by kernel convolution

while its approximate form can easily be obtained using the Taylor’s series expansion.

The approximate form of Equation (2.1) known as the asymptotic mean integrated

squared error will produce the integrated variance and the integrated squared bias

given by

(2.2) AMISE
(

f̂(x)
)

=
R(K)

nhx

+
h4
x

4
µ2(K)2R(f

′′

)

where R(K) and µ2(K)2 are the roughness and second moment of the kernel, f ” is

the second derivative of the unknown function while R(f ”) =
∫

f ”(x)2dx represents

the roughness of the unknown density function [9]. The AMISE in Equation (2.2)

will produce its smallest value when the solution to the differential equation is obtain

∂

∂hx

AMISE
(

f̂(x)
)

=
−R(K)

nh2
x

+ µ2(K)2h3
xR(f

′′

) = 0

On solving the differential equation, we have the smoothing parameter that minimizes

the AMISE of the kernel estimator as

(2.3) hx−AMISE =

[

R(K)

µ2(K)2R(f ′′)

]
1
5

× n−
1
5

The smoothing parameter that produces the minimum AMISE in Equation (2.3) can

be expressed in dimensional form as

(2.4) hx−AMISE =

[

R(K)

µ2(K)2R(f ′′)

]
1

4+d

× n
−

1
(4+d)
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The multivariate form of Equation (1.1) with a single bandwidth kernel estimator is

given as

(2.5) f̂(x) =
1

nhd
x

n
∑

i=1

K

(

x−Xi

hx

)

where d is the dimension of the kernel function. The kernel, K, in this case is a

d-variate density function that satisfy the conditions in Equation (1.2) and its con-

tours are assumed to be spherically symmetric. In this multivariate form, the same

smoothing parameter that controls the size of the kernel is applied to each dimen-

sion. An advantage of this multivariate estimator is that the AMISE and its optimal

smoothing parameter can be easily computed unlike other complex forms without ex-

plicit optimal smoothing parameter formula. The corresponding AMISE of Equation

(2.5) is given as

(2.6) AMISE
(

f̂(x)
)

=
R(K)

nhd
x

+
h4
x

4
µ2(K)2

∫

(O2f(x))2dx

where O
2f(x) =

∑d

i=1
∂2f(x)
∂xi

Also, the smoothing parameter that will minimize the AMISE in Equation (2.6) is of

the form

(2.7) hx−AMISE =

[

dR(K)

µ2(K)2
∫

(O2f(x))2dx

]
1

(4+d)

× n
−1
4+d

The statistical quantities required for the computation of smoothing parameter in

Equation (2.4) and Equation (2.7) are the roughness of the kernel function, moment

of the kernel and roughness of the unknown probability function. The smoothing

parameter in Equation (2.7) will result in the smallest value of the AMISE given by

(2.8) AMISE
(

f̂(x)
)

=

(

d+ 4

4d

)

(

µ2(K)2d(dR(K))4
(
∫

(O2f(x))2dx

)d

n−4

)
1

d+4

The rate of convergence of the AMISE in Equation (2.8) is of ordern
−4
4+d , and this

rate tends to be slower as the dimension of the kernel function increases [13]. The
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smoothing parameter with the minimum AMISE value is of order n
−1

(4+d) and the

expression contains the second derivatives of the unknown density f being estimated.

3. The Beta Polynomial Kernel Functions.

The beta polynomial kernel family is a class of kernel functions in which the func-

tion with higher degree has smoother estimates and also possesses more derivatives.

The general pth kernel of the beta polynomial family for p ≥ 0 with t ∈ [−1, 1] is of

the form

(3.1) Kp(t) =
(2p+ 1)!

2p+1(p!)2
(1− t2)p

where p=0,1,2,· · · ,∞ is the power of the polynomial function [3]. As the value of p

increases from 0 to 3, the resulting kernels are the Uniform, Epanechnikov, Biweight

and Triweight kernels which are members of this polynomial family. In this class of

kernels, the uniform kernel is the simplest kernel while the popular normal kernel is

the limiting case when p tends to infinity [4, 7]. These classes of kernels are popular

due to the desire to study their mathematical properties. This study examines the

effects of dimension on the AMISE and efficiencies of some polynomial kernels for

p=1,2,3,4 which are the Epanechnikov, Biweight, Triweight and Quadriweight kernel

functions and also their efficiencies as the dimension increases. The resulting kernel

functions for p=1,2,3,4 from the general form in Equation (3.1) are as follows. When

p=1, we have the Epanechnikov kernel also known as the quadratic kernel which is

of the form

(3.2) K1(t) =
3

4
(1− t2)

