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REMARKS ON ABSTRACT SUBDIFFERENTIAL

ZAKIEH FARABI (1), MOHSEN ALIMOHAMMADY (2), AND MEHDI ROOHI (3)

Abstract. In this paper, the notion of subdifferential is extended in the framework

of abstract convexity and some basic properties of this new concept is considered.

Also, a representation based on maximal elements is given. Our results is supported

by some examples.

1. Introduction

Abstract convexity was presented by Alexander Rubinov in [6]. Many applications

of abstract convex analysis in global optimization problems are certainly based on the

description of support sets or, at least, its maximal elements. The most useful tools

for this theory are abstract subdifferentials and abstract conjugate function. The

abstract subdifferential allows one to simplify description of the support functions

which coincide with the initial function at a given point. More details can be found

in [1–8] and the references cited therein.

Let X be a set and L be a set of real valued functions l : X → R. For each l ∈ L

and c ∈ R, consider the shift hl,c of l by the constant c

hl,c(x) := l(x)− c, (x ∈ X).

The set L is called a set of abstract linear functions if hl,c /∈ L, for all l ∈ L and all

c ∈ R\{0}. The set of all hl,c functions will be denoted by HL or for simplicity H. Let
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F(X) be the family of all functions f : X → R+∞ and the function −∞, where the

function −∞ is defined by −∞(x) = −∞, for every x ∈ X, and R+∞ := R ∪ {+∞}.

Recall (see [6]) that a function f ∈ F(X) is called H-convex, if

f(x) = sup{h(x) : h ∈ supp(f,H)}, ∀ x ∈ X,

where

supp(f,H) := {h ∈ H : h ≤ f}

is called the support set of the function f and h ≤ f if and only if h(x) ≤ f(x) for

all x ∈ X. The Fenchel-Moreau conjugate function to H-convex function f : X → R

is defined by f ∗ : L → R

f ∗(l) := sup
x∈X

(l(x)− f(x)), ∀l ∈ L,(1.1)

where, R := R ∪ {±∞} is the extended real line. Let f : X → R+∞, the abstract

subdifferential (or L-subdifferential) of f with respect to a subset Z ⊆ X at the point

x0 ∈ Z [6, Page 281] is defined as

∂L,Zf(x0) := {l ∈ L : l(x)− l(x0) ≤ f(x)− f(x0), ∀x ∈ Z}.

Generally, if Z = X we will set ∂Lf(x0) instead of ∂L,Xf(x0). The abstract subdiffer-

ential is a subset of L, its counterpart in the set H has been introduced in [6, Section

8.2.3] by

DL,Zf(x0) := {h ∈ H : h(x) = l(x)− l(x0), l ∈ ∂L,Zf(x0)}.

Since there will be no ambiguity regarding the choice of L and Z, we simply denote

DL,Zf by Df .
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2. Abstract ε̂L-Subdifferential

In this section, we define a new abstract subdifferential which is an extension of

L-subdifferential and then we establish some results about this new subdifferential.

Our results extend some well-known results of L-subdifferential theory in [6]. In the

sequel, we assume that X is a Banach space and Z a subset of X. Let ε ≥ 0, for

x0 ∈ dom f , we define ε̂L-subdifferential as

∂̂L,Z,εf(x0) := {l ∈ L : l(x)− l(x0) ≤ f(x)− f(x0) + ε‖x− x0‖, ∀ x ∈ Z}.(2.1)

Proposition 2.1. The following statements hold:

(i) If Z1 ⊆ Z2, then ∂̂L,Z1,εf(x0) ⊇ ∂̂L,Z2,εf(x0).

(ii) If L1 ⊆ L2, then ∂̂L1,Z,εf(x0) ⊆ ∂̂L2 ,Z,εf(x0).

(iii) If 0 ≤ γ < ε, then ∂̂L,Z,γf(x0) ⊆ ∂̂L,Z,εf(x0).

Proof. Let l ∈ ∂̂L,Z2,εf(x0). Then

l(x)− l(x0) ≤ f(x)− f(x0) + ε||x− x0||, ∀ x ∈ Z2.

