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PARTITION DIMENSION AND STRONG METRIC DIMENSION

OF CHAIN CYCLE

T. UR REHMAN (1) AND N. MEHREEN (2)

Abstract. Let G be a connected graph with vertex set V (G) and edge set E(G).

For an ordered k-partition Π = {Q1, . . . , Qk} of V (G), the representation of a vertex

v ∈ V (G) with respect to Π is the k-vectors r(v|Π) = (d(v,Q1), . . . , d(v,Qk)), where

d(v,Qi) is the distance between v and Qi. The partition Π is a resolving partition

if r(u|Π) 6= r(v|Π), for each pair of distinct vertices u, v ∈ V (G). The minimum k

for which there is a resolving k-partition of V (G) is the partition dimension of G.

A vertex w ∈ V (G) strongly resolves two distinct vertices u, v ∈ V (G) if u belongs

to a shortest v − w path or v belongs to a shortest u − w path. An ordered set

W = {w1, . . . , wt} ⊆ V (G) is a strong resolving set for G if for every two distinct

vertices u and v of G there exists a vertex w ∈ W which strongly resolves u and

v. A strong metric basis of G is a strong resolving set of minimal cardinality. The

cardinality of a strong metric basis is called strong metric dimension of G. In this

paper, we determine the partition dimension and strong metric dimension of a chain

cycle constructed by even cycles and a chain cycle constructed by odd cycles.

1. Introduction

Let G be a finite, simple and connected graph with vertex set V (G) and edge set

E(G). The distance between two vertices u and v of G is the length of the shortest

path from u to v in G and is denoted by d(u, v). Two distinct vertices u and v are
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called adjacent if there is an edge between them and denoted by uv. The degree of

a vertex u is the number of vertices adjacent to it and is denoted by dG(v) or simply

d(v). The set of neighborhood of a vertex u ∈ V (G), denoted by N(u), is the set of

all vertices of G that are adjacent to u.The diameter of a graph G, denoted by d(G),

is defined as d(G) = max{d(u, v) | u, v ∈ V (G)} . A cycle of lenght n is denoted by

Cn.

A vertex w ∈ V (G) resolves two vertices u and v of G if d(w, u) 6= d(w, v). An

ordered set W = {w1, . . . , wt} ⊆ V (G) is a resolving set for G if for every two

distinct vertices u and v of G there exists a vertex w ∈ W which resolves u and v.

The representation of a vertex u ∈ V (G) with respect to W , denoted by rG(u|W ),

is defined by the t-vectors rG(u|W ) = (d(u, w1), d(u, w2), . . . , d(u, wt)). The metric

basis of G is a resolving set of minimal cardinality. The cardinality of the metric basis

is called metric dimension of G and is denoted by dim(G). The metric dimension of

graphs was introduced independently by Harary and Melter in [4]. For more detail

see [1, 3, 4, 5, 8, 17].

Later on the concept of partition dimension was given by Chartrand et al. [2]

in 2000. Given an ordered partition Π = {Q1, . . . , Qt} of the vertices of G, the

partition representation of a vertex u ∈ V (G) with respect to Π is the vector

r(u|Π) = (d(u,Q1), . . . , d(u,Qt)), where d(u,Qj) = min{d(u, q) | q ∈ Qj}, for each

j = 1, 2, . . . , t. The partition Π is a resolving partition of G if for every pair of

distinct vertices u, v ∈ V (G), r(u|Π) 6= r(v|Π). The partition dimension of G is

the cardinality of a minimum resolving partition of G and is denoted by pd(G). See

[2, 6, 11, 15, 18] for more results.

Sebő and Tannier [16], in 2004, gave more strict version of metric dimension of a

graph called the strong metric dimension of a graph. A vertex w ∈ V (G) strongly

resolves two distinct vertices u, v ∈ V (G) if u belongs to a shortest v − w path or

v belongs to a shortest u− w path. An ordered set W = {w1, . . . , wt} ⊆ V (G) is a
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strong resolving set for G if for every two distinct vertices u and v of G there exists

a vertex w ∈ W which strongly resolves u and v. A strong metric basis of G is a

strong resolving set of minimal cardinality. The cardinality of a strong metric basis

is called strong metric dimension of G and is denoted by sdim(G). For more detail,

see [7, 9, 13, 14].

A set S of vertices of G is a vertex cover of G if every edge of G is incident with at

least one vertex of S. The vertex cover number of G, denoted by α(G), is the smallest

cardinality of a vertex cover of G. The largest cardinality of a set of vertices of G,

no two of which are adjacent, is called the independence number of G and is denoted

by β(G). Since for any graph G of order n the complement of an independent set

S ⊆ V (G) is a vertex cover of G and therefore α(G) + β(G) = n.

A vertex u ∈ V (G) is maximally distant from v ∈ V (G), denoted by uMDv, if

for every vertex w in the neighborhood of u, dG(v, w) ≤ dG(u, v). If u is maximally

distant from v and v is maximally distant from u, then we say that u and v are

mutually maximally distant and we denote it as uMMDv. The strong resolving

graph of G is a graph GSR whose vertex set is V (G) and two vertices u, v ∈ V (G) are

adjacent in GSR if and only if uMMDv. Oellermann and Peters-Fransen [13] showed

that finding the strong metric dimension of a connected graph G is equivalent to

finding the vertex cover number of GSR.

Theorem 1.1 (Oellermann and Peters-Fransen [13]). For any connected graph G,

sdim(G) = α(GSR).

Let {Gi}
m
i=1 be a set of finite pairwise disjoint simple connected graphs. The chain

graph

C(G1, G2, . . . , Gm) = C(G1, G2, ..., Gm; x1, w1, x2, w2, . . . , xm, wm)



308 T. UR REHMAN AND N. MEHREEN

of {Gi}
m
i=1 with respect to the vertices {xi, wi ∈ V (Gi) | i = 1, 2, . . . , m} is the graph

obtained from the graphs G1, . . . , Gm by identifying the vertex wi and the vertex

xi+1, as shown in Figure 1, for all i ∈ {1, 2, . . . , m− 1}. For more results and detail

about chain graph, see [10, 12].

G G G G G1 2 3 m-1 m

1

2

2

3 4

3 m-1m-2

x
m-1 m

w w ww w

x x x x

Figure 1. A chain graph

Let {Cni
}mi=1 be a set of finite pairwise disjoint simple cycles. Let V (Cni

) = {vij | j =

1, 2, . . . , ni}, where i ∈ {1, 2, . . . , m}. Assume that ni is even for each i = 1, 2, . . . , m.

