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GENERALIZED COMPLEX SPACE FORMS

UPPARA MANJULAMMA (1), NAGARAJA H G (2) AND KIRAN KUMAR D L (3)

Abstract. In this paper, we find an eigen value of Ricci operator corresponding

to scalar curvature r of a generalized complex space form and we give conditions

for the existence of a generalized complex space form.

1. Introduction

A complex space form is an n-dimensional Kahler manifold of constant holomor-

phic sectional curvature c. In 1981, Tricerri and Vanhecke [17] introduced the notion

of generalized complex space form and proved the condition for an almost Hermitian

manifold to be a generalized complex space form. Further in ([10])the author proved

that a 2n(n ≥ 3) dimensional generalized complex space form is a real or a complex

space form. Later Bagewadi and co-authors ([2], [11], [13]) made an extensive study

of these space forms. The local symmetry is an useful notion in Riemannian geome-

try. This class of Riemannian symmetric manifolds is a very natural generalization of

the class of manifolds of constant curvature. As a generalization of locally symmetric

spaces, many geometers have considered semi-symmetric spaces and inturn their gen-

eralizations. We would like to have these notions, local symmetry, semi-symmetry in

complex manifolds. In particular in generalized complex space forms.
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The W-curvature tensor introduced by Pokhriyal ([14]) has been studied by a

number of authors in different contexts. In particular Ahsan et al. ([1]) have made

a detailed study of this tensor on the spacetime of general relativity. In most of the

cases, Schouten tensor is an Einstein tensor. Motivated by the all important roles

of local symmetry, semi symmetry and W-curvature tensor in the study of different

differential geometric structures, we have made a study of these notions in generalized

complex space forms.

In this paper we study conformally flat, W2-flat, locally-symmetric, generalized recur-

rent, semi-symmetric and pseudo-symmetric generalized complex space forms. The

paper is organized as follows. In Section 2, we give definitions, notations of gen-

eralized complex space forms. Section 3 deals with conformally flat and W2-flat

generalized complex space forms. In Section 4, we deal with locally symmetric and

generalized recurrent generalized complex space forms. Lastly, in Section 5, we study

semi-symmetric and Ricci generalized pseudo symmetric generalized complex space

forms.

2. Preliminaries

In this section we recall some general definitions and basic formulas which will be

used later. Let M be an n-dimensional Kahler manifold with the complex structure

J and the metric g satisfying the following conditions:

J2X = −X, g(JX, JY ) = −g(X, Y ), (∇XJ)(Y ) = 0, g(JX, Y ) = −g(X, JY ),

(2.1)

for all X, Y , Z ∈ TM , where TM denotes the Lie algebra of smooth vector fields on

M . In a Kahler manifold the following relations hold [3]:

(2.2) R(X, Y ) = R(JX, JY )
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(2.3) S(X, Y ) = S(JX, JY )

(2.4) S(X, JY ) + S(JX, Y ) = 0

(2.5) (∇XR)(Y, Z, U, V ) = (∇XR)(JY, JZ, U, V )

(2.6) (∇XR)(Y, Z, , U, V ) = (∇XR)(Y, Z, JU, JV ),

where R and S are respectively Riemannian curvature tensor and Ricci tensor. The

holomorphic sectional curvature ofM is given by R(X, JY,X, JY ) = R(JX, Y, JX, Y ).

An n-dimensional Kahler manifold of constant holomorphic sectional curvature c is

called a complex space form. The curvature tensor of a complex space form is given

by

(2.7)

R(X, Y )Z =
c

4

[

g(Y, Z)X−g(X,Z)Y +g(X, JZ)JY −g(Y, JZ)JX+2g(X, JY )JZ
]

.

The models of complex space form are complex Euclidean space Cn, complex projec-

tive space CP n and complex hyperbolic space CHn, depending on c = 0, c > 0 or

c < 0.

In the following we give generalization of the notion of complex space form.

