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COMPATIBLE AND WEAKLY COMPATIBLE MAPS IN A

COMPLEX FUZZY METRIC SPACE

SHOBHA JAIN (1) AND SHISHIR JAIN (2)

Abstract. In this paper we introduce the notion of compatibility of self maps

in a complex fuzzy metric space. Using this, we establish some common fixed

point theorems employing a generalized contractive condition, which extend and

generalize the existing results in fuzzy metric spaces to a complex fuzzy metric

space.They also generalize the existing results of Singh et al.[13] in a complex fuzzy

metric space.

1. Introduction

The concept of fuzzy complex number was first introduced by J. J Buckley in 1989

in [2]-[4].In [10] Ramot et al. characterized the complex fuzzy set by a membership

function, whose range is not limited to [0, 1] but extended to unit circle in the com-

plex plane.The frame of fuzzy complex analysis theory has had its primary shape and

tends to form a new branch of Mathematics step by step.This new branch subject

will be widely applied in fuzzy system theory, specially in fuzzy dynamical system

theory, and will also be widely applied in the field of computational intelligence. It
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is well known that the fixed point theory plays a very important role in Mathemat-

ical theory and applications. In particular, it has important place in finding roots

of algebraic equations and numerical Mathematics. Recently, Singh et al.[13] proved

some fixed point theorems for two self mapping in the setting of a complex valued

fuzzy metric space. Sessa [12] initiated the tradition of improving commutativity in

fixed point theorems by introducing the notion of weakly commuting maps in metric

space and Jungck [7] enlarged this concept to compatible maps.

The aim of this paper is to introduce the notion of compatible maps in complex

fuzzy metric space.Using this notion we prove some fixed point theorems.Our results

improve and extend the results of Singh et al.[13].

2. Preliminaries

Throughout this paper we use the symbols and basic definitions of Singh et al.[13].

In view of partial order relation defined by Azam et al.[1] and Singh et al.[13] we

define the relation ” � ” in [0, 1]eiθ, for a fixed θ ∈ [0, π
2
]( for comparing two complex

number) as follows:

z1, z2 ∈ [0, 1]eiθ, z1 = r1e
iθ, z2 = r2e

iθ, z1 � z2 ⇔ r1 ≤ r2.

It follows that z1 � z2 if one of the following conditions are satisfied :

• Re(z1) = Re(z2), then r1 = r2.

• Re(z1) < Re(z2), then r1 < r2.

Thus we define

• min{z1, z2} = z1 if z1 � z2.

• max{z1, z2} = z1 if z2 � z1, etc.

Definition 2.1. [13]: A complex fuzzy set S, defined on a universe of discourse U ,

is characterized by a membership function µs(x) that assign every element x ∈ U, a
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complex valued grade of membership in S. The values µs(x) lie within the unit circle

in the complex plane, and thus are of the form

µs(x) = rs(x)e
iws(x), i =

√
−1

where rs(x) and ws(x) both real-valued with rs(x) ∈ [0, 1].

Definition 2.2. [13] : A binary operation ∗ : [0, 1]eiθ × [0, 1]eiθ → [0, 1]eiθ, where

θ ∈ [0, π
2
] is fixed, is called a complex valued continuous t-norm if it satisfies the

following conditions:

• ∗ is associative and commutative.

• ∗ is continuous.

• a ∗ eiθ = a, for all a ∈ [0, 1]eiθ (existence of identity element eiθ = 1.eiθ).

• a ∗ b � c ∗ d, whenever a � c and b � d, for all a, b, c, d ∈ [0, 1]eiθ.

Example 2.1. of t-norm are

• a ∗ b = min{a, b}, a, b ∈ [0, 1]eiθ,

• a ∗ b = max{a+ b− eiθ, 0},

for a fixed θ ∈ [0, π
2
].

Note: Throughout this article, θ is taken to be fixed angle in [0, π
2
] with the as-

sumption that the complex fuzzy sets S = {(x, µs(x)) : x ∈ U} interact with other

complex valued fuzzy metric sets in view of the partial ordering due to Azam et al.[1].