Since Z1 ⊆ Z2, we get:

l(x)− l(x0) ≤ f(x)− f(x0) + ε||x− x0||, ∀ x ∈ Z1.

Therefore, l ∈ ∂̂L,Z1,εf(x0); i.e., (i) is proved. For (ii), let l ∈ ∂̂L1,Z,εf(x0). Then

l ∈ L1, l(x)− l(x0) ≤ f(x)− f(x0) + ε||x− x0||, ∀ x ∈ Z.

Since L1 ⊆ L2, we obtain that:

l ∈ L2, l(x)− l(x0) ≤ f(x)− f(x0) + ε||x− x0||, ∀ x ∈ Z.
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So l ∈ ∂̂L2,Z,εf(x0). This proves (ii). Finally, we assume l ∈ ∂̂L,Z,γf(x0) with 0 ≤ γ <

ε. Then

l(x)− l(x0) ≤ f(x)− f(x0) + γ||x− x0||

≤ f(x)− f(x0) + ε||x− x0||.

Therefore, l ∈ ∂̂L,Z,εf(x0) and hence (iii) is proved. �

Proposition 2.2. Let L be a set of abstract linear functions on X. Let f be an

HL-convex function, ε ≥ 0 and x0 ∈ X. Set

BL(x0) := {l ∈ L : f ∗(l) + f(x0)− l(x0) ≤ ε‖x− x0‖, ∀ x ∈ X}.

Then BL(x0) ⊆ ∂̂L,εf(x0).

Proof. Take l ∈ BL(x0). Therefore

l(x0)− f(x0) + ε‖x− x0‖ ≥ f ∗(l)

= sup
x∈X

(l(x)− f(x))

≥ l(x)− f(x).

Hence

l(x)− l(x0) ≤ f(x)− f(x0) + ε‖x− x0‖, ∀ x ∈ X;

i.e., l ∈ ∂̂L,εf(x0). �

The converse of the above proposition does not hold, for a counterexample see

Example 4.3.

Proposition 2.3. Let Z ⊆ X, g be a function on Z, x0 ∈ Z and ε ≥ 0. Let

f(x) = sup{h(x)− ε‖x− x0‖ : h ∈ HL and h(x)− ε‖x− x0‖ ≤ g(x), ∀ x ∈ Z}.

If ∂̂L,Z,εf(x0) 6= ∅, then the following statements are equivalent:
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(i) g(x0) = f(x0).

(ii) ∂̂L,Z,εf(x0) = ∂̂L,Z,εg(x0).

(iii) ∂̂L,Z,εg(x0) 6= ∅.

Proof. (i) ⇒ (ii): Let f(x0) = g(x0). By the definition of f , we have f(x) ≤

g(x). Assume that l ∈ ∂̂L,Z,εf(x0). Then

l(x)− l(x0) ≤ f(x)− f(x0) + ε‖x− x0‖, ∀ x ∈ Z

≤ g(x)− g(x0) + ε‖x− x0‖;

i.e., l ∈ ∂̂L,Z,εg(x0).

Now, suppose that l ∈ ∂̂L,Z,εg(x0). Then

l(x)− l(x0) ≤ g(x)− g(x0) + ε‖x− x0‖, ∀ x ∈ Z,

or equivalently,

l(x)− l(x0) + g(x0)− ε‖x− x0‖ ≤ g(x), ∀ x ∈ Z.

Let h(x) := l(x)− l(x0) + g(x0). Then

h(x)− ε‖x− x0‖ ≤ g(x), ∀ x ∈ Z.

The function h is L-affine, so

f(x) = sup{h(x) : h(x)− ε‖x− x0‖ ≤ g(x), ∀ x ∈ Z}

≥ h(x)− ε‖x− x0‖

= l(x)− l(x0) + g(x0)− ε‖x− x0‖

= l(x)− l(x0) + f(x0)− ε‖x− x0‖.