Definition 2.1. An 2n(n ≥ 2)-dimensional almost Hermitian manifold (M,J, g) is

called a generalized complex space form M(f1, f2) if its Riemannian curvature tensor

R takes the form

R(X, Y )Z =f1
[

g(Y, Z)X − g(X,Z)Y
]

+ f2
[

g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ
]

,
(2.8)

for any X, Y , Z ∈ TM , where f1 and f2 are smooth functions on M .
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In an n-dimensional Riemannian manifold (M, g)(n ≥ 3), the Schouten tensor L is

given by

(2.9) LX =
−1

2n− 1
QX +

r

4n(2n− 1)
X.

In an almost Hermitian manifold M , the Weyl conformal curvature tensor is given

by

(2.10)

W (X, Y )Z = R(X, Y )Z −
[

g(LX,Z)Y − g(Y, Z)LX − g(LY, Z)X + g(X,Z)LY
]

,

for any X, Y , Z ∈ TM .

In 1970, Pokhariyal and Mishra [14] introduced the notion of W2-curvature tensor

field. It is defined by

(2.11) W2(X, Y )Z = R(X, Y )Z +
1

n− 1

[

g(X,Z)QY − g(Y, Z)QX
]

.

A generalized complex space form M(f1, f2) is said to be locally symmetric if

(2.12) (∇WR)(X, Y )Z = 0, X, Y, Z,W ∈ TM.

The notion of generalized recurrent manifolds was introduced and studied by De and

Guha [7].

Definition 2.2. A generalized complex space form M(f1, f2) is called generalized

recurrent [8] if its curvature tensor R satisfies

(2.13) (∇WR)(X, Y )Z = A(W )R(X, Y )Z +B(W )G(X, Y )Z,

for all X, Y , Z , W ∈ TM , where A and B are two non-vanishing 1-forms such that

A(X) = g(X, ρ1), B(X) = g(X, ρ2). Here ρ1and ρ2 are vector fields associated with

1-forms A and B respectively and the tensor G is defined by

(2.14) G(X, Y )Z = g(Y, Z)X − g(X,Z)Y,

for all X, Y , Z ∈ TM .
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For a (0, k)-tensor (k ≥ 1) field T on (M, g), we define a (0, k+2)-tensor field R ·T

by the condition

(R · T )(Y, Z,X1, X2.....Xk) = −
k

∑

i=1

T (X1, ...., R(Y, Z)Xi, ....., Xk)

and a (0, k + 2)-tensor field (k ≥ 1) Q(g, T ) is defined by

Q(g, T )(Y, Z,X1, ....., Xk) = −

r
∑

i=1

T (X1, ...., (Y ∧g Z)Xi, ...., Xk).

This tensor gives a formulation of the notions of various pseudo-symmetry type cur-

vature conditions.

A Riemannian manifold M is said to be semi-symmetric if its curvature tensor R

satisfies R(X, Y ) ·R = 0, where R(X, Y ) acts on R as derivation ( [15], [16]).

A complete intrinsic classification of these was given by Szabo [15]. A Riemannian

manifold is said to be pseudo symmetric ([6], [9]) if

R ·R = LRQ(g, R),

holds on the set UR =
{

x ∈ M/R −
r

n(n− 1)
G 6= 0 at x

}

, where G is the (0,4)-

tensor defined by G(X1, X2, X3, X4) = g((X1 ∧X2)X3, X4) and LR is some function

on UR, where (X ∧g Y ) is the endomorphism given by

(X ∧g Y )Z = g(Y, Z)X − g(X,Z)Y.

A Riemannian manifold is said to be Ricci generalized pseudo symmetric if

(2.15) R · S = LSQ(g, S),

holds on the set US = {x ∈ M : Q(g, S) 6= 0 at x} and LS is some function on US.

A symmetric tensor field T of type (1,1) in M(f1, f2) is said to be of Lie codazzi type

if

(2.16) (∇XL)(Y )− (∇YL)(X) = 0.