We consider a chain cycle of {Cni
}mi=1 given by

C(Cn1
, Cn2

, . . . , Cnm
)

= C

(

Cn1
, Cn2

, . . . , Cnm
; v11, v

2
1, v

1
n1+1

2
+1
, v31, v

2
n2+1

2
+1
, . . . , vm1 , v

m−1
nm−1+1

2
+1
, vmnm+1

2
+1

)

with respect to the vertices {vini

2
+1
, vi+1

1 | i = 1, 2, . . . , m − 1}. A chain cycle of

{C8, C10, C8} with respect to vertices {v15, v
2
1, v

2
6v

3
1} is shown in Figure 2.

Now, assume that ni is odd for each i = 1, 2, . . . , m. We consider a chain cycle of

{Cni
}mi=1 given by

C(Cn1
, Cn2

, . . . , Cnm
)

= C
(

Cn1
, Cn2

, . . . , Cnm
; v11, v

2
1, v

1
n1
2
+1, v

3
1, v

2
n2
2
+1, . . . , v

m
1 , v

m−1
nm−1

2
+1
, vmnm

2
+1

)

with respect to the vertices {vini+1

2
+1
, vi+1

1 | i = 1, 2, . . . , m − 1}. A chain cycle of

{C5, C7, C5} with respect to vertices {v14, v
2
1, v

2
5, v

3
1} is shown in Figure 3.

Through out the paper, we denote the vertex set and the edge set of chain cycle

by V (C) and E(C) instead of V (C(Cn1
, Cn2

, . . . , Cnm
)) and E(C(Cn1

, Cn2
, . . . , Cnm

)),

respectively.
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2. Partition dimension of chain cycles

In this section, we find the partition dimension of chain cycle constructed by even

cycles and chain cycle constructed by odd cycles. Following two results are important

tools for proving our results.

Theorem 2.1 (Chartrand et al. [2]). If G is a nontrivial connected graph, then

pd(G) ≤ dim(G) + 1.

Proposition 2.1 (Chartrand et al. [2]). Let G be a connected graph of order n ≥ 2.

Then pd(G) = 2 if and only if G ∼= Pn.

In the following theorem, we compute the partition dimension of chain cycle con-

structed by even cycles.

Theorem 2.2. The partition dimension of chain cycle C(Cn1
, Cn2

, . . . , Cnm
)

= C
(

Cn1
, Cn2

, . . . , Cnm
; v11, v

2
1, v

1
n1
2
+1
, v31, v

2
n2
2
+1
, . . . , vm1 , v

m−1
nm−1

2
+1
, vmnm

2
+1

)

is 3, where ni

is even for each i = 1, 2, . . . , m.

Proof. Let Π = {Q1, Q2, Q3}, where Q1 = {v11, . . . , v
1
n1
2
−1
, v1n1

2
+2
, . . . , v1n1

}, Q2 =

{v2n2
2
+3
, v2n2

2
+4
, . . . , v2n2

, v3n3
2
+3
, v3n3

2
+4
, . . . , v3n3

, . . . , vm−1
nm−1

2
+3
, vm−1

nm−1

2
+4
, . . . , vm−1

nm−1
}∪{vmnm

}

and Q3 = V (C) \ {Q1 ∪ Q2} be a partition of V (C). We show that Π is a resolving

partition of V (C) with minimum cardinality. The representation of each vertex of

V (C) with respect to Π is given as:

r(v1n1
2

|Π) = (1, 2, 0), r(v1n1
2
+1
|Π) = (1, 1, 0), r(vmnm

|Π) =

(

m
∑

k=2

nk

2
+ 2, 0, 1

)

.

r(v1j |Π) =







(0, n1 − j − 1, n1 − j − 3) if 1 ≤ j ≤ n1

2
− 1

(0, j − n1

2
, j − n1

2
− 1) if n1

2
+ 2 ≤ j ≤ n1,

r(vij|Π) =







(j, j, 0) if 1 ≤ j ≤ dn2

4
e

(j, n2

2
− j + 2, 0) if dn2

4
e + 1 ≤ j ≤ n2

2
,
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r(vij|Π) =















(

m
∑

k=3

nk

2
+ j, j, 0

)

if 1 ≤ j ≤ dni

4
e, 3 ≤ i ≤ m

(

m
∑

k=3

nk

2
+ j, ni

2
− j + 2, 0

)

if dni

4
e + 1 ≤ j ≤ ni

2
, 3 ≤ i ≤ m,

r(vini

2
+j
|Π) =















(

m−1
∑

k=2

nk

2
, 1, 0

)

if 2 ≤ i ≤ m− 1, j = 2
(

m−1
∑

k=2

nk

2
+ nm − j + 2, ni − j, 0

)

if i = m, ni

2
+ 1 ≤ j ≤ ni − 1,

r(vij|Π) =







(ni + 2− j, 0, j − ni

2
− 2) if n2

2
+ 3 ≤ j ≤ d3n2

4
e+ 1

(ni + 2− j, 0, ni + 1− j) if d3n2

4
e + 2 ≤ j ≤ n2,

r(vij|Π) =















(

m
∑

k=3

nk

2
+ ni − j, 0, j − ni

2
− 2

)

if ni

2
+ 3 ≤ j ≤ d3ni

4
e+ 1, 3 ≤ i ≤ m

(

m
∑

k=3

nk

2
+ ni − j, 0, ni + 1− j

)

if d3ni

4
e+ 2 ≤ j ≤ ni, 3 ≤ i ≤ m.

It is easily seen that the representation of each vertex with respect to Π is dis-

tinct. This shows that Π is a resolving partition of C(Cn1
, Cn2

, . . . , Cnm
). Thus

pd(C(Cn1
, Cn2

, . . . , Cnm
)) ≤ 3.

On the other hand, by Proposition 2.1 it follows that pd(C(Cn1
, Cn2

, . . . , Cnm
)) ≥ 3.

Hence pd(C(Cn1
, Cn2

, . . . , Cnm
)) = 3. �

In the following example, we find the partition dimension of a chain cycle con-

structed by C8, C10 and C8.