Now,we define a complex valued fuzzy metric space as follows:

Definition 2.3. [13] : The 3-tuple (X,M, ∗) is said to be a complex valued fuzzy

metric space, if X is an arbitrary non-empty set, ∗ is a complex valued continuous t-

norm and M : X2× (0,∞) → [0, 1]eiθ, is a complex fuzzy set, satisfying the following

conditions :
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(CFM − 1) M(x, y, 0) � 0;

(CFM − 2) M(x, y, t) = eiθ, ∀t > 0 if and only if x = y;

(CFM − 3) M(x, y, t) = M(y, x, t);

(CFM − 4) M(x, y, t) ∗M(y, z, s) � M(x, z, t + s);

(CFM − 5) M(x, y, .) : (0,∞) → [0, 1]eiθ, is continuous,

for all x, y, z ∈ X and s, t > 0.

M is called a complex fuzzy metric in the complex fuzzy metric space (X,M, ∗).

Remark 1. : If θ = 0, then Complex fuzzy metric space becomes ordinary fuzzy

metric space in sense of George and Veeramani.

Example 2.2. [13]: Let X = N .Define a ∗ b = min{a, b},for all a, b ∈ [0, 1]eiθ, where

θ ∈ [0, π/2] is fixed. Taking

M(x, y, t) = eiθe−|x−y|/t, for all x, y ∈ X and t ∈ (0,∞). Then (X,M, ∗) is a complex

valued fuzzy metric space.

Example 2.3. [13]: Let X = N. Define a ∗ b = min{a, b}, for all a, b ∈ [0, 1]eiθ,

where θ ∈ [0, π
2
] is fixed. We define

M(x, y, t) =







eiθ
x
y , if x ≤ y;

eiθ
y

x , if y ≤ x;

for all x, y ∈ X and t ∈ (0,∞).

Then (X,M, ∗) is not a complex valued fuzzy metric space.

In view of partial ordering due to Azam et al.[1] increasing and decreasing functions

for the set of complex number, are defined.

Definition 2.4. [13]: Let X be any non-empty ordered set. A function f : X → C

is called an increasing function if f(x1) � f(x2), whenever x1 > x2 for x1, x2 ∈ X.
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Example 2.4. [13]: Let X = N with usual partial order. Define f : X → C by

f(x) = xe
πi
3 , for all x ∈ X. Then f(x) is an increasing function.

Definition 2.5. [13] Let X be any non-empty ordered set. A function f : X → C

is called a decreasing function if f(x1) ≺ f(x2) , whenever x1 > x2 for x1, x2 ∈ X.

Example 2.5. [13] Let X = N with usual partial order. Define f : X → C by

f(x) = xe
4πi
3 , for allx ∈ X. Then f(x) is a decreasing function.

Lemma 2.1. ([13]): M(x, y, .) is non-decreasing function for all x, y ∈ X.

Theorem 2.1. (Theorem 3.2 [13] Convergence of a sequence): Let (X,M, ∗)
be a Complex valued fuzzy metric space and τ be the topology induced by complex

valued fuzzy metric. Then for a sequence {xn} ∈ X we have xn → x if and only if

M(xn, x, t) → eiθ, as n → ∞ or |M(xn, x, t)| → 1, as n → ∞.

Remark 2. : Let {xn} and {yn} be two sequences in complex fuzzy metric (X,M, ∗)
such that xn → x and yn → y then limn→∞M(xn, yn, t) = M(x, y, t).

Definition 2.6. (Definition 3.5 [13] Cauchy sequence): A sequence {xn} ∈ X in

a complex valued fuzzy metric space (X,M, ∗) is a Cauchy sequence if and only if

limn→∞M(xn+p, xn, t) = eiθ, p > 0, t > 0 or limn→∞ |M(xn+p, xn, t)| = 1, p > 0, t > 0.

Here we are defining Cauchy sequence in a complex fuzzy metric space due to

George and Veeramani [5].

Definition 2.7. (Cauchy sequence) : A sequence {xn} ∈ X in a complex valued

fuzzy metric space (X,M, ∗) is said to be a Cauchy sequence if and only if for every

ε > 0, t > 0, there exists an integer n0 such thatM(xn, xm, t) � eiθ − ε, for all

n,m ≥ n0.
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Definition 2.8. (Definition 3.6 [13]): A complex valued fuzzy metric space in which

every Cauchy sequence is convergent is called a complete complex valued fuzzy metric

space.