208 UPPARA MANJULAMMA, NAGARAJA H G AND KIRAN KUMAR D L

In [4] S. Bochner defined the Bochner curvature tensor B on a Kahler manifold M

by

B(X, Y, Z, U) =R(X, Y, Z, U)−
1

2n+ 4

[

S(X,U)g(Y, Z)− S(X,Z)g(Y, U)

+ S(JX, U)g(JY, Z)− S(JX,Z)g(JY, U) + S(Y, Z)g(X,U)

− S(Y, U)g(X,Z) + S(JY, Z)g(JX, U)− S(JY, U)g(JX,Z)

− 2S(JX, Y )g(JZ, U)− 2S(JZ, U)g(JX, Y )

]

+
r

(2n+ 2)(2n+ 4)

[

g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

+ g(JY, Z)g(JX, U)− g(JX,Z)g(JY, U)− 2g(JX, Y )g(JZ, U)

]

,

(2.17)

for all X, Y, Z, U ∈ TM .

3. Conformally flat and W2-flat Generalized Complex Space Forms

Let M(f1, f2) be an n-dimensional generalized complex space form and let {ei}
n
i=1

be an orthonormal basis of the tangent space at each point of the manifold. We derive

from (2.8), the following:

(3.1) S(Y, Z) =
(

(n− 1)f1 + 3f2
)

g(Y, Z)

(3.2) QY =
(

(n− 1)f1 + 3f2
)

Y

(3.3) r = n
(

(n− 1)f1 + 3f2
)

,

where Q is the Ricci operator and r is scalar curvature of the space form M(f1, f2).

Using (3.2) and (3.3) in (2.9), we get

(3.4) LX =
−3

4

[(n− 1)f1 + 3f2
2n− 1

]

X.
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Theorem 3.1. In an n-dimensional generalized complex space form M(f1, f2) the

following hold:

(i) the Schouten tensor L is of Lie-Coddazi type if and only if (n − 1)f1 + 3f2 is a

constant

(ii) if (n − 1)f1 + 3f2 is a constant then the Schouten tensor L is Solenoidal if and

only if traceL is constant.

Proof. Differentiating (3.4) covariantly with respect to X, we obtain

(3.5) (∇XL)Y−(∇Y L)X =
3

4(2n− 1)

[

Y
(

(n−1)f1+3f2

)

X−X
(

(n−1)f1+3f2

)

Y
]

.

If (n− 1)f1 + 3f2 is a constant, then L is of Lie-Codazzi type.

Conversely, suppose L is of Lie-Codazzi type. Then from (3.5), we have

(3.6) Y
(

(n− 1)f1 + 3f2
)

X +X
(

(n− 1)f1 + 3f3
)

Y = 0.

Contracting the above equation with W , we obtain

(Y α)g(X,W ) + (Xα)g(Y,W ) = 0,

where α = (n− 1)f1 + 3f2.

Taking Y = W = ei and summing over i = 1, 2, 3......n, we get

(3.7) Y
(

(n− 1)f1 + 3f2

)

= 0,

for all vector fields Y ∈ TM .

Therefore (n− 1)f1 + 3f2 is a constant.

Further if (n − 1)f1 + 3f2 is a constant then contracting (3.5) with W , setting Y =

W = ei , summation over i, 1 ≤ i ≤ n, gives

(3.8) ∇Xg(Lei, ei)− (divL)(X) =
−3(n− 1)

4(2n− 1)
X
(

(n− 1)f1 + 3f2

)

.
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This leads to

(3.9) (divL)(X) = X
(

(traceL) +
3(n− 1)

4(2n− 1)

(

(n− 1)f1 + 3f2
)

)

.

From (3.9), we see that L is Solenoidal ( i.e., divL = 0 ) if and only if traceL is a

constant. This completes the proof. �

In the following we prove that conformality leads to vanishing of (n− 1)f1 + 3f2.

Theorem 3.2. In an n-dimensional Kahlerian manifold, vanishing of conformal or

W2-curvature tensor gives vanishing of curvature tensor R. In particular in a con-

formally flat or W2-flat generalized complex space form we have (n− 1)f1 + 3f2 = 0.

Proof. If n-dimensional Kahlerian manifold M is W2-flat then from (2.11), we get

(3.10) R(X, Y, Z,W ) =
1

n− 1

[

S(X,W )g(Y, Z)− S(Y,W )g(X,Z)
]

Letting X = JX and Y = JY and using (2.3), we get

(3.11)

g(Y, Z)S(X,W )− g(X,Z)S(Y,W ) = g(JY, Z)S(JX,W )− g(JX,Z)S(JY,W ).

