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PARTITION DIMENSION AND STRONG METRIC DIMENSION
OF CHAIN CYCLE

T. UR REHMAN () AND N. MEHREEN (2

ABSTRACT. Let G be a connected graph with vertex set V(G) and edge set E(G).
For an ordered k-partition IT = {Q1, ..., Qx} of V(G), the representation of a vertex
v € V(G) with respect to IT is the k-vectors r(v|II) = (d(v, Q1),- .., d(v,Q)), where
d(v,Q;) is the distance between v and ;. The partition II is a resolving partition
if r(u|II) # r(v|II), for each pair of distinct vertices u,v € V(G). The minimum k
for which there is a resolving k-partition of V(G) is the partition dimension of G.
A vertex w € V(G) strongly resolves two distinct vertices u,v € V(G) if u belongs
to a shortest v — w path or v belongs to a shortest © — w path. An ordered set
W =Awi,...,w} € V(G) is a strong resolving set for G if for every two distinct
vertices u and v of G there exists a vertex w € W which strongly resolves u and
v. A strong metric basis of G is a strong resolving set of minimal cardinality. The
cardinality of a strong metric basis is called strong metric dimension of G. In this
paper, we determine the partition dimension and strong metric dimension of a chain

cycle constructed by even cycles and a chain cycle constructed by odd cycles.

1. INTRODUCTION

Let G be a finite, simple and connected graph with vertex set V(G) and edge set
E(G). The distance between two vertices v and v of G is the length of the shortest

path from u to v in G and is denoted by d(u,v). Two distinct vertices u and v are
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called adjacent if there is an edge between them and denoted by uv. The degree of
a vertex u is the number of vertices adjacent to it and is denoted by dg(v) or simply
d(v). The set of neighborhood of a vertex u € V(G), denoted by N(u), is the set of
all vertices of GG that are adjacent to u.The diameter of a graph G, denoted by d(G),
is defined as d(G) = maz{d(u,v) | u,v € V(G)} . A cycle of lenght n is denoted by
Chp.

A vertex w € V(G) resolves two vertices u and v of G if d(w,u) # d(w,v). An
ordered set W = {wy,...,w;} C V(G) is a resolving set for G if for every two
distinct vertices w and v of GG there exists a vertex w € W which resolves u and v.
The representation of a vertex u € V(G) with respect to W, denoted by rq(u|W),
is defined by the t-vectors ro(u|W) = (d(u,wy), d(u, ws), ..., d(u,w)). The metric
basis of GG is a resolving set of minimal cardinality. The cardinality of the metric basis
is called metric dimension of G and is denoted by dim(G). The metric dimension of
graphs was introduced independently by Harary and Melter in [4]. For more detail
see [1, 3, 4, 5, 8, 17].

Later on the concept of partition dimension was given by Chartrand et al. [2]
in 2000. Given an ordered partition II = {Q,...,Q;} of the vertices of G, the
partition representation of a vertex u € V/(G) with respect to II is the vector
r(ulll) = (d(u, Q1), ..., d(u,Qy)), where d(u, ;) = min{d(u,q) | ¢ € Q;}, for each
J = 1,2,...,t. The partition II is a resolving partition of G if for every pair of
distinct vertices u,v € V(G), r(ulll) # r(v|II). The partition dimension of G is
the cardinality of a minimum resolving partition of G and is denoted by pd(G). See
2, 6, 11, 15, 18] for more results.

Seb6é and Tannier [16], in 2004, gave more strict version of metric dimension of a
graph called the strong metric dimension of a graph. A vertex w € V(G) strongly
resolves two distinct vertices u,v € V(G) if u belongs to a shortest v — w path or

v belongs to a shortest u — w path. An ordered set W = {wy,...,w;} C V(G) is a



CHAIN CYCLE 307

strong resolving set for G if for every two distinct vertices u and v of G there exists
a vertex w € W which strongly resolves u and v. A strong metric basis of G is a
strong resolving set of minimal cardinality. The cardinality of a strong metric basis
is called strong metric dimension of G and is denoted by sdim(G). For more detail,
see [7, 9, 13, 14].

A set S of vertices of GG is a vertex cover of G if every edge of GG is incident with at
least one vertex of S. The vertex cover number of GG, denoted by a(G), is the smallest
cardinality of a vertex cover of G. The largest cardinality of a set of vertices of G,
no two of which are adjacent, is called the independence number of G and is denoted
by B(G). Since for any graph G of order n the complement of an independent set
S C V(G) is a vertex cover of G and therefore a(G) + S(G) = n.