Lemma 2.2. (Lemma 4.1 [13]): Let (X,M, ∗) be a complex valued fuzzy metric space

such that limt→∞ M(x, y, t) = eiθ, for all x, y ∈ X, if

M(x, y, kt) � M(x, y, t), 0 < k < 1, t ∈ (0,∞),

then x = y.

Lemma 2.3. (Lemma 4.2 [13]): Let {yn} be a sequence in a complex valued fuzzy

metric space such that limt→∞ M(x, y, t) = eiθ, for all x, y ∈ X. If there exists a

number k ∈ (0, 1) such that

M(yn+1, yn+2, kt) � M(yn, yn+1, t), 0 < k < 1, t ∈ (0,∞),

then {yn} is a Cauchy sequence in X.

Compatibility in complex fuzzy metric space

Definition 2.9. : Let S, T be two self mappings in a non-empty set X. The pair

(S, T ) is said to be compatible if M(STxn, TSxn, t) → eiθ, ∀t > 0, as n → ∞,

whenever M(Sxn, x, t) → eiθ, and M(Txn, x, t) → eiθ, ∀t > 0, as n → ∞.

Definition 2.10. : A pair of self mappings (S, T ) in X is called weakly compatible

if for v ∈ X and Sv = Tv, then TSv = STv.

Remark 3. : Every compatible pair of self maps is weakly compatible. Let the the

pair of self maps (S, T ) in X be compatible and Sv = Tv = w, for some v, w ∈ X.

As Sv = w and Tv = w, using (CFM − 2) we have

M(Sv, w, t) = eiθ and M(Tv, w, t) = eiθ.
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Taking {xn} = v, ∀n, we have

M(Sxn, w, t) → eiθ and M(Txn, w, t) → eiθ.

Using Compatibility of the pair (S, T ) we get

M(TSxn, STxn, t) → eiθ, ∀t > 0 =⇒ M(TSv, STv, t) → eiθ, ∀t > 0.

i.e.

M(TSv, STv, t) = eiθ, ∀t > 0, as L.H.S. is a constant sequence.

So, we have TSv = STv by (CFM − 2). So the pair (S, T ) is weakly compatible.

3. Main Results

Theorem 3.1. : Let (X,M, ∗) be a complete complex fuzzy metric space with contin-

uous t-norm t ∗ t ≥ t such that limt→∞M(x, y, t) = eiθ, ∀x, y ∈ X, ∀t > 0. Let A,B, S

and T be self mappings in X satisfying:

(3.11) A(X) ⊆ T (X), B(X) ⊆ S(X);

(3.12) The pair (A, S) is compatible and the pair (B, T ) is weakly compatible;

(3.13) One of the map A or S is continuous;

(3.14) the mappings A,B, S and T satisfy :

M(Ax,By, kt) � min







M(Sx, Ty, t) ∗M(Sx,Ax, t) ∗M(By, Ty, t)

∗M(Sx,By, 2t) ∗M(Ax, Ty, 2t)







.

for all x, y ∈ X and some fixed k ∈ (0, 1), for all t.

Then A,B, S and T have unique common fixed point in X.

Proof. : Let x0 ∈ X be any arbitrary point. As A(X) ⊆ T (X) and B(X) ⊆ S(X),

there exists x1, x2 ∈ X such that Ax0 = Tx1, Bx1 = Sx2. Letting Ax0 = Tx1 = y1

and Bx1 = Sx2 = y2, etc., we have a sequence {yn} in X such that y2n+1 = Ax2n =

Tx2n+1, y2n+2 = Bx2n+1 = Sx2n+2, for n = 0, 1, 2, . . .. Now using (3.14) with x =
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x2n, y = x2n+1 we get,

M(y2n+1, y2n+2, kt) = M(Ax2n, Bx2n+1, kt)

� min



















M(Sx2n, Tx2n+1, t) ∗M(Sx2n, Ax2n, t)

∗M(Bx2n+1, Tx2n+1, t) ∗M(Sx2n, Bx2n+1, 2t)