Therefore, l ∈ ∂̂L,Z,εf(x0).

(ii) ⇒ (iii): Since ∂̂L,Z,εf(x0) 6= ∅, by considering (ii) we get (iii).
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(iii) ⇒ (i): Let l ∈ ∂̂L,Z,εg(x0). Thus l(x) − l(x0) + g(x0) − ε‖x − x0‖ ≤ g(x).

Since h(x) = l(x)− l(x0) + g(x0), is L-affine and h(x)− ε‖x− x0‖ ≤ g(x) for

all x ∈ Z, we have:

h(x)− ε‖x− x0‖ ≤ sup{h : h(x) ≤ g(x) + ε‖x− x0‖, ∀ x ∈ Z} = f(x),

Since h(x0) = g(x0), we have g(x0) ≤ f(x0). On the other hand, f(x) ≤ g(x)

implies that f(x0) ≤ g(x0). Thus

g(x0) ≤ f(x0) ≤ g(x0) ⇒ f(x0) = g(x0).

The proof is completed. �

3. Some Characterization of ε̂L-Subdifferential

Denote by H the set of all L-affine functions. Fix a subset Z ⊆ X and x0 ∈ Z.

The set of L-subdifferentials of f may be very large, so it is useful to identify special

members of it, and relate them with special members of the support set on Z. In [6,

Proposition 7.1] it is proved that there exists a bijective correspondence between the

set of L-subdifferentials of f at x0 and the set

∂∗
H,Zf(x0) := {h ∈ H : h(x) ≤ f(x), ∀x ∈ Z, h(x0) = f(x0)}.(3.1)

This set is nonempty if and only if f is (H,Z)-convex at x0. In particular, Propo-

sition 7.1 of [6] allows us to determine whether the abstract subdifferential is empty

or nonempty. In some cases, for instance in [6, Example 8.3], the abstract subdif-

ferential at given point is empty, and hence we are forced to look at the abstract

ε̂L-subdifferentials of f at x0 with respect to the set Z. It is clear that for ε = 0 we

recover the set of abstract subdifferentials. Note also that every H-convex function on

Z has ε̂L-subdifferentials (for a proof of this fact, see page 286 in [6]). Our first result
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extends [6, Proposition 7.1] to the framework of abstract limiting subdifferentials.

The natural replacement for the set (3.1) is

∂∗
H,Z,εf(x0) := {h ∈ H : h(x) ≤ f(x) + ε‖x− x0‖, ∀ x ∈ Z, h(x0) = f(x0)}.(3.2)

Note that, when ε = 0, we recover the set ∂∗
H,Zf(x0). The proof of the next result

follows the same steps as in [6, Proposition 7.1] with some necessary changes.

Proposition 3.1. Let f : X → R+∞, Z ⊆ X and x0 ∈ Z. Suppose that l ∈ L, ε ≥ 0

and c := l(x0)− f(x0). Then the following statements are equivalent:

(i) l ∈ ∂̂L,Z,εf(x0).

(ii) hl,c ∈ ∂∗
HL,Z,ε

f(x0).

Proof. For ε = 0 the equivalence of the above statements are established in [6, Propo-

sition 7.1]. Therefore we only consider the case that ε > 0. By our assumption, we

have:

hl,c(x0) = l(x0)− c = f(x0).

Then

hl,c ∈ ∂∗
HL,Z,ε

f(x0) ⇔ ∀x ∈ Z, hl,c(x) ≤ f(x) + ε‖x− x0‖,

⇔ ∀ x ∈ Z, l(x)− c ≤ f(x) + ε‖x− x0‖,

⇔ ∀ x ∈ Z, l(x)− l(x0) + f(x0) ≤ f(x) + ε‖x− x0‖,

⇔ ∀ x ∈ Z, l(x)− l(x0) ≤ f(x)− f(x0) + ε‖x− x0‖,

⇔ l ∈ ∂̂L,Z,εf(x0).