A vertex u € V(@) is maximally distant from v € V(G), denoted by uMDuw, if
for every vertex w in the neighborhood of u, dg(v,w) < dg(u,v). If u is maximally
distant from v and v is maximally distant from u, then we say that u and v are
mutually maximally distant and we denote it as uMMDw. The strong resolving
graph of G is a graph G sg whose vertex set is V(G) and two vertices u,v € V(G) are
adjacent in Ggp if and only if uMMDuv. Oellermann and Peters-Fransen [13] showed
that finding the strong metric dimension of a connected graph G is equivalent to

finding the vertex cover number of Ggg.

Theorem 1.1 (Oellermann and Peters-Fransen [13]). For any connected graph G,

sdim(G) = a(Ggsg)-

Let {G;}™, be a set of finite pairwise disjoint simple connected graphs. The chain

graph

C(Gl, GQ, .. ,Gm) = C(Gl, GQ, ...,Gm;l'l,wl,l’g,wg, P ,ZL’m,’LUm)
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of {G;}™, with respect to the vertices {x;,w; € V(G;) | i =1,2,...,m} is the graph
obtained from the graphs G4,...,G,, by identifying the vertex w; and the vertex
Zit+1, as shown in Figure 1, for all i € {1,2,..., m — 1}. For more results and detail

about chain graph, see [10, 12].

w w
¥ '
- €_Gry X_ G )
Xz 3 4 )rgw-l Xm

FIGURE 1. A chain graph

Let {Cy,, }1*1 be a set of finite pairwise disjoint simple cycles. Let V/(C,,,) = {v; | j=
1,2,...,n;}, where ¢ € {1,2,...,m}. Assume that n; is even for each i = 1,2,...,m.

We consider a chain cycle of {C),,}7, given by

C(Cn17 ana ctty Cnm)

_ 121 3.2 m  m—1 m
- C <Cn1a Cn2> ey Cnma 'U1>'U1>'U7l12+1+1a Ula Un22+1+1> cee avl >'Unm,21+1+1a UanJrl_H)
with respect to the vertices {U%H,viﬂ | i = 1,2,...,m — 1}. A chain cycle of

Cs, Cho, Cg} with respect to vertices {vl, v?, v2v}} is shown in Figure 2.
51 U1, Ug Uy g
Now, assume that n; is odd for each i = 1,2,...,m. We consider a chain cycle of

{Cn.}iZ1 given by

C(Chnyy Crygy ooy Chy)

_ ol 2 1 3,2 m ,m—1 m
=C <C’n1, (G Cnm,vl,vl,v%ﬂ,vl,v%ﬂ, 4 ,vn,,;,lﬂ,v%nﬂ)
with respect to the vertices {v% ,, o™ |i = 1,2,...,m —1}. A chain cycle of

5+l
Cs, C7, C5} with respect to vertices {v}, v?, v2, v3} is shown in Figure 3.
; ) 45 Y1y Y5y V1

Through out the paper, we denote the vertex set and the edge set of chain cycle
by V(C) and E(C) instead of V(C(Cy,,Chy,...,Cy,.)) and E(C(Cy,,Chy, ..., Ch.)),

respectively.
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2. PARTITION DIMENSION OF CHAIN CYCLES

In this section, we find the partition dimension of chain cycle constructed by even
cycles and chain cycle constructed by odd cycles. Following two results are important

tools for proving our results.

Theorem 2.1 (Chartrand et al. [2]). If G is a nontrivial connected graph, then
pd(G) < dim(G) + 1.

Proposition 2.1 (Chartrand et al. [2]). Let G be a connected graph of order n > 2.
Then pd(G) = 2 if and only if G = P,.

In the following theorem, we compute the partition dimension of chain cycle con-

structed by even cycles.

Theorem 2.2. The partition dimension of chain cycle C(C,,Chpy, ..., Ch,)
_ ool 2 ol 3,2 m—1 :
= C<Cn17 Chys - - .,C’nwvl,vl,v%ﬂ,vl,v%ﬂ, ot ,vnm 1+1,vnén+1) 18 3, where n;

1s even for eacht1=1,2,...,m

Proof. Let I = {Q1,Q2,Q3}, where Q; = {v%,...,v%l 1,1}%1”,..., vy b, Q2 =
{U%TQJFS,U%TQH, . ,1)22,1)?%73+3,v%73+4, U U 11+3,va 11+4 N 1SR (0
and Q3 = V(C) \ {Q1 U Q2} be a partition of V(C). We show that II is a resolving
partition of V(C) with minimum cardinality. The representation of each vertex of
V(C) with respect to II is given as:

r(vsy |I) = (1,2,0), r(vhy [ = (1,1,0), r(v [1I) = <Z % +2,0, 1) .