Example 2.1. Let m = 3 and n1 = 8, n2 = 10 and n3 = 8. The chain cycle

constructed by C8, C10 and C8 with respect to the vertices {v15, v
2
1, v

2
6, v

3
1} is denoted

by C(C8, C10, C8) = C(C8, C10, C8; v
1
1, v

2
1, v

1
5, v

3
1, v

2
6, v

3
5) and is given in Figure 2.

Using Theorem 2.2, we construct a resolving partition of C(C8, C10, C8) as Π =

{Q1, Q2, Q3}, where Q1 = {v11, v
1
2, v

1
3, v

1
6, v

1
7, v

1
8}, Q2 = {v28, v

2
9, v

2
10, v

3
8} and Q3 =

{v14, v
1
5, v

2
2, v

2
3, v

2
4, v

2
5, v

2
6, v

2
7, v

3
2, v

3
3, v

3
4 , v

3
4, v

3
5, v

3
6, v

3
7}. Again by Theorem 2.2, we note

that each vertex of C(C8, C10, C8) has distinct representation with respect to Π, as

shown in Table 1. Hence pd(C(C8, C10, C8)) = 3.
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C8
C10 C8V1

1

V2
1

V3
1

V4
1

V1
2

V2
2

V3
2 V4

2

V5
2

V6
2

V6
3

V5
3

V4
3

V3
3

V2
3

V1
3

V5
1

V6
1

V7
1

V8
1

V7
2

V8
2V9

2

V10
2

V7
3

V8
3

Figure 2. Chain cycle of C8, C10 and C8

Table 1. Representation of vij with respect to Π

r(v11|Π) = (0, 5, 3) r(v22|Π) = (2, 2, 0) r(v210|Π) = (2, 0, 1)

r(v12|Π) = (0, 4, 2) r(v23|Π) = (3, 3, 0) r(v32|Π) = (7, 2, 0)

r(v13|Π) = (0, 3, 1) r(v24|Π) = (4, 3, 0) r(v33|Π) = (8, 3, 0)

r(v14|Π) = (1, 2, 0) r(v25|Π) = (5, 2, 0) r(v34|Π) = (9, 4, 0)

r(v15|Π) = (1, 1, 0) r(v26|Π) = (6, 1, 0) r(v35|Π) = (10, 3, 0)

r(v16|Π) = (0, 2, 1) r(v27|Π) = (5, 1, 0) r(v36|Π) = (9, 2, 0)

r(v17|Π) = (0, 3, 2) r(v28|Π) = (4, 0, 1) r(v37|Π) = (8, 1, 0)

r(v18|Π) = (0, 4, 3) r(v29|Π) = (3, 0, 2) r(v38|Π) = (7, 0, 1)

Theorem 2.3. The partition dimension of chain cycle C(Cn1
, Cn2

, . . . , Cnm
)

= C
(

Cn1
, Cn2

, . . . , Cnm
; v11, v

2
1, v

1
n1+1

2
+1
, v31, v

2
n2+1

2
+1
, . . . , vm1 , v

m−1
nm−1+1

2
+1
, vmnm+1

2
+1

)

is 3,

where ni is odd for each i = 1, 2, . . . , m.

Proof. Let Π = {Q1, Q2, Q3}, where Q1 = {v11, . . . , v
1
d
n1
2
e−1

, v1
d
n1
2
e+2

, . . . , v1n1
},

Q2 = {v2
d
n2
2
e+3

, v2
d
n2
2
e+4

, . . . , v2n2
, v3

d
n3
2
e+3

, v3
d
n3
2
e+4

, . . . , v3n3
, . . . , vm−1

d
nm−1

2
e+3

, vm−1

d
nm−1

2
e+4

,

. . . , vm−1
nm−1

}∪{vmnm
} and Q3 = V (C)\{Q1∪Q2} be a partition of V (C). We show that

Π is a resolving partition of V (C) with minimum cardinality. The representation of
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each vertex of V (C) with respect to Π is given as:

r(v1dn1
2
e|Π) = (1, 2, 0), r(v1

d
n1
2
e+1

|Π) = (1, 1, 0), r(vmnm
|Π) =

(

m
∑

k=2

b
nk

2
c+ 2, 0, 1

)

.

r(v1j |Π) =



















(0, n1 − bn1

2
c, n1 − bn1

2
c − 1) if j=1

(0, n1 − j − 1, n1 − j − 3) if 2 ≤ j ≤ dn1

2
e − 1

(0, j − dn1

2
e, j − dn1

2
e − 1) if dn1

2
e+ 2 ≤ j ≤ n1,

r(vij|Π) =







(j, j, 0) if 1 ≤ j ≤ dn2

4
e + 1

(j, dn2

2
e − j + 3, 0) if dn2

4
e+ 2 ≤ j ≤ dn2

2
e + 1,

r(vij|Π) =















(

m
∑

k=3

bnk

2
c + j, j, 0

)

if 1 ≤ j ≤ dni

4
e + 1, 3 ≤ i ≤ m

(

m
∑

k=3

bnk

2
c + j, dni

2
e − j + 3, 0

)

if dni

4
e+ 2 ≤ j ≤ dni

2
e+ 1, 3 ≤ i ≤ m,

r(vini

2
+j
|Π) =















(

m−1
∑

k=2

bnk

2
c, 1, 0

)

if 2 ≤ i ≤ m− 1, j = 2
(

m−1
∑

k=2

bnk

2
c+ nm − j + 2, ni − j, 0

)

if i = m, dni

2
e + 2 ≤ j ≤ ni − 1,

r(vij|Π) =







(ni + 2− j, 0, j − dni

2
e − 2) if dn2

2
e+ 3 ≤ j ≤ d 3n2

4
e+ 1

(ni + 2− j, 0, ni + 1− j) if d3n2

4
e + 2 ≤ j ≤ n2,

r(vij|Π) =















(

m
∑

k=3

dnk

2
e + ni − j, 0, j − dni

2
e − 2

)

if dni

2
e+ 3 ≤ j ≤ d 3ni

4
e + 1, 3 ≤ i ≤ m

(

m
∑

k=3

dnk

2
e + ni − j, 0, ni + 1− j

)

if d3ni

4
e+ 2 ≤ j ≤ ni, 3 ≤ i ≤ m.

It is easily seen that the representation of each vertex with respect to Π is dis-

tinct. This shows that Π is a resolving partition of C(Cn1
, Cn2

, . . . , Cnm
). Thus

pd(C(Cn1
, Cn2

, . . . , Cnm
)) ≤ 3.