Letting Y = Z = ei in (3.11) and using (2.3) and (2.4), we get

S(Y, Z) = 0

which when substituted in (3.10) gives

R(X, Y, Z,W ) = 0.

Thus vanishing of W2-tensor in a Kahlerian manifold leads to vanishing of curvature

tensor R and all other curvatures in Kahlerian manifold.
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If M is conformally flat then from (2.10), we have

R(X, Y, Z,W ) =
1

2n− 1

[

S(Y, Z)g(X,W )− S(X,Z)g(Y,W ) + S(X,W )g(Y, Z)

− g(X,Z)S(Y,W )
]

+
r

2n(2n− 1)

[

g(X,Z)g(Y,W )− g(Y, Z)g(X,W )
]

.

(3.12)

Changing X to JX and Y to JY and in view of (2.3), we have

[

S(Y, Z)g(X,W )− S(X,Z)g(Y,W ) + S(X,W )g(Y, Z)− S(Y,W )g(X,Z)

− S(JY, Z)g(JX,W ) + S(JX,Z)g(JY,W )− S(JX,W )g(JY, Z) + g(JX,Z)S(JY,W )
]

=
r

2n

[

g(JX,Z)g(TY,W )− g(JY, Z)g(JX,W )− g(X,Z)g(Y,W ) + g(Y, Z)g(X,W )
]

.

(3.13)

Letting Y = Z = ei in (3.13) and summing over i = 1, 2....n, gives

(3.14) S(X,W ) =
−(n + 2)

2n(n− 4)
rg(X,W ).

Setting X = W = ei in (3.14), gives

(3.15) r = 0.

Using (3.15) in (3.14) and (3.12), we get

(3.16) R(X, Y, Z,W ) = 0.

Thus the vanishing of conformal curvature tensor in a Kahlerian manifold M vanishes

curvature tensor R and all other curvature tensors in M .

In particular, in a generalized complex space formM(f1, f2) if the conformal curvature

tensor or W2 tensor vanishes then from (3.3), we get

(3.17) (n− 1)f1 + 3f2 = 0.

This completes the proof.

�
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Combining the above theorems 3.1 and 3.2, we write the following corollary.

Corollary 3.1. In a W2-flat or conformally flat generalized complex space form, the

Schouten tensor L is Solenoidal if and only if trace L is a constant.

4. Locally symmetric and generalized recurrent generalised

Complex space forms

Let M(f1, f2) be a generalized complex space form and let {ei}
n
i=1

be an orthonor-

mal basis of the tangent space at each point of M .

Theorem 4.1. In a locally symmetric generalized complex space form, (n−1)f1+3f2

is a constant.

Proof. Differentiating (2.8) covariantly with respect to W , we have

(∇WR)(X, Y )Z =(Wf1)
[

g(Y, Z)X − g(X,Z)Y
]

+ (Wf2)
[

g(X, JZ)JY − g(Y, JZ)JX + 2g(X, JY )JZ
]

.
(4.1)

If M(f1, f2) is locally symmetric then from (4.1), we obtain

(Wf1)
[

g(Y, Z)g(X,U)− g(X,Z)g(Y, U)
]

+ (Wf2)
[

g(X, JZ)g(JY, U)− g(Y, JZ)g(JX, U) + 2g(X, JY )g(JZ, U)
]

= 0.
(4.2)

Letting Z = W = ei in (4.2), we obtain

(4.3)

(Y f1)
[

g(X,U)−(Xf1)g(Y, U)−(JXf2)g(JY, U)+(JY f2)g(JX, U)−2(JUf2)g(X, JY )
]

= 0.

Setting X = U = ei in (4.3), we get

Y
(

(n − 1)f1 + 3f2
)

= 0 for all vector fields Y on M i.e., (n − 1)f1 + 3f2 is a

constant. �

Theorem 4.2. A generalized recurrent Kahlerian manifold reduces to recurrent Kahle-

rian manifold. Further in a generalized complex space form recurrent vector A is
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an eigen vector of Ricci operator Q corresponding to eigen value r if and only if

(n− 1)f1 + 3f2 is a constant.