�

Proposition 3.2. Let Z be a subset of a Banach space and let L be a set of abstract

linear functions. Suppose that f : Z → R be a Lipschitz function and x0 ∈ Z. Set



196 ZAKIEH FARABI, MOHSEN ALIMOHAMMADY AND MEHDI ROOHI

K := {l ∈ L : l(x) = a‖x− x0‖, a ≤ min{0, β̂ε(f, x0)}}, where

β̂ε(f, x0) := β(f, x0) + ε and β(f, x0) := inf
x6=x0,x∈Z

f(x)− f(x0)

‖x− x0‖
.

Then ∂̂L,Z,εf(x0) 6= ∅ and K ⊆ ∂̂L,Z,εf(x0). Moreover, equality holds for

L := {a‖x− x0‖ : a ≤ 0}.

Proof. It follows from ∂L,Zf(x0) ⊆ ∂̂L,Z,εf(x0) and ∂L,Zf(x0) 6= ∅ that ∂̂L,Z,εf(x0) 6= ∅

(see Proposition 7.2 in [6]). To prove the inclusion let l ∈ K so l(x) = a‖x−x0‖ with

a ≤ β̂ε(f, x0). Therefore,

a ≤ inf
x6=x0,x∈Z

f(x)− f(x0)

‖x− x0‖
+ ε.

That is for each x ∈ Z with x 6= x0 we have a ≤ f(x)−f(x0)
‖x−x0‖

+ ε, or equivalently

a‖x− x0‖ ≤ f(x)− f(x0) + ε‖x− x0‖, ∀ x ∈ Z,

and consequently,

l(x)− l(x0) ≤ f(x)− f(x0) + ε‖x− x0‖, ∀ x ∈ Z.

Therefore l ∈ ∂̂L,Z,εf(x0).

Suppose that L := {a‖x− x0‖ : a ≤ 0} and l ∈ ∂̂L,Z,εf(x0). From Proposition 3.1,

we have h ∈ ∂∗
HL,Z,ε

f(x0), where h(x) = a‖x− x0‖ − c with c = −f(x0). Hence,

h(x) ≤ f(x) + ε‖x− x0‖, ∀ x ∈ Z.

Therefore

a‖x− x0‖+ f(x0) ≤ f(x) + ε‖x− x0‖, ∀ x ∈ Z.

Equivalently,

a ≤
f(x)− f(x0)

‖x− x0‖
+ ε, ∀ x ∈ Z,
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and consequently,

a ≤ inf
x6=x0,x∈Z

f(x)− f(x0)

‖x− x0‖
+ ε = β̂ε(f, x0).

The proof is completed. �

Let Z ⊆ X, and let L be a set of elementary functions defined on X and H the set

of L-affine functions. For a fixed x0 ∈ Z the set

Dεf(x0) := {h ∈ H : h(x) = l(x)− l(x0), ∀x ∈ Z, l ∈ ∂L,Z,εf(x0)}.(3.3)

is defined in [6, Section 8.3.2]. Given a subset U of functions defined on Z, we say

that g ∈ U is a maximal element of the set U when g′ ∈ U , g′(x) ≥ g(x) for all

x ∈ Z implies that g′ = g. Proposition 8.4 in [6] establishes a bijection between

maximal elements of ∂∗
H,Zf(x0) and maximal elements of Df(x0). Inspired by this

result, we will establish a similar connection between maximal elements of ∂∗
H,Z,εf(x0)

and maximal elements of the set

D̂εf(x0) := {h− ε‖ · −x0‖ : h ∈ H, h(x) = l(x)− l(x0), ∀ x ∈ Z, l ∈ ∂̂L,Z,εf(x0)}.

(3.4)

A careful inspection of Proposition 8.4 in [6] shows that maximal elements in Df(x0)

are in bijective correspondence with those maximal elements h ∈ ∂∗
H,Zf which verify

h(x0) = f(x0). In other words, there is a one-to-one correspondence between maximal

elements of the sets ∂∗
H,Zf(x0) and Df(x0). With this stronger statement in mind,

our next result becomes Proposition 8.4 in [6] when ε = 0.