Again when p=2,3 and 4 we have the Biweight also known as the quartic kernel,

Triweight kernel and Quadriweight kernel which are as follows
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(3.3) K2(t) =
15

16
(1− t2)2

(3.4) K3(t) =
35

32
(1− t2)3

(3.5) K4(t) =
315

256
(1− t2)4

The Epanechnikov, Biweight, Triweight and Quadriweight kernel functions are of

wider applications because they form the basis when discussing this class of kernel

functions. Often times, the results obtain from these first members of this family of

kernels can be easily generalized to other higher powers of this family. The multi-

variate form of Equation (3.1) using the product approach that employs the product

of the univariate kernels is of the form

(3.6) Kproduct
p (t) = Ad

d
∏

i=1

(1− t2i )
p

where A = (2p+1)!
2p+1(p!)2

is the normalization constant and d is the dimension of the

kernel. The order of the smoothing parameter that minimizes the AMISE of the

product kernel is same as that of the multivariate fixed kernel in Equation (2.7) and

the AMISE is also of the same order as that of the multivariate fixed kernel. The

advantage of the multivariate product kernel over other forms is that the product

approach is beneficial especially when the scales of the variables to be considered

differ. Also, in the case of unimodal densities, the product kernel has been suggested

by many authors [8].
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4. The Efficiency of Kernel Density Estimator.

The efficiency of the univariate symmetric kernel which is measured in comparison

with the Epanechnikov kernel is of the form

(4.1) Eff(K) =

(

C(Ke)

C(K)

)
5
4

where C(K) = (R(K)4µ2(K)2)
1
5 is a constant of any given kernel and C(Ke) is the

constant of the Epanechnikov kernel [11]. The efficiency of the multivariate kernel

using the product method is given by

(4.2) Eff(Kp) =

(

C(Kp
e )

C(Kp)

)
d+4
4

where d is the dimension of the kernel; C(Kp
e ) is the higher dimensional product

form of the Epanechnikov kernel constant and C(Kp) is the higher dimensional prod-

uct form of any other given kernel. The value of the constant C(K) for the higher

dimensional product kernel can be obtained from the relation

(4.3) C(K) =
(

R(K)4µ2(K)2
)

d
d+4

where R(K) is the roughness of the kernel function and µ2(K) is the second moment

of the kernel function [13]. The minimizer of Equation (4.3) over K is exactly the

minimizer of C(K), which is the same as the Epanechnikov kernel. This simply implies

that the AMISE optimal product kernel of this family of kernels is

(4.4) Kp(t) =

(

3

4

)d d
∏

i=1

(1− t2i )

The computation of the smoothing parameter as stated in Equation (2.7) and the d-

dimensional efficiency in Equation (4.2) require the roughness of the kernel, moment

of the kernel and the roughness of the unknown probability density function. The
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roughness of the kernel function is usually of the form

(4.5) R(K) =

∫

K(t)2dt

Also, the second moment of any kernel function also known as the variance is of the

form

(4.6) µ2(K)2 =

∫

t2K(t)dt

The roughness of the unknown probability distribution function given in Equation

(2.2) is of the form

(4.7) R(f ′′) =

∫

f
′′

(x)2dx

The roughnesses of the Epanechnikov, Biweight, Triweight and Quadriweight kernels

will be obtained by numerically integrating their functions within the support interval

[-1,1].

5. Discussion of Results

The contribution of the bias and variance to the AMISE is determined by the mag-

nitude of the smoothing parameter. The results for the efficiencies and AMISE of the

Epanechnikov, Biweight, Triweight and Quadriweight kernels are obtain using Math-

ematica version 9. We examine the AMISE value for the stated kernel functions with

respect to their dimension using various sample sizes. The Epanechnikov, Biweight,

Triweight and Quadriweight kernel functions are of wide applications because they

form the basis when discussing this class of kernel functions. The efficiencies of these

kernels are in Table 5.1 and from the results, the efficiencies decrease as the power

and dimension increases except for the Epanechnikov kernel which is the optimum

kernel. The decrease in the efficiencies is as a result of the curse of dimensionality

effect which is associated with nonparametric estimators. However, the loss of effi-

ciencies with respect to power and dimension is minimal since the results in Table
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5.1 are all above 90% when express in percentage while the optimum kernel, which

is the Epanechnikov kernel, is 100%.