k=2

0,m—j—1n—7-3) ifl1<j < —
r(vjl-|l_[)= (0,1 — j 1—J ) | J 2
(O,j——j———l) 1f%—|—2§j§n1,

(4,3,0) if 1<j <[]

r(vi[T) =
’ (G2 —j+2,0) if [2]+1<j<2
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| (z%ﬂ,j,o) if1<j<[F]3<i<m
rem =
(IQZ?’%—I—],%—]—FQ,O) if []+1<7<%,3<4i<m,
L\
( m—1
( %,1,0) if2<i<m-—1,5=2
r(vh ) =< Hh=3
( %+nm—j+2,ni—j,0) ifi=m, 3% +1<j<n;—1,
\ k=2
,- (ni +2—3,0,j— % —2) if 24+3<;5<[3m]41
r(vi[Il) =

, (g_)g%Jrni—j,O,j—%—?) if 5 +3<j<[%]+1,3<i<m
r(vi[11) = m

§%+ni—j,0,ni+1—j) if 2] +2<j<n;,3<i<m.
It is easily seellz_shat the representation of each vertex with respect to II is dis-
tinct. This shows that II is a resolving partition of C(Cy,,Chy,...,Chy,,). Thus
pd(C(Chyy Crys oo, Chy)) < 3.

On the other hand, by Proposition 2.1 it follows that pd(C(C,,, C,, ..., Cy,.)) > 3.

Hence pd(C(Ch,,Ch,,-..,Chp,)) = 3.

In the following example, we find the partition dimension of a chain cycle con-

structed by Cy, C19 and Cs.

Example 2.1. Let m = 3 and ny = 8, ny = 10 and n3 = 8. The chain cycle

constructed by Cg, C1o and Cg with respect to the vertices {vi, v} v2, v3} is denoted

by C(Cg, Chg, Cg) = C(Cy, Co, Cs; v, 03, vi, v, v2,v3) and is given in Figure 2.
Using Theorem 2.2, we construct a resolving partition of C(Cg, Cho,Cs) as 11 =

JEEONS TS TS BNS RS B (2.2 .2 .3 _
{Q1>Q2aQ3}; where Ql - {U1>'U2>'U3>'U67'U77'U8}; Q2 - {U8>'U9>'U10av8} and Q3 -
{vi, vh, v3 02 02 V2 V2 v s vs vi vl vl vl v3t. Again by Theorem 2.2, we note
that each vertex of C(Cs, Cho,Cs) has distinct representation with respect to 11, as

shown in Table 1. Hence pd(C(Cs, C1g,Cg)) = 3.
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FIGURE 2. Chain cycle of Cg, Cig and Cg

TABLE 1. Representation of U;- with respect to II

r(vi|Il) = (0,5, 3) | r(v3|II) = (2,2,0) | 7(vi|I) = (2,0, 1)
r(va|IT) = (0,4,2) | r(v3|II) = (3,3,0) | r(v3|l) = (7,2,0)
r(vs|IT) = (0,3, 1) | r(vi|ID) = (4,3,0) | r(v3|) = (8,3,0)
r(vi]I) = (1,2,0) | r(v2|II) = (5,2,0) | r(vi|) = (9,4,0)
r(vi|ll) = (1,1,0) | r(v3|IT) = (6,1,0) | r(vZ|T) = (10, 3,0)
r(vg|l) = (0,2,1) | r(v3|ID) = (5,1,0) | r(v3|II) = (9,2,0)
r(vi[l) = (0,3,2) | r(vi|l) = (4,0,1) | r(v3[II) = (8,1,0)
r(vg|IT) = (0,4, 3) | r(v3|IT) = (3,0,2) | r(v3|lI) = (7,0,1)

Theorem 2.3. The partition dimension of chain cycle C(C,,Chpy, ..., Cy,)
_ ool 22 ol 3,2 m , m—1 m :
- C(Cnm Cn2v tty Cmm vy, 07, 'Un1+1+17 U1, Un2+1+17 NG >'Unm721+1+17 'Unm2+1+1> s 3;

where n; is odd for each i =1,2,...,m.