Proposition 3.3. Let f be HL-convex on Z ⊆ X, x0 ∈ Z, l ∈ L and ε ≥ 0. Then

for all x ∈ Z the following statements are equivalent:

(i) h(x)− ε‖x− x0‖ is a maximal element of D̂εf(x0)

(ii) h′(x) = l(x)− (l(x0)− f(x0)) is a maximal element of ∂∗
HL,Z,ε

f(x0).
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Proof. First assume that h(x) − ε‖x − x0‖, where h(x) = l(x) − l(x0) is a maximal

element of D̂εf(x0) and let g ∈ ∂∗
HL,Z,ε

f(x0) be such that

g(x) ≥ l(x)− (l(x0)− f(x0)) = h′(x).(3.5)

We show that g(x) = h′(x) for all x ∈ Z. It follows from the definition of ∂∗
HL,Z,ε

f(x0)

that g(x) = l′(x)− c′ for some l′ ∈ L, c′ ∈ R and also we have:

g(x0) = f(x0) = l′(x0)− c′.

Hence, c′ = l′(x0) − f(x0), which means that g(x) = l′(x) − (l′(x0) − f(x0)). Thus,

by (3.5)

l′(x)− l′(x0) ≥ l(x)− l(x0).

Therefore

l′(x)− l′(x0)− ε‖x− x0‖ ≥ l(x)− l(x0)− ε‖x− x0‖ = h(x)− ε‖x− x0‖.(3.6)

On the other hand, since g ∈ ∂∗
HL,Z,ε

f(x0),

f(x)− f(x0)− (l′(x)− l′(x0)) ≥ f(x)− f(x0)− (g(x)− f(x0))

= f(x)− g(x) ≥ −ε‖x− x0‖,

which implies that l′ ∈ ∂̂L,Z,εf(x0). Maximality of h − ε‖. − x0‖ in D̂εf(x0) and

inequality (3.6), imply that l′(x) − l′(x0) = l(x) − l(x0). Therefore, g(x) = l(x) −

(l(x0)− f(x0)) for all x ∈ Z and so g is a maximal element of ∂∗
HL,Z,ε

f(x0).

Conversely, let h′(x) = l(x) − (l(x0) − f(x0)) be a maximal element of ∂∗
HL,Z,ε

f(x0)

and let g − ε‖.− x0‖ ∈ D̂εf(x0) be such that

g(x)− ε‖x− x0‖ ≥ l(x)− l(x0)− ε‖x− x0‖ = h(x)− ε‖x− x0‖.
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We show that g(x) = h(x) for all x ∈ Z. By the definition of D̂εf(x0), there exists

l′ ∈ ∂̂L,Z,εf(x0) such that g(x) = l′(x)− l′(x0). Hence,

l′(x)− l′(x0) ≥ l(x)− l(x0), ∀ x ∈ Z,

and so

l′(x)− (l′(x0)− f(x0)) ≥ l(x)− (l(x0)− f(x0)) = h′(x), ∀ x ∈ Z.(3.7)

Since l′ ∈ ∂̂L,Z,εf(x0),

f(x) + ε‖x− x0‖ ≥ f(x0) + l′(x)− l′(x0),

≥ f(x0) + l(x)− l(x0) = h′(x).

Moreover, it follows from h′(x0) = f(x0) that h′ ∈ ∂∗
HL,Z,ε

f(x0). Therefore, by the

fact that h′ is a maximal element of ∂∗
HL,Z,ε

f(x0) and (3.7), we get

l′(x)− l′(x0) = l(x)− l(x0).

Thus g(x) = h(x) for all x ∈ Z and g−ε‖.−x0‖ is a maximal element of D̂εf(x0). �

4. Examples

The following example completes the Proposition 3.2.

Example 4.1. (i) Let L = {ax2 + bx : a < 0, b ∈ R}, Z1 = [−1/4, 1/4] and

Z2 = [−1, 1]. Let f : R → R be defined by f(x) = −|x − 1/2| for all x ∈ R.