∗M(Ax2n, Tx2n+1, 2t)



















;

= min



















M(y2n, y2n+1, t) ∗M(y2n, y2n+1, t),

∗M(y2n+1, y2n+2, t) ∗M(y2n, y2n+2, 2t)

∗M(y2n+1, y2n+1, 2t)



















;

� min







M(y2n, y2n+1, t) ∗M(y2n+1, y2n+2, t)∗
M(y2n, y2n+1, t/2) ∗M(y2n+1, y2n+2, t/2)







,

� min
{

M(y2n, y2n+1, t),M(y2n+1, y2n+2, t)
}

,

as both the last two factors appear in the first two elements.

Thus

(3.1) M(y2n+1, y2n+2, kt) � min {M(y2n, y2n+1, t),M(y2n+1, y2n+2, t)} .

Similarly, by taking x = x2n and y = x2n−1 in (3.14) we get

(3.2) M(y2n, y2n+1, kt) � min {M(y2n−1, y2n, t),M(y2n, y2n+1, t)} , ∀n.

Combining equations(3.1) and (3.2) we get,

(3.3) M(yn, yn+1, kt) � min {M(yn−1, yn, t),M(yn, yn+1, t)} , ∀n.

Case I: Suppose min{M(yn−1, yn, t),M(yn, yn+1, t)} = M(yn, yn+1, t). Then from

(3.3) we have,

M(yn, yn+1, kt) � M(yn, yn+1, t), ∀n.
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So by Lemma 2.2, yn = yn+1, ∀n. Thus the sequence {yn} becomes a constant se-

quence. Hence it is a Cauchy sequence in X.

Case II: Suppose min{M(yn−1, yn, t),M(yn, yn+1, t)} = M(yn−1, yn, t). Then from

(3.3) we have,

M(yn, yn+1, kt) � M(yn−1, yn, t), ∀n.
So by Lemma 2.3, the sequence {yn} is a Cauchy sequence in X. As X is complete,

{yn} → z, for some z ∈ X. Hence

(3.4) {Ax2n} → z, {Sx2n} → z.

i.e.

M(Ax2n, z, t) → eiθ, M(Sx2n, z, t) → eiθ.

(3.5) {Tx2n+1} → z, {Bx2n+1} → z.

i.e.

M(Tx2n+1, z, t) → eiθ, M(Bx2n+1, z, t) → eiθ.

CASE 1: Assume S is continuous.

(3.6) {SAx2n} → Sz, {S2x2n} → Sz.

i.e.

M(SAx2n, Sz, t) → eiθ, M(S2x2n, Sz, t) → eiθ.

The pair (A, S) is compatible, using equation (3.4) we have

limn→∞M(SAx2n, ASx2n, t) = eiθ.

(3.7) As {ASx2n} → Sz, and lim
n→∞

M(SAx2n, Sz, t) = eiθ, ∀t > 0.
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Step 1: Taking x = Sx2n, y = x2n+1 in (3.14) we get,

M(ASx2n, Bx2n+1, kt) � min



















M(SSx2n, Tx2n+1, t),M(SSx2n, ASx2n, t),

M(Bx2n+1, Tx2n+1, t),M(SSx2n, Bx2n+1, 2t),

M(ASx2n, Tx2n+1, 2t)



















.

Letting n → ∞ and using equations (3.5),(3.6), (3.7) we get,

M(Sz, z, kt) � min







M(Sz, z, t),M(Sz, Sz, t),M(z, z, t),

M(Sz, z, 2t),M(Sz, z, 2t)







,

� min
{

M(Sz, z, t),M(Sz, z, t) ∗M(z, z, t)
}

,

= min
{

M(Sz, z, t),M(Sz, z, t) ∗ eiθ
}

,

= M(Sz, z, t), ∀t > 0.

Thus M(Sz, z, kt) ≥ M(Sz, z, t), ∀t > 0.

So by Lemma 2.2, we have Sz = z.

Step2 : Taking x = z, y = x2n+1 in (3.14) we get,

M(Az,Bx2n+1, kt) � min







M(Sz, Tx2n+1, t),M(Sz, Az, t),M(Bx2n+1, Tx2n+1, t),

M(Sz,Bx2n+1, 2t),M(Az, Tx2n+1, 2t)







.