On the other hand, by Proposition 2.1 it follows that pd(C(Cn1
, Cn2

, . . . , Cnm
)) ≥ 3.

Hence pd(C(Cn1
, Cn2

, . . . , Cnm
)) = 3. �
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In the following example, we compute the partition dimension of the chain cycle

constructed by C5, C7 and C5.

Example 2.2. Let m = 3 and n1 = 5, n2 = 7 and n3 = 5. The chain cycle

constructed by C5, C7 and C5 with respect to vertices {v14, v
2
1, v

2
5, v

3
1} is denoted by

C(C5, C7, C5) = C(C5, C7, C5; v
1
1, v

2
1, v

1
4, v

3
1, v

2
5, v

3
4) and is given in Figure 3.

C5 C7
C5

V1
1

V2
1

V3
1

V4
1

V1
2

V2
2

V3
2

V4
2

V5
2

V6
2

V5
3 V4

3

V3
3

V2
3

V1
3

V5
1 V7

2

Figure 3. Chain cycle of C5, C7 and C5

Using Theorem 2.3, we construct a resolving partition of C(C5, C7, C5) as Π =

{Q1, Q2, Q3}, where Q1 = {v11, v
1
2, v

1
5}, Q2 = {v27, v

3
5} and Q3 = {v13, v

1
4, v

2
2, v

2
3, v

2
4, v

2
5, v

2
6,

v32, v
3
3, v

3
4}. Again by Theorem 2.3, we note that each vertex of C(C5, C7, C5) has dis-

tinct representation with respect to Π, as shown in Table 2. Hence pd(C(C5, C7, C5))

= 3.

3. Strong metric dimension of chain cycle

In this section, we find the strong metric dimension of the chain cycle constructed

by even cycles and the chain cycle constructed by odd cycles. Let V1 = {v21, v
3
1, . . . , v

m
1 }

and V2 = V (C)\V1. Through out the section, we denote the strong resolving graph of a

chain cycle C(Cn1
, Cn2

, . . . , Cnm
) by CSR(Cn1

, Cn2
, . . . , Cnm

). Furthermore, we denote

the vertex set and the edge set of the strong resolving graph of C(Cn1
, Cn2

, . . . , Cnm
)

by V (CSR) and E(CSR), respectively.
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Table 2. Representation of vij with respect to Π

r(v11|Π) = (0, 3, 2) r(v25|Π) = (4, 1, 0)

r(v12|Π) = (0, 3, 1) r(v26|Π) = (3, 1, 0)

r(v13|Π) = (1, 2, 0) r(v27|Π) = (2, 0, 1)

r(v14|Π) = (1, 1, 0) r(v32|Π) = (5, 2, 0)

r(v15|Π) = (0, 2, 1) r(v33|Π) = (6, 2, 0)

r(v22|Π) = (2, 2, 0) r(v34|Π) = (6, 1, 0)

r(v23|Π) = (3, 3, 0) r(v35|Π) = (5, 0, 1)

r(v24|Π) = (4, 2, 0)

Following two lemmas are easy observations from the structure of a cycle Cn and

a chain cycle constructed by even cycles as well as a chain cycle constructed by even

cycles, respectively.

Lemma 3.1. Let Cn be a cycle. Then for two distinct vertices ui, uj ∈ V (Cn) we

have uiMMDuj if and only if d(ui, uj) = d(Cn).

Lemma 3.2. Let x ∈ V1 and y ∈ V (C). Then x and y are not mutually maximally

distant.

In the next theorem, we find the mutually maximally distant vertices in chain cycle

C(Cn1
, Cn2

, . . . , Cnm
), with each ni is even, with respect to the vertices {vini

2
+1
, vi+1

1 |

i = 1, 2, . . . , m − 1}. Here, we denote U1(Cni
) = {vi1, v

i
2, . . . , v

i
ni

2

} and U2(Cni
) =

{vini

2
+1
, vini

2
+2
, . . . , vini

}, i ∈ {1, 2, . . . , m}.

Theorem 3.1. Let vij, v
k
l ∈ V2, where i, k ∈ {1, 2, . . . , m}, in a chain cycle C(Cn1

, Cn2
,

. . . , Cnm
) constructed by even cycles with respect to the vertices {vini

2
+1
, vi+1

1 | i =

1, 2, . . . , m− 1}.

a: Let i = k. Then vijMMDvil if and only if d(vij, v
i
l) = d(Cni

).
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b: Let i 6= k. Then vijMMDvkl if and only if d(vij, v
k
l ) = d(C(Cn1

, Cn2
, . . . , Cnm

)).

Proof. (a). Let d(vij, v
i
l) = d(Cni

). Then from Lemma 3.1, we have vijMMDvil .

Conversely, let vijMMDvil and j < l. On the contrary, assume that d(vij, v
i
l) <

d(Cni
). Since N(vij) = {vij−1, v

i
j+1} and N(vil ) = {vil−1, v

i
l+1}. Note that either

vijv
i
j+1 . . . v

i
l or v

i
jv

i
j−1 . . . v

i
1v

i
ni
. . . vil is a shortest path from vij to vil . This shows that

vij and vil are not mutually maximally distant which contradicts our supposition that

vijMMDvil .

(b). Let d(vij, v
k
l ) = d(C(Cn1

, Cn2
, . . . , Cnm

)). Then clearly vijMMDvkl .

Conversely, let ui
jMMDuk

l and let d(vij, v
k
l ) < d(C(Cn1

, Cn2
, . . . , Cnm

)). SinceN(vij) =

{vij−1, v
i
j+1} and N(vkl ) = {vkl−1, u

k
l+1}. If vij ∈ U1(Cni

) and vkl ∈ U1(Cnk
), then

P1 = vijv
i
j+1 . . . v

i+1
1 vi+1

2 . . . vk1v
k
2 . . . v

k
l is a shortest path from vij to vkl . This clearly

shows that vij is not mutually maximally distant to vkl . Similarly, if vij ∈ U2(Cni
) and

vkl ∈ U2(Cnk
), then P2 = vijv

i
j−1 . . . v

i+1
1 vi+1

ni+1
. . . vk1 vknk

. . . vkl is a shortest path from vij

to vkl . This shows that v
i
j is not mutually maximally distant to vkl . Moreover, If vij ∈