Consider the abstract linear function l ∈ L defined by l(x) = −x2 + x. Then

one can verify that ∂̂L,Z1,εf(1/2) * ∂̂L,Z2,εf(1/2).

(ii) Let L1 = {a‖x − x0‖ : a ≤ min{0, β̂ε(f, x0)} and L2 = {a‖x − x0‖ : a ≤ 0}.

Let Z be a subset of R and f(x) = ‖x− 1/2‖ or any other lipschitz function.

Then by Proposition 3.2 for x0 ∈ Z we have ∂̂L1,Z,εf(x0) = ∂̂L2,Z,εf(x0).
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For a counterexample, let L1 = {a‖x−x0‖ : a ≤ −1} and L2 = {a‖x−x0‖ :

a ≤ 0}. Let Z = B(0, 1) and f(x) = −1/2‖x‖2. Take x0 = 0, then by

Proposition 3.2 we have

∂̂L2,Z,εf(0) = {l ∈ L : l(x) = a‖x− x0‖, a ≤ min{0, β̂ε(f, 0)}},

where

β̂ε(f, 0) : = inf
x6=x0,x∈Z

f(x)− f(x0)

‖x− x0‖
+ ε

= inf
x6=x0,x∈Z

−1/2‖x‖2

‖x‖
+ ε = −1/2 + ε.

We have β̂ε(f,0)>0, for every ε>1/2. Let l∈L2 be defined by l(x)=−1/2‖x‖.

Then for all ε > 1/2, it is easy to see that ∂̂L2 ,Z,εf(0) * ∂̂L1,Z,εf(0).

(iii) Let L = {ax2 + bx : a < 0, b ∈ R}, Z = [−1/4, 1/4] , f : R → R be defined by

f(x) = −|x − 1/2| for all x ∈ R and let l ∈ L be defined by l(x) = −x2 + x.

Then it is easy to check that l ∈ ∂̂L,Z,3/4f(1/2) \ ∂̂L,Z,1/4f(1/2).

Example 4.2. Let L := {a‖x−x0‖ : a ≤ 0} as in the second part of Proposition 3.2.

Let f(x) = −‖x‖2 and take x0 = 0. Notice that β(f, 0) = inf{−‖x‖ : x 6= 0, x ∈ Z}

and β̂ε(f, 0) := β(f, 0) + ε. So when Z is unbounded, both of them is −∞ and so

∂̂L,Z,εf(0) will be the empty set.

Assume that Z = B(0, 1) is the unit ball of X. Then we have β(f, 0) = −1 and

β̂ε(f, 0) = ε − 1. Hence, in order to have the inclusion ∂̂L,Z,εf(0) ( L hold, suppose

that ε < 1. Since l(0) = 0, by Proposition 3.3 and Proposition 3.2, the maximal

element of D̂εf(0) is equal to

β̂ε(f, 0)‖x− x0‖ − ε‖x− x0‖ = (ε− 1)‖x‖ − ε‖x‖ = −‖x‖.

The corresponding element in ∂∗
HL,Z,ε

f(0) is h′(x) = (ε− 1)‖x‖.
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Example 4.3. Let L := {a‖x − x0‖ : a ≤ 0} as in the second part of Proposition

3.2. Let f(x) = −2‖x‖ and take x0 = 0. Assume that Z = B(0, 1), the unit ball of

X. Suppose that l ∈ ∂̂L,εf(x0) and ε < 1.

Since l(0) = f(0) = 0, by Proposition 3.2, we have β(f, 0) = −1, β̂ε(f, 0) = ε − 1

and

f ∗(l) + f(x0)− l(x0) = sup
x∈X

(l(x)− f(x))

≥ l(x)− f(x) = a‖x‖+ 2‖x‖.

Now take a = β̂ε(f, 0), so

f ∗(l) + f(x0)− l(x0) ≥ (ε− 1)‖x‖+ 2‖x‖ > ε‖x‖ = ε‖x− x0‖.

That is the converse of Proposition 2.2 does not hold.
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