Proof. Let 11 = {Q1, Q2, Q3}, where Q; = {v}, ... ,v%%l]_l,v%nqﬂ, U b

2 3 3 m—1 P 1
v . ,U""m 1'|+37 |'"m 1‘|+47

— 2 2
QQ — {U n2—|+3,v[n2—|+4, o e ,'Un2,v[n73—|+3,v[n73—|+4, <o Ungo
. U4 }and Q3 = V(C)\ {Q1UQ2} be a partition of V(C). We show that
nm 1

IT'is a resolving partition of V(C) with minimum cardinality. The representation of
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each vertex of V(C) with respect to II is given as:

" n
r(oa 1) = (1,2,0), r(vfny 1) = (1,1,0), r(v]; (Z —k +2,0,1>.

2
k=2

0,n0 — [%],ng — |2] = 1) ifj=1
rj) = ¢ (0,n —j—1,m —j—3) if2<;<[a]-1
0,7 —[%],7-[%]1-1) if[B]+2<j<n,

(v 1) (7,7,0) if1<j<[2]+1
’ (G, [%2] = +3,0) if [2]+2<j<[%2]+]1,
. (Zy’“ﬂj,) if1<j<[%[+1,3<i<m
(v |1T) o
];%Lﬁjtj, (%] — j+3,0) if [Z]+2<i<[5][+1,3<i<m,
m—1
( L%J,I,O) f2<i<m-1,j=2

L’“J+nm—j+2,ni—j,0) ifi=m,[%]+2<j<n —1,

(i +2-5,0,j = [51-2) i [F]+3<j<[F]+1

| (Z(%Hm—mo,j—[%—?) gl +3<j<[l+Ll3<i<m
r(ojI) = 3 k2

Z’V%W—i_nz_‘%oanz—'—l_]) 1f’73n1—|+2<]<nl73<2<m
k=3

It is easily seen that the representation of each vertex with respect to II is dis-
tinct. This shows that II is a resolving partition of C(C,,,Cy,,...,Cy, ). Thus
pd(C(Cyr,, Chyy ..., Co ) < 3.

On the other hand, by Proposition 2.1 it follows that pd(C(C,,, Cp,, - -
Hence pd(C(C,,,,Chp,,...,Cp,.)) = 3.

Cn)) > 3.
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In the following example, we compute the partition dimension of the chain cycle

constructed by Cs, C7 and Cs.

Example 2.2. Let m = 3 and ny = 5, ng = 7 and ng = 5. The chain cycle
constructed by Cs, Cy and Cs with respect to vertices {v},v?,v2,v3} is denoted by

C(C5,Cy7,Cs) = C(Cs, Cy, Cs; 01,03, vy, v3 02 v3) and is given in Figure 5.

1 2 2
Vg V7 Vg Vg Vg

FIGURE 3. Chain cycle of C5, C7 and Cs

Using Theorem 2.3, we construct a resolving partition of C(Cs,C7,C5) as 11 =
{Q1,Q2,Q3}, where Q1 = {vi,va, v}, Qo = {v2,v3} and Q3 = {vi, v}, v3 vZ v3 V2 vE,
vs,v3,vi}t. Again by Theorem 2.3, we note that each vertex of C(Cs,Cy,Cs) has dis-
tinct representation with respect to 11, as shown in Table 2. Hence pd(C(Cs, C7,Cs5))
= 3.

3. STRONG METRIC DIMENSION OF CHAIN CYCLE

In this section, we find the strong metric dimension of the chain cycle constructed
by even cycles and the chain cycle constructed by odd cycles. Let V; = {v?, v3, ... v}
and Vo = V(C)\ V1. Through out the section, we denote the strong resolving graph of a
chain cycle C(C,, Cpy, - .-, Cp,) by Csr(Chpy, Chy, - ., Cy, ). Furthermore, we denote
the vertex set and the edge set of the strong resolving graph of C(C,,,, Cp,, ..., Chp,,)
by V(Csg) and E(Csgr), respectively.