Table 5.1: Efficiencies of Beta Polynomial Kernel Functions for d=1,2,3,4 and 5

kernels p d=1 d=2 d=3 d=4 d=5

Epanechnikov 1 1.000 1.000 1.000 1.000 1.000

Biweight 2 0.994 0.988 0.982 0.976 0.970

Triweight 3 0.987 0.974 0.961 0.948 0.935

Quadriweight 4 0.981 0.963 0.945 0.927 0.909

Table 5.2: AMISE of Beta Polynomial Kernel Functions for the

First Sample n=2500.

kernels d=1 d=2 d=3 d=4 d=5

Epanechnikov 0.00155571 0.00304896 0.00454710 0.00583200 0.00681662

Biweight 0.00230713 0.00898822 0.03150200 0.10542500 0.34475400

Triweight 0.00266570 0.01218483 0.05054756 0.20132725 0.78641901

Quadriweight 0.00309917 0.01748168 0.09259572 0.48102589 2.4857679

Table 5.3: AMISE of Beta Polynomial Kernel Functions for the

Second Sample n=5000.

kernels d=1 d=2 d=3 d=4 d=5

Epanechnikov 0.00089352 0.00192072 0.00305997 0.00412385 0.00500931

Biweight 0.00132510 0.00566222 0.02119930 0.07454661 0.25334842

Triweight 0.00153104 0.00767596 0.03401599 0.14235987 0.57791357

Quadriweight 0.00178001 0.01101277 0.06231230 0.34013667 1.82670942
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Figure 1. A graph of the kernel functions for the values of p.

Figure 2. Bivariate Epanechnikov, Biweight, Triweight and Quadri-

weight Kernels.

The estimates of the univariate and bivariate kernels of the Epanechnikov, Bi-

weight, Triweight and Quadriweight kernels are in Figure 1 and Figure 2 respectively.
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The kernel functions with higher power tends to be smoother and the loops of the

bivariate kernels of Triweight and Quadriweight moves closer to the origin than the

bivariate kernels of the Epanechnikov and Biweight kernel functions in Figure 2, this

is due to their degree of differentiability and this implies that the Triweight and

Quadriweight kernel estimates will be better than those of Epanechnikov and Bi-

weight because they possess more derivatives. The effect of dimension on the AMISE

of the studied kernel functions is illustrated using two different sample sizes. The

first sample size is 2500 while the second sample size is 5000 and this is because non-

parametric estimation is mainly beneficial when the sample size is reasonably large.

Table 5.2 and Table 5.3 show the kernel functions and the AMISE values of the dif-

ferent sample sizes for the various dimensions. The results of Table 5.2 and Table 5.3

show that the value of the AMISE increases as the power of the polynomial function

increases and the AMISE increases as the dimension of the kernel function increases.

The Epanechnikov kernel is the optimum kernel with respect to the AMISE, where

optimality in kernel density estimation implies the kernel function with the minimum

AMISE value

The results in Table 5.2 and Table 5.3 are for the first and second sample sizes,

and from the results, the value of the AMISE increases with increase in the power of

the polynomial. Also, as the dimension of the kernel function increases, the value of

the AMISE increases as well. This simply means that an increase in dimension will

result in an increase in the value of the asymptotic mean integrated squared error and

vice versa. The reduction in the AMISE as a result of the increase in the sample size

implies that for nonparametric estimation to be beneficial; it requires large sample

sizes for its implementation. Hence the performances of the kernel estimators also

depend on the sample size.
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6. Conclusion.

This study illustrates the effects of dimension on the efficiencies and performance

of some kernels of the beta polynomial family using the AMISE as the error crite-

rion with different sample sizes. The results of the investigation reveal that as the

dimension of the kernel increases, there is decrease in the efficiencies and increase in

AMISE. The decrease in the efficiencies values of these kernel functions is as a result

of the curse of dimensionality effect that is associated with nonparametric estima-

tors. Again, as the sample size increases, there is decrease in the AMISE value and

this shows that sample sizes and dimensions affect the contribution of the bias and

variance to the AMISE in kernel density estimation.
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