Letting n → ∞ and using equation (3.5) and using Sz = z we get,

M(Az, z, kt) � min







M(z, z, t),M(z, Az, t),M(z, z, t),

M(z, z, 2t),M(Az, z, 2t)







,

= M(Az, z, t).

Thus,

M(Az, z, kt) � M(Az, z, t), ∀t > 0.

By Lemma 2.2, we have Az = z. Thus we have Az = Sz = z.

As A(X) ⊆ T (X) there exists some v ∈ X such that Az = Tv. So we get z = Sz =
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Az = Tv.

Step 3 : Taking x = z and y = v in (3.14) we get

M(Az,Bv, kt) � min







M(Sz, Tv, t),M(Sz, Az, t),M(Bv, Tv, t),

M(Sz,Bv, 2t),M(Az, Tv, 2t)







.

Using z = Sz = Az = Tv we get,

M(z, Bv, kt) � min







M(z, z, t),M(z, z, t),M(Bv, z, t),

M(z, Bv, 2t),M(z, z, 2t)







,

� min
{

eiθ,M(Bv, z, t),M(z, z, t) ∗M(z, Bv, t)
}

,

= min
{

eiθ,M(Bv, z, t), eiθ ∗M(z, Bv, t),
}

,

= M(z, Bv, t), ∀t > 0.

Thus

M(z, Bv, kt) � M(z, Bv, t), ∀t > 0.

So by Lemma 2.2, we have Bv = z. Thus we get Tv = Bv = z. As the pair (B, T ) is

weakly compatible we get Bz = Tz.

Step 4: Taking x = z and y = z in (3.14) we get

M(Az,Bz, kt) � min







M(Sz, T z, t),M(Sz, Az, t),M(Bz, Tz, t),

M(Sz,Bz, 2t),M(Az, Tz, 2t)







.

Using z = Sz = Az and Tz = Bz we get,

M(z, Bz, kt) � min







M(z, Bz, t),M(z, z, t),M(Bz,Bz, t),

M(z, Bz, 2t),M(z, Bz, 2t)







,

� min
{

M(Bz, z, t), eiθ,M(z, z, t) ∗M(z, Bz, t)
}

,

= min
{

M(z, Bz, t), eiθ ∗M(z, Bz, t)
}

,

= M(z, Bz, t).
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Thus

M(z, Bz, kt) � M(z, Bz, t), ∀t > 0.

So by Lemma 2.2 we have Bz = z and so Bz = Tz = z. Combining the results of

step 2 and step 4, we getAz = Sz = Bz = Sz = z.

CASE 2: Assume A is continuous.

(3.8) {A2x2n} → Az, {ASx2n} → Az.

i.e.

M(A2x2n, Az, t) → eiθ, M(ASx2n, Az, t) → eiθ, ∀t > 0.

The pair (A, S) is compatible using equation (3.4) we have limn→∞M(ASx2n, SAx2n, t) =

eiθ. Using equation (3.8) we have

lim
n→∞

M(SAx2n, Az, t) = eiθ.

Thus

(3.9) {SAx2n} → Az.

Step 5: Taking x = Ax2n, y = x2n+1 in (3.14) we get,

M(A2x2n, Bx2n+1, kt) � min



















M(SAx2n, Tx2n+1, t),M(SAx2n, AAx2n, t),

M(Bx2n+1, Tx2n+1, t),M(SAx2n, Bx2n+1, 2t),

M(A2x2n, Tx2n+1, 2t)



















.

Letting n → ∞ and using equations(3.5),(3.8) (3.9)we get,

M(Az, z, kt) � min







M(Az, z, t),M(Az,Az, t),M(z, z, t),

M(Az, z, 2t),M(Az, z, 2t)







,

� min
{

M(Az, z, t),M(Az, z, t) ∗M(z, z, t)
}

,

= min
{

M(Az, z, t),M(Az, z, t) ∗ eiθ
}

,

= M(Az, z, t).
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Thus

M(Az, z, kt) ≥ M(Az, z, t), ∀t > 0. So by Lemma 2.2, we have Az = z.