U1(Cni
) and vkl ∈ U2(Cnk

), then R1 = vijv
i
j+1 . . . v

i+1
1 vi+1

2 . . . vk1 , v
k
nk

. . . vkl is a shortest

path from vij to vkl . This clearly shows that vij is not mutually maximally distant to

vkl . Similarly, if vij ∈ U2(Cni
) and vkl ∈ U1(Cnk

), then R2 = vijv
i
j−1 . . . v

i+1
1 vi+1

2 . . . vk1 ,

vk2 . . . v
k
l is a shortest path from vij to vkl , which shows that vij is not mutually maxi-

mally distant to vkl . �

For each i ∈ {1, 2, . . . , m}, Theorem 3.1 (a) implies

(3.1) A = {vijv
i
j+

ni

2

| j = 2, 3, . . . ,
ni

2
,
ni

2
+ 2,

ni

2
+ 3, . . . , ni} ⊆ E(CSR),

where j + ni

2
are integers modulo ni. Similarly, Theorem 3.1 (b) implies v11v

m
nm

2
+1 ∈

E(CSR). Thus E(CSR) = A ∪ {v11v
m
nm

2
+1}.
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Lemma 3.3. Let C(Cn1
, Cn2

, . . . , Cnm
) ba a chain cycle constructed by even cycles

with respect to the vertices {vini

2
+1
, vi+1

1 | i = 1, 2, . . . , m− 1} and each ni ≥ 4. Then

α(CSR(Cn1
, Cn2

, . . . , Cnm
) = 1 +

∑m

i=1
ni−2
2

.

Proof. We construct a vertex cover of strong resolving graph of C(Cn1
, Cn2

, . . . , Cnm
)

with minimum cardinality. From (3.1), we note that the vertices {vij, v
i
j+

ni

2

| j =

2, 3, . . . , ni

2
, ni

2
+ 2, ni

2
+ 3, . . . , ni}, for each i ∈ {1, 2, . . . , m}, form

∑m

i=1
ni−2
2

copies

of K2. Thus, the
∑m

i=1
ni−2
2

vertices {vij | j = 2, 3, . . . , ni

2
, ni

2
+ 2, ni

2
+ 3, . . . , ni},

for each i ∈ {1, 2, . . . , m}, are minimum number of vertices to cover the edges of

A. Let S = {vij | j = 2, 3, . . . , ni

2
, ni

2
+ 2, ni

2
+ 3, . . . , ni}. Furthermore, since

v11v
m
nm

2
+1 ∈ E(CSR). Thus, the vertex cover of the strong resolving graph of chain

cycle C(Cn1
, Cn2

, . . . , Cnm
) with minimum cardinality is S := S ∪ {v11}. Hence

α(CSR(Cn1
, Cn2

, . . . , Cnm
)) = 1 +

∑m

i=1
ni−2
2

. �

Theorem 3.2. Let {Cni
}mi=1 be m disjoint cycles with each ni is even and ni ≥ 4,

then sdim(C(Cn1
, Cn2

, . . . , Cnm
)) = 1 +

∑m

i=1
ni−2
2

.

Proof. The proof follows from Lemma 3.3 and Theorem 1.1. �

In the next theorem, we find the mutually maximally distant vertices in chain cycle

C(Cn1
, Cn2

, . . . , Cnm
), with each ni is odd, with respect to the vertices {vini+1

2
+1
, vi+1

1 |

i = 1, 2, . . . , m− 1}.

Theorem 3.3. Let vij, v
k
l ∈ V2, where i, k ∈ {1, 2, . . . , m}, in a chain cycle C(Cn1

, Cn2
,

. . . , Cnm
) constructed by odd cycles with respect to the vertices {vini+1

2
+1
, vi+1

1 | i =

1, 2, . . . , m− 1}.

(a): Let i = k. Then vijMMDvil if and only if d(vij, v
i
l) = d(Cni

).

(b): Let i 6= k.

(1): For i = 1 and k = m, then v1jMMDvml if and only if j ∈ {1, 2} and

l ∈ {nm+1
2

, nm+1
2

+ 1},
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(2): For i = 1 and k ∈ {2, 3, . . . , m − 1}, then v1jMMDvkl if and only if

j ∈ {1, 2} and l = nk+1
2

(3): For i ∈ {2, 3, . . . , m − 1} and k = m, then vilMMDvmj if and only if

j = 2 and l ∈ {nm+1
2

, nm+1
2

+ 1},

(4): For i ∈ {2, 3, . . . , m− 1} and k ∈ {2, 3, . . . , m− 1}, then vijMMDvkl if

and only if j = 2 and l = nk+1
2

.

Proof. (a). Proof is similar to the proof of Theorem 3.1 part (a).

(b). Let i 6= k. We prove the cases (1) and (2) and the proof of the cases (3) and

(4) are similar.

(1). Suppose that j ∈ {1, 2} and l ∈ {nm+1
2

, nm+1
2

+ 1}. We shall show that

v1jMMDvml . Note that N(v11) = {v12, v
1
n1
} and N(v12) = {v13, v

1
1}. Then P1 :=

v11v
1
n1
v1n1−1 . . . v

2
1v

2
n2
. . . vm1 v

m
nm

. . . vmnm+1

2
+2
vmnm+1

2
+1

and P2 := v12v
1
3v

1
4 . . . v

2
1v

2
n2
. . . vm1 vmnm

. . . vmnm+1

2
+2
vmnm+1

2
+1

are shortest path from v11 to vmnm+1

2
+1

and from v12 to vmnm+1

2
+1
, re-

spectively, of length
∑m

i=1
ni−1
2

= s. Thus from P1 and P2, we have

d(v1n1
, vmnm+1

2
+1
) = d(v13, v

m
nm+1

2
+1
) = s− 1.

That is, v1jMDvmnm+1

2
+1

for j ∈ {1, 2}.

Again note that N(vmnm+1

2
+1
) = {vmnm+1

2
+2
, vmnm+1

2

}. Then

Q1 := vmnm+1

2
+1

vmnm+1

2
+2

. . . vm1 v
m−1
nm−1+1

2
+2

vm−1
nm−1+1

2
+3

. . . v21v
1
n1+1

2
+2

. . . v1n1
v11 and

Q2 := vmnm+1

2
+1
vmnm+1

2
+2

. . . vm1 v
m−1
nm−1+1

2
+2
vm−1

nm−1+1

2
+3

. . . v21v
1
n1+1

2

. . . v13v
1
2 are shortest path

from vmnm+1

2
+1

to v11 and from vmnm+1

2
+1

to v12 of lenght s. Thus from Q1 and Q2, we

have

(3.2) d(v11, v
m
nm+1

2
+2
) = d(v12, v

m
nm+1

2
+2
) = s− 1.