Proof. Suppose M(f1, f2) is a generalized recurrent generalized complex space form.

From (2.13) and (2.5), we have

(4.4)

B(W )
[

g(Y, Z)g(X,U)− g(X,Z)g(Y, U) + g(Y, Z)g(X,U) + g(X, JZ)g(JY, U)
]

= 0.

Letting Y = U = ei in (4.4) gives

(n− 2)g(X,Z)B(W ) = 0.

or

B(W ) = 0.

Equation(2.13) reduces to

(4.5) (∇XR)(Y, Z)W = A(X)R(Y, Z)W.

i.e., M(f1, f2) reduces to a recurrent generalized complex space form.

From (4.5), we have

(4.6) (∇XS)(Y, Z) = A(X)S(Y, Z).

It is well known that

(4.7) (divR)(X, Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z).

Differentiating (2.8) covariantly with respect to W , we have

(∇XR)(Y, Z)W = (Xf1)
[

g(Z,W )Y − g(Y,W )Z
]

+ (Xf2)
[

g(Y, JW )JZ − g(Z, JW )JY + 2g(Y, JZ)JW
]

.
(4.8)
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Using (4.6) and (4.7) in (4.8), we obtain

A(X)S(Y, Z)− A(Y )S(X,Z) = (Xf1)g(Y, Z)− (Y f1)g(X,Z)

+ (JY f2)g(X, JZ)− (JXf2)g(Y, JZ) + 2(JZf2)g(X, JY ).
(4.9)

Letting X = Z = ei in (4.9), we get

(4.10) S(Y, ρ)− rA(Y ) = −Y
(

(n− 1)f1 + 3f2
)

,

which implies Qρ = rρ if and only if (n− 1)f1 + 3f2 is a constant.

This shows that ρ in an eigen vector of Q corresponding to eigen value r if and only

if (n− 1)f1 + 3f2 is a constant. This completes the proof. �

The following corollary is immediate from theorem (3.1) and theorem (4.2).

Corollary 4.1. If in a generalized recurrent generalized complex space form with

recurrence vector ρ, Schouten tensor L is codazzi type then ρ is an eigen vector of

Ricci operator Q corresponding to eigen value r.

5. Semi-symmetric and Pseudo-symmetric generalized Complex space

forms

Let M(f1, f2) be a generalized complex space form and {ei} be an orthonormal

basis of the tangent space at each point of M . A generalized complex space form

M(f1, f2) is J-semi-symmetric if

(5.1) (R(X, Y ) · J)Z = R(X, Y )JZ − JR(X, Y )Z = 0,

for any vector fields X, Y and Z ∈ TM .

Theorem 5.1. In a J-semi symmetric generalized complex space form with f1 and

f2 as associated functions, we have f1 = f2.
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Proof. Letting Z = JZ and contracting with W in (2.8), we get

R(X, Y, JZ,W ) =f1
[

g(Y, JZ)g(X,W )− g(X, JZ)g(Y,W )
]

+ f2
[

g(X,Z)g(Y, JW )

+ g(Y, Z)g(JX,W )− 2g(X, JY )g(Z,W )
]

.

(5.2)

Applying J to R(X, Y )Z and contracting with W in (2.8), we get

g(JR(X, Y, Z,W ) =f1
[

g(Y, Z)g(JX,W )− g(X,Z)g(JY,W )
]

+ f2
[

g(JX,Z)g(Y,W )

+ g(Y, JZ)g(X,W )− 2g(X, JY )g(Z,W )
]

.

(5.3)

If M(f1, f2) is J-semi symmetric then from (5.1), (5.2) and (5.3), we get

f1
[

g(Y, JZ)g(X,W )− g(X, JZ)g(Y,W )
]

+ f2
[

g(X,Z)g(Y, JW ) + g(X,Z)g(JY,W )

− g(Y, Z)g(JX,W ) + g(Y, Z)g(JX,W )

− 2g(X, JY )g(Z,W )− g(JX,Z)g(Y,W )

− g(X,W )g(Y, JZ) + 2g(X, JY )g(Z,W )
]

= 0.