AsA(X) ⊆ T (X) there exists some u ∈ X such that Az = Tu. So we get

(3.10) z = Az = Tu.

Step 6 : Taking x = x2n and y = u in (3.14) we get

M(Ax2n, Bu, kt) � min







M(Sx2n, Tu, t),M(Sx2n, Ax2n, t),M(Bu, Tu, t),

M(Sx2n, Bu, 2t),M(Ax2n, Tu, 2t)







.

Letting n → ∞ and using equations (3.4),(3.10) we get,

M(z, Bu, kt) � min







M(z, z, t),M(z, z, t),M(Bu, z, t),

M(z, Bu, 2t),M(z, z, 2t)







,

� min
{

eiθ,M(Bu, z, t),M(z, z, t) ∗M(z, Bu, t)
}

,

= min
{

eiθ,M(Bu, z, t), eiθ ∗M(z, Bu, t)
}

,

= M(z, Bu, t).

Thus

M(z, Bu, kt) � M(z, Bu, t), ∀t > 0.

So by Lemma 2.2, we have Bu = z. Thus we get Tu = Bu = z. As the pair (B, T ) is

weakly compatible we get

(3.11) Bz = Tz.

Step 7: Taking x = x2n and y = z in (3.14) we get

M(Ax2n, Bz, kt) � min







M(Sx2n, T z, t),M(Sx2n, Ax2n, t),M(Bz, Tz, t),

M(Sx2n, Bz, 2t),M(Ax2n, T z, 2t)







.
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Letting n → ∞ and using (3.4), (3.11) we get,

M(z, Bz, kt) � min







M(z, Bz, t),M(z, z, t),M(Bz,Bz, t),

M(z, Bz, 2t),M(z, Bz, 2t)







,

� min
{

M(z, Bz, t), eiθ,M(z, z, t) ∗M(z, Bz, t)
}

,

= min
{

eiθ,M(Bz, z, t), eiθ ∗M(z, Bz, t)
}

,

= M(z, Bz, t).

Thus

M(z, Bz, kt) � M(z, Bz, t), ∀t > 0.

So by Lemma 2.2, we have Bz = z. Thus we get Tz = Bz = z = Az.

As B(X) ⊆ S(X) there exists z1 ∈ X such that z = Bz = Sz1. So we have

Az = Tz = z = Bz = Sz1.

Step 8: Taking x = z1 and y = z in (3.14) we get

M(Az1, Bz, kt) � min







M(Sz1, T z, t),M(Sz1, Az1, t),M(Bz, Tz, t),

M(Sz1, Bz, 2t),M(Az1, T z, 2t)







.

Using z = Tz = Bz = Sz1 we get

M(Az1, z, kt) � min







M(z, z, t),M(z, Az1, t),M(z, z, t),

M(z, z, 2t),M(Az1, z, 2t)







.

As before we have

M(Az1, z, kt) � M(Az1, z, t), ∀t > 0.

Again by Lemma 2.2, we have Az1 = z. Thus we get Sz1 = Az1 = z.

As the pair (A, S) is compatible, it is also weakly compatible. So we get Az = Sz.

Combining the result obtained in step 7 to step 8 we get z = Az = Bz = Sz = Tz.

Uniqueness: Let w be another common fixed point of maps A,B, S and T i. e.
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Aw = Bw = Sw = Tw = w.

Step 9: Taking x = w and y = z in (3.14) we get

M(Aw,Bz, kt) � min







M(Sw, Tz, t),M(Sw,Aw, t),M(Bz, Tz, t),

M(Sw,Bz, 2t),M(Aw, Tz, 2t)







.

Using z = Tz = Bz and Aw = Sw = z we get

M(w, z, kt) � min







M(w, z, t),M(w, z, t),M(z, z, t),

M(w, z, 2t),M(w, z, 2t)







.

So,

M(w, z, kt) � M(w, z, t), ∀t > 0.

Again by Lemma 2.2, we have w = z. So z is the unique common fixed point of maps

A,B, S and T. �

Restricting the contractive condition (3.14) of above theorem to only first factor

we have:

Corollary 3.1. : Let (X,M, ∗) be a complete complex fuzzy metric space with con-

tinuous t-norm a∗ b = min{a, b} such that limt→∞M(x, y, t) = eiθ, ∀x, y ∈ X, ∀t > 0.