Also, Q3 := vmnm+1

2

vmnm+1

2
−1

. . . vm1 v
m−1
nm−1+1

2
+2
vm−1

nm−1+1

2
+3

. . . v21v
1
n1+1

2
+2

. . . v1n1
v11 and Q4 :=

vmnm+1

2

vmnm+1

2
−1

. . . vm1 vm−1
nm−1+1

2
+2
vm−1

nm−1+1

2
+3

. . . v21v
1
n1+1

2

. . . v13v
1
2 are shortest path from vmnm+1

2

to v11 and from vmnm+1

2

to v12 of lenght s. Thus from Q3, Q4 and equation (3.2), we
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have vmnm+1

2
+1
MDv1j for j ∈ {1, 2}. Hence v1jMMDvmnm+1

2
+1

for j ∈ {1, 2}. Similarly,

we can prove that v1jMMDvmnm+1

2

for j ∈ {1, 2}. Summing up, we have v1jMMDvml for

j ∈ {1, 2} and l ∈ {nm+1
2

, nm+1
2

+ 1}.

Conversely, Suppose v1jMMDvml then we show that j ∈ {1, 2} and l ∈ {nm+1
2

, nm+1
2

+

1}. On the contrary, we shall prove the following cases:

Case 1: j /∈ {1, 2} but l ∈ {nm+1
2

, nm+1
2

+ 1},

Case 2: l /∈ {nm+1
2

, nm+1
2

+ 1} but j ∈ {1, 2},

Case 3: j /∈ {1, 2} and l /∈ {nm+1
2

, nm+1
2

+ 1}.

Case 1: First suppose that j /∈ {1, 2} and l ∈ {nm+1
2

, nm+1
2

+1}. Let j ∈ {3, 4, . . . , n1+1
2

}.

Note thatN(v1j ) = {v1j−1, v
1
j+1}. Then v1jv

1
j+1v

1
j+2 . . . v

2
1v

2
n2
. . . vm1 v

m
nm

. . . vmnm+1

2
+2
vmnm+1

2
+1

is a shortest path from v1j to vmnm+1

2
+1

of length say r. But v1j−1v
1
jv

1
j+1v

1
j+2

. . . v21v
2
n2
. . . vm1 v

m
nm

. . . vmnm+1

2
+2
vmnm+1

2
+1

is a shortest path from v1j−1 to vmnm+1

2
+1

of

length r + 1. That is,

d(v1j−1, v
m
nm+1

2
+1
) = r + 1.

Thus v1j and vmnm+1

2
+1

are not MMD.

Now let j ∈ {n1+1
2

+ 2, n1+1
2

+ 3, . . . , n1}. Note that N(v1j ) = {v1j−1, v
1
j+1}. Then

v1jv
1
j−1v

1
j−2 . . . v

2
1v

2
n2

. . . vm1 v
m
nm

. . . vmnm+1

2
+2
vmnm+1

2
+1

is a shortest path from v1j to v
m
nm+1

2
+1

of length say r′. But v1j+1v
1
j v

1
j−1v

1
j−2 . . . v

2
1v

2
n2
. . . vm1 v

m
nm

. . . vmnm+1

2
+2
vmnm+1

2
+1

is a short-

est path from v1j to vmnm+1

2
+1

of length r′ + 1. That is,

d(v1j+1, v
m
nm+1

2
+1
) = r′ + 1.

Thus v1j and vmnm+1

2
+1

are not MMD for j /∈ {1, 2}. Similarly, we can prove that v1j

and vmnm+1

2

are not MMD for j /∈ {1, 2}. Summing up, we have v1j and vml are not

MMD for j /∈ {1, 2} and l ∈ {nm+1
2

, nm+1
2

+ 1}.

Case 2: Secondly, suppose that l /∈ {nm+1
2

, nm+1
2

+ 1} and j ∈ {1, 2}. Let l ∈

{2, 3, . . . nm+1
2

−1}. Note that N(vml ) = {vml−1, v
m
l+1}. Then vml vml−1 . . . v

m
1 v

m−1
nm+1

2
+2

. . . v21
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v1nm+1

2
+2

. . . v1n1
v11 is a shortest path from vml to v11 of length say t. But vml+1v

m
l v

m
l−1 . . .

vm1 v
m−1
nm+1

2
+2

. . . v21v
1
nm+1

2
+2

. . . v1n1
v11 is a shortest path from vml+1 to v11 of length t + 1.

That is,

d(v11, v
m
l+1) = t+ 1.

Thus vml and v11 are not MMD.

Now let l ∈ {nm+1
2

+ 2, nm+1
2

+ 3, . . . nm}. Note that N(vml ) = {vml−1, v
m
l+1}. Then

vml v
m
l+1 . . . v

m
1 vm−1

nm+1

2
+2

. . . v21v
1
nm+1

2
+2

. . . v1n1
v11 is a shortest path from vml to v11 of length

say t′. But vml−1v
m
l vml+1 . . . v

m
1 v

m−1
nm+1

2
+2

. . . v21v
1
nm+1

2
+2

. . . v1n1
v11 is a shortest path from

vml−1 to v11 of length t′ + 1. That is,

d(v11, v
m
l−1) = t′ + 1.

This implies, vml and v11 are not MMD. Hence vml and v11 are not MMD for l /∈

{nm+1
2

, nm+1
2

+ 1}. Similarly, we can prove that vml and v12 are not MMD for l /∈

{nm+1
2

, nm+1
2

+1}. Summing up, we have vml and v12 are not MMD for l /∈ {nm+1
2

, nm+1
2

+

1} and j ∈ {1, 2}.

Case 3: Thirdly, suppose that l /∈ {nm+1
2

, nm+1
2

+1} and j /∈ {1, 2}. Then the proof

is straigt forward from the cases l /∈ {nm+1
2

, nm+1
2

+ 1} or j /∈ {1, 2}. This completes

the proof of (1).