(5.4)

Letting Y = Z = ei in (5.4), in view of g(ei, Jei) = S(ei, Jei) = 0, we obtain

(5.5) (n− 2)(f1 − f2)g(X, JW ) = 0,

which implies f1 = f2 for n ≥ 3.

�

The following corollary is immediate from theorem (3.1) and theorem (5.1).

Corollary 5.1. A J-semi symmetric generalized complex space form M(f1, f2) re-

duces to a complex space form provided the Schouten tensor L is of codazzi type or

M(f1, f2) is locally symmetric.
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Theorem 5.2. A generalized complex space form is always Ricci semi-symmetric

and if it is Ricci generalized pseudo symmetric then it is Einstein.

Proof. If M(f1, f2) is Ricci semi-symmetric then from (3.1), it follows that

(R(X, Y ) · S) = S(R(X, Y )Z,W ) + S(Z,R(X, Y )W )

=
(

(n− 1)f1 + 3f2
)

(g(R(X, Y )Z,W ) + g(R(X, Y )W,Z)) = 0,
(5.6)

since R(X, Y, Z,W ) = −R(X, Y,W,Z). Suppose M(f1, f2) is psudo generalized Ricci

semi symmetric. Then from (5.6), we have

(5.7) LS

(

g(Y, U)S(X, V )−g(X,U)S(Y, V )+g(Y, V )S(U,X)−g(X, V )S(U, Y )
)

= 0.

Letting Y = U = ei in (5.7) gives

(5.8) S(X, V ) = rg(X, V ),

since LS 6= 0. �

Theorem 5.3. An n-dimensional Bochner flat, Ricci generalized pseudo symmetric

Kahlerian manifold is a generalized complex space form.

Proof. Suppose Kahlerian manifold M is Ricci generalized pseudo symmetric. Then

from (2.15), we have

(5.9) R(X, Y ) · S = LSQ(g, S),

which is equivalent to

S(R(X, Y )Z, U) + S(Z,R(X, Y )U) = −LS

(

g(X,Z)S(Y, U)− g(Y, Z)S(X,U)

+ g(Y, U)S(Z,X)− g(X,U)S(Z, Y )
)

.

(5.10)
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Letting Z = JZ and U = JU in (5.10), we get

S(R(X, Y )JZ, JU) + S(JZ,R(X, Y )JU) = −LS

[

g(X, JZ)S(Y, JU)

− g(Y, JZ)S(X, JU) + g(Y, JU)S(Z, JX)− g(JX, U)S(JZ, Y )
]

.(5.11)

If M is J-semi symmetric then (5.11) gives

S(JR(X, Y )Z, JU) + S(JZ, JR(X, Y )U) = −LS

[

g(X, JZ)S(Y, JU)

− g(Y, JZ)S(X, JU) + g(Y, JU)S(Z, JX)− g(JX, U)S(JZ, Y )
]

.
(5.12)

From (2.3), (5.10) and (5.12), we have

LS

[

g(X,Z)S(Y, U)− g(Y, Z)S(X,U) + g(Y, U)S(X,Z)

− g(X,U)S(Y, Z)− g(X, JZ)S(Y, JU) + g(Y, JZ)S(X, JU)

− g(Y, JU)S(JZ,X) + g(X, JU)S(JZ, Y )
]

= 0.

(5.13)

Letting X = Z = ei in (5.13), we get

(5.14) LS

[

(n− 4)S(Y, U) + rg(Y, U)
]

= 0,

which implies

(5.15) S(Y, U) = −
r

n− 4
g(Y, U),

since LS 6= 0. If M is Bochner flat then from (5.15) and (2.17), we get

R(X, Y, Z, U) = f1
[

g(X,Z)g(Y, U)− g(Y, Z)g(X,U)
]

+

f2
[

g(JX,Z)g(JY, U)− g(Y, Z)g(JX, U) + 2g(Y, JX)g(JZ, U)
]

,
(5.16)

where f1 = f2 =
5nr

(2n+ 4)(n− 4)(2n+ 2)
. �
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