Let A,B, S and T be self mappings in X satisfying:

(3.11.1) A(X) ⊆ T (X), B(X) ⊆ S(X);

(3.11.2) The pair (A, S) is compatible and the pair (B, T ) is weakly compatible;

(3.11.3) one of the map A or S is continuous;

(3.11.4) the mappings A,B, S and T satisfy :

M(Ax,By, kt) � M(Sx, Ty, t).

for all x, y ∈ X some fixed k ∈ (0, 1).

Then A,B, S and T have unique common fixed point in X.
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Taking A = B = f and S = T = I, the identity map in X, in Corollary 3.1 we get:

Corollary 3.2. :Let (X,M, ∗) be a complete complex fuzzy metric space with contin-

uous t-norm a ∗ b = min{a, b} such that limt→∞M(x, y, t) = eiθ, ∀x, y ∈ X, ∀t > 0.

Let f be a self map in X satisfying:

M(fx, fy, kt) � M(x, y, t).

for all x, y ∈ X some fixed k ∈ (0, 1).

Then f has the unique fixed point in X, (which is precisely the Theorem 4.1 of [13].)

Remark 4. : Thus Corollary 3.2, is a generalization of Theorem 4.1 of [13].

Corollary 3.3. :Let (X,M, ∗) be a complete complex fuzzy metric space with contin-

uous t-norm a ∗ b = min{a, b} such that limt→∞M(x, y, t) = eiθ, ∀x, y ∈ X, ∀t > 0.

Let f be a self map in X satisfying:

M(fx, fy, kt) � M(x, y, t).

for all x, y ∈ X some fixed k ∈ (0, 1).

Then f has the unique fixed point in X, (which is precisely the Theorem 4.1 of [13].)

Remark 5. : Thus Corollary 3.3, is a generalization of Theorem 4.1 of [13].

Again, taking B = A and T = S in Corollary 3.1 we get:

Corollary 3.4. : Let (X,M, ∗) be a complete complex fuzzy metric space with con-

tinuous t-norm a ∗ b = min{a, b} such that limt→∞M(x, y, t) = eiθ, ∀x, y ∈ X, ∀t > 0.

Let A and S be self mappingsin X satisfying:
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(3.41) A(X) ⊆ S(X);

(3.42) The pair (A, S) is compatible;

(3.43) either the map A or else the map S is continuous;

(3.44) the mappings A and S satisfy :

M(Ax,Ay, kt) � M(Sx, Sy, t).

for all x, y ∈ X some fixed k ∈ (0, 1).

Then A and S have unique common fixed point in X (which is precisely the Theorem

6.2 of [13]).

Remark 6. :Thus Corollary 3.3 is a generalization of Theorem 6.2 of [13], with the

remark that condition (3.53) needs continuity of either of the self maps A or S, not

that of only S, as required in [13].

Example 3.1. (of Theorem 3.1): Let X = {0, 1, 1/2, 1/3, . . . , 1/n, . . .} with the met-

ric d defined by

d(x, y) = |x− y|, ∀x, y ∈ X.

Define

M(x, y, t) = eiθ
t

t+ d(x, y)

Then (X,M, ∗) is a complex valued complete metric space with t-norm ‘∗′ defined as

a ∗ b = min{a, b}, for a, b ∈ [0, 1]eiθ, and a fixed θ ∈ [0, π
2
].

Here limn→∞M(x, y, t) = eiθ, ∀x, y ∈ X, t ∈ (0,∞). Define self maps A,B, S and T

as follows:

A(x) = B(x) = x
6
,
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S(x) = T (x) = x
2
.

Then conditions (3.11)(3.12) and (3.13) hold good. Also condition (3.14) holds for

k = 2
5
. Therefore, by Theorem 3.1 , the self maps A,B, S and T have a unique

common fixed point in X. Here 0 is the unique common fixed point.

Note: In the above corollaries we have considered only first factor of the right

hand side of contractive condition (3.14). By taking other combinations of the five

factors of right hand side we have about more than 25 − 1 new interesting results in

a complex fuzzy metric space.
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