(2). Suppose that j ∈ {1, 2} and l = nk+1
2

. We shall show that v1jMMDvkl . Note

that N(v11) = {v12, v
1
n1
} and N(v12) = {v13, v

1
1}. Then

P3 := v11v
1
n1
v1n1−1 . . . v

2
1v

2
n2
. . . vk1v

k
2 . . . v

k
nk+1

2
−1
vknk+1

2

and

P4 := v12v
1
3v

1
4 . . . v

2
1v

2
n2
. . . vk1v

k
2 . . . v

k
nk+1

2
−1
vknk+1

2

are shortest path from v11 to vknk+1

2

and

from v12 to vknk+1

2

, respectively, of length
∑k

i=1
ni−1
2

= s. Thus from P3 and P4, we

have

d(v1n1
, vkn

k
+1

2

) = d(v13, v
k
n
k
+1

2
+1
) = s− 1.
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That is, v1jMDvkn
k
+1

2

for j ∈ {1, 2} and l = nk+1
2

.

Again note that N(vkn
k
+1

2

) = {vkn
k
+1

2
+1
, vkn

k
+1

2
−1
}. Then

R1 := vkn
k
+1

2

vkn
k
+1

2
−1

. . . vm1 v
m−1
nm−1+1

2
+2
vm−1

nm−1+1

2
+3

. . . v21v
1
n1+1

2
+2

. . . v1n1
v11 and

R2 := vkn
k
+1

2

vkn
k
+1

2
−1

. . . vk1v
k−1
n
k−1+1

2
+2
vk−1

n
k−1+1

2
+3

. . . v21v
1
n1+1

2

. . . v13v
1
2 are shortest path from

vkn
k
+1

2

to v11 and from vkn
k
+1

2

to v12 of lenght s. Thus from R1 and R2, we have

(3.3) d(v11, v
k
nk+1

2
−1
) = d(v12, v

k
nk+1

2
−1
) = s− 1.

Also, R3 := vknk+1

2
+1
vknk+1

2
+2

. . . vk1v
k−1
nk−1+1

2
+2
vk−1

nk−1+1

2
+3

. . . v21v
1
n1+1

2
+2

. . . v1n1
v11 and R4 :=

vknk+1

2
+1
vknk+1

2
+2

. . . vk1v
k−1
nk−1+1

2
+2
vk−1

nk−1+1

2
+3

. . . v21v
1
n1+1

2

. . . v13v
1
2 are shortest path from vknk+1

2
+1

to v11 and from vknk+1

2
+1

to v12 of lenght s. Thus from R3, R4 and equation (3.3), we

have vknk+1

2

MDv1j for j ∈ {1, 2}. Hence v1jMMDvknk+1

2

for j ∈ {1, 2}. Thus we have

v1jMMDvml for j ∈ {1, 2} and l = nm+1
2

.

Conversely, Suppose v1jMMDvkl and we show that j ∈ {1, 2} and l = nk+1
2

. On the

contrary, we shall prove the following cases:

Case 1: j /∈ {1, 2} but l = nk+1
2

,

Case 2: l 6= nk+1
2

but j ∈ {1, 2},

Case 3: j /∈ {1, 2} and l 6= nk+1
2

.

Case 1: First suppose that j /∈ {1, 2} and l = nk+1
2

. Let j ∈ {3, 4, . . . , n1+1
2

}.

Note that N(v1j ) = {v1j−1, v
1
j+1}. Then v1jv

1
j+1v

1
j+2 . . . v

2
1 v2n2

. . . vk1v
k
2 . . . v

k
nk+1

2
−1
vknk+1

2

is

a shortest path from v1j to vknk+1

2

of length say x. But

v1j−1v
1
jv

1
j+1v

1
j+2 . . . v

2
1v

2
n2
. . . vk1v

k
2 . . . v

k
nk+1

2
−1
vk nk+1

2
is a shortest path from v1j−1 to v

k
nk+1

2

of length x + 1. That is,

d(v1j−1, v
k
nk+1

2

) = x + 1.

Thus v1j and vkn
k
+1

2

are not MMD.

Now let j ∈ {n1+1
2

+ 2, n1+1
2

+ 3 . . . , n1}. Note that N(v1j ) = {v1j−1, v
1
j+1}. Then

v1jv
1
j−1v

1
j−2 . . . v

2
1v

2
n2

. . . vk1v
k
2 . . . v

k
n
k
+1

2
−1
vkn

k
+1

2

is a shortest path from v1j to vkn
k
+1

2

of
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length say x′. But v1j+1v
1
j v

1
j−1v

1
j−2 . . . v

2
1v

2
n2
. . . vk1v

k
2 . . . v

k
nk+1

2
−1
vknk+1

2

is a shortest path

from v1j to vknk+1

2

of length x′ + 1. That is,

d(v1j+1, v
k
nk+1

2

) = x′ + 1.

Thus v1j and vknk+1

2

are not MMD for j /∈ {1, 2}. Summing up, we have v1j and vml are

not MMD for j /∈ {1, 2} and l = nk+1
2

.

Case 2: Secondly, suppose that l 6= nk+1
2

and j ∈ {1, 2}. Let l ∈ {2, 3, . . . nk+1
2

−1}.

Note that N(vkl ) = {vkl−1, v
k
l+1}. Then vkl v

k
l−1 . . . v

k
1 vk−1

nk+1

2
+2

. . . v21v
1
nk+1

2
+2

. . . v1n1
v11 is a

shortest path from vml to v11 of length say y. But vkl+1v
k
l v

k
l−1 . . . v

k
1v

k−1
nk+1

2
+2

. . . v21v
1
nk+1

2
+2

. . . v1n1
v11 is a shortest path from vkl+1 to v11 of length y + 1. That is,

d(v11, v
k
l+1) = y + 1.

Thus vkl and v11 are not MMD.

Now let l ∈ {nm+1
2

+ 2, nm+1
2

+ 3, . . . nk}. Note that N(vkl ) = {vkl−1, v
k
l+1}. Then

vkl v
k
l+1 . . . v

k
1v

k−1
nk+1

2
+2

. . . v21v
1
nk+1

2
+2

. . . v1n1
v11 is a shortest path from vkl to v11 of length

say y′. But vkl−1v
k
l v

k
l+1 . . . v

k
1v

k−1
nk+1

2
+2

. . . v21v
1
nk+1

2
+2

. . . v1n1
v11 is a shortest path from vkl−1

to v11 of length y′ + 1. That is,

d(v11, v
k
l−1) = y′ + 1.

This implies, vkl and v11 are not MMD. Hence vkl and v11 are not MMD for l 6= nk+1
2

.

Summing up, we have vml and v1j are not MMD for l 6= nk+1
2

and j ∈ {1, 2}.

Case 3: Thirdly, let j /∈ {1, 2} and l 6= nk+1
2

. Then the proof is straigt forward

from the cases j /∈ {1, 2} or l 6= nk+1
2

. This completes the proof of (2). �

From Theorem 3.3 (a), for all i ∈ {2, 3, . . . , m− 1}, we have

A1 = {v1jv
1

j+
n1−1

2

| j = 1, 2, . . . , n1+1
2

, n1+1
2

+ 2, . . . n1} ⊆ E(CSR),(3.4)

A2 = {vmj v
m

j+nm−1

2

| j = 2, 3, . . . , nm} ⊆ E(CSR),(3.5)

A3 = {vijv
i

j+
ni−1

2

| j = 2, 3, . . . , ni+1
2

, ni+1
2

+ 2, . . . ni} ⊆ E(CSR).(3.6)
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From Theorem 3.3 (b), for all i, k ∈ {2, 3, . . . , m− 1}, we have

B1 = {v1jv
m
l | j = 1, 2. and l = nm+1

2
, nm+1

2
+ 1.} ⊆ E(CSR),(3.7)

B2 = {v1jv
k
nk+1

2

| j = 1, 2.} ⊆ E(CSR),(3.8)

B3 = {vi2v
m
l | l = nm+1

2
, nm+1

2
+ 1.} ⊆ E(CSR),(3.9)

B4 = {vi2v
k
nk+1

2

} ⊆ E(CSR).(3.10)

Thus from (3.4)∼(3.10), we have A1 ∪ A2 ∪ A3 ∪ B1 ∪ B2 ∪ B3 ∪B4 = E(CSR).

Note that the set of edges A1 form a path Pn1−1 with initial vertex v11 and final

vertex v12, that is,

Pn1−1 := v11v
1
1+b

n1
2
cv

1
1+2b

n1
2
c . . . v

1
1+(n1−2)b

n1
2
c,

where 1 + (n1 − 2)bn1

2
c ≡ 2 (mod n1).

Similarly, the set of edges A2 form a path Pnm−1 with initial vertex vmnm+1

2

and final

vertex vmnm+1

2
+1
, that is,

Pnm−1 := vmnm+1

2

vmnm+1

2
+bnm

2
c
vmnm+1

2
+2bnm

2
c
. . . vmnm+1

2
+(nm−2)bnm

2
c
,

where nm+1
2

+ (nm − 2)bnm

2
c ≡ nm+1

2
+ 1 (mod nm).

Also, the set of edges A3 form m− 2 paths Pni−2, i ∈ {2, 3, . . . , m− 1}, with initial

vertex vi2 and final vertex vini+1

2

, that is,

Pni−2 := vi2v
i
2+d

ni

2
ev

i
2+2d

ni

2
e . . . v

i
2+(ni−3)d

ni

2
e,

where 2 + (ni − 3)dni

2
e ≡ ni+1

2
(mod ni).

Lemma 3.4. Let C(Cn1
, Cn2

, . . . , Cnm
) ba a chain cycle constructed by odd cycles

with respect to the vertices {vini+1

2
+1
, vi+1

1 | i = 1, 2, . . . , m−1} and each ni ≥ 5. Then

α(CSR(Cn1
, Cn2

, . . . , Cnm
) = m− 1 + bn1

2
c + bnm

2
c +

∑m−1
i=2 bni−2

2
c.
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Proof. We construct a vertex cover of CSR(Cn1
, Cn2

, . . . , Cnm
) with minimum cardinal-

ity. Note that the m vertices v11 and vi2, i ∈ {2, 3, . . . , m−1}, are nonadjacent vertices

in CSR(Cn1
, Cn2

, . . . , Cnm
) and cover all edges of sets B1, B2, B3 and B4. Let S =

{v11, v
i
2 | i = 2, 3, . . . , m− 1}. In order to cover the edges of path Pn1−1 we need n1−1

2

vertices. Since v11, v
1
2 ∈ S, therefore we must take n1−1

2
−1 more vertices of Pn1−1. Thus

we take the vertices v1
1+2b

n1
2
c
, v1

1+4b
n1
2
c
, . . . , v1

1+(n1−3)b
n1
2
c
in S. That is, we augment the

set S by taking S := S ∪{v1, v1
1+2b

n1
2
c
, v1

1+4b
n1
2
c
, . . . , v1

1+(n1−3)b
n1
2
c
}. Similarly, to cover

the edges of the path Pnm−1, we must take nm−1
2

vertices of Pnm−1. Thus we take

the vertices vmnm+1

2

, vmnm+1

2
+2bnm

2
c
, vmnm+1

2
+4bnm

2
c
, . . . , vmnm+1

2
+(nm−3)bnm

2
c
in S. That is, we

again augment the set S by taking S := S ∪ {vmnm+1

2

, vmnm+1

2
+2bnm

2
c
, vmnm+1

2
+4bnm

2
c
, . . . ,

vmnm+1

2
+(nm−3)bnm

2
c
}. Finally, to cover the edges of each path Pni−2 we must take

dni−2
2

e vertices of Pni−1, i ∈ {2, 3, . . . , m − 1}. Since vi2 ∈ S, therefore we take

bni−2
2

c more vertices of Pni−1, i ∈ {2, 3, . . . , m − 1}. Thus we take the vertices

vi
2+2d

ni

2
e
, vi

2+4d
ni

2
e
, . . . , vi

2+(ni−3)d
ni

2
e
, i ∈ {2, 3, . . . , m − 2} in S. That is, we again

augment the set S by taking S := S ∪ {vi
2+2d

ni

2
e
, vi

2+4d
ni

2
e
, . . . , vi

2+(ni−3)d
ni

2
e
| i =

2, 3, . . . , m−2}. Thus S is the vertex cover of the strong resolving graph of the chain

cycle C(Cn1
, Cn2

, . . . , Cnm
) with minimum cardinality |S| = m − 1 + bn1

2
c + bnm

2
c +

∑m−1
i=2 bni−2

2
c. �

Theorem 3.4. Let {Cni
}mi=1 be m disjoint cycles with each ni is odd and ni ≥ 5, then

sdim(C(Cn1
, Cn2

, . . . , Cnm
)) = m− 1 + bn1

2
c+ bnm

2
c+

∑m−1
i=2 bni−2

2
c.

Proof. The proof follows from Lemma 3.4 and Theorem 1.1. �
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