314 T. UR REHMAN AND N. MEHREEN

TABLE 2. Representation of U;- with respect to II

r(vi|II) = (0,3,2) | r(vs|Il) = (4,1,0
r(vg|IT) = (0,3,1) | r(vg|IT) = (3,1,0
r(vg|I) = (1,2,0) | r(vs|IT) = (2,0, 1
r(ul|IT) = (1,1,0 — (5.2,0

=l

<

6,2,0

<
<
<
<

6,1,0

=l

~— |~ |~ |~ |~ |~ |~
~ |~ |~ |~ |~ |
~— |~ |~ |~ |~ |~ |~

=

2,0,1

<
S

=3 =3

~~ ~— ~— ~~ ~— — ~~
[~ [~

Gl | kW |[Ww [Mw | N (o | oo

—_
~— |~ [~ |~ |~ |~ | ~— | ~—r
3

=
— ~—~ — /g ~—~ —~ — ~—~
[N W N DO U= Iy QO = DN = ——

<
=

<

Following two lemmas are easy observations from the structure of a cycle C,, and
a chain cycle constructed by even cycles as well as a chain cycle constructed by even

cycles, respectively.

Lemma 3.1. Let C, be a cycle. Then for two distinct vertices w;,u; € V(Cy) we
have w; MMDu; if and only if d(u;, u;) = d(Cy,).

Lemma 3.2. Let x € V) and y € V(C). Then x and y are not mutually mazimally

distant.

In the next theorem, we find the mutually maximally distant vertices in chain cycle

C(Cryy Cnyy - -+, C,,), with each n; is even, with respect to the vertices {vh, |, vith |

2

i =1,2,...,m — 1}. Here, we denote U;(C,,) = {vi,vi, ..., v% } and Us(C,,) =
2

{UZ;LT,L-H,UZ%H, vl hie{1,2,..0,m}.

Theorem 3.1. Let v}, v) € Va, wherei, k € {1,2,...,m}, in a chain cycle C(Ch,, Cn,,
.., Cp..) constructed by even cycles with respect to the vertices {UZ}L_Z-H,Ui“ | i =
2
1,2,...,m—1}.

a: Leti = k. Then v MMDv} if and only if d(v},vj) = d(Cy,).
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b: Leti # k. Then v MMDuv} if and only if d(v},vf) = d(C(Chp,, Chy, ..., Ch,,)).

Proof. (a). Let d(v},v}) = d(Cy,). Then from Lemma 3.1, we have v MMDu;.

Conversely, let v{MMDuv; and j < I. On the contrary, assume that d(v},v}) <
d(Cy,). Since N(vi) = {v,_,v,,} and N(vj) = {vj_j,vj,,}. Note that either
Vv, ..o or vivl_y ... vjv) .. o) is a shortest path from v} to vj. This shows that
vj- and v} are not mutually maximally distant which contradicts our supposition that
v:!MMDu;.

(b). Let d(vi,vf) = d(C(Ch,, Cpys - - -, Cn,,)). Then clearly v:MMDuyf.

Conversely, let u;MMDuj and let d(v!, vf) < d(C(Cy,, Chny, - .., Cy,,)). Since N(v!) =
{v!_, vi} and N(vf) = {vfy,ufy ). I vi € Ui(Cy,) and vf € Uy(Cy,), then
P =il .. it wkuk L oF is a shortest path from v! to vf. This clearly
shows that v/ is not mutually maximally distant to v;'. Similarly, if v} € Uy(C,,) and
vf € Up(Cy,), then Py = vivi .. of il . of vk . of is a shortest path from v!
to vy This shows that v} is not mutually maximally distant to v;. Moreover, If v} €
U1(Cy,) and vf € Us(Cy,), then Ry = vivl, ;.. opTostt ok, of L of s a shortest
path from v to vf. This clearly shows that U is not mutually maximally distant to
vf. Similarly, if v} € Uy(C,) and vf € Uy(Ch,), then Ry = vivl_y .. oftoi™ . of,

k k

vs ... ) is a shortest path from v} to v, which shows that v} is not mutually maxi-

mally distant to vy, O
For each i € {1,2,...,m}, Theorem 3.1 (a) implies

+ 2

(31) A:{Ujvj+%‘j:2,3,...,§,§ ,5

+3,... ,ni} - E(CSR),

where j 4+ % are integers modulo n;. Similarly, Theorem 3.1 (b) implies v{vi, .| €
2

E(CSR). Thus E(CSR) =AU {’U%’U%_H}.
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Lemma 3.3. Let C(C,,,C,,,...,Cy, ) ba a chain cycle constructed by even cycles
with respect to the vertices {vin_iﬂ, vitt i =1,2,...,m — 1} and each n; > 4. Then
2

O‘(CSR(CYnU an 3t Cnm) =1+ Z:il ni2_2'

Proof. We construct a vertex cover of strong resolving graph of C(C,,,,Cy,, ..., Cp..)

with minimum cardinality. From (3.1), we note that the vertices {v}, v} n | j =
2

2,3, ., 8 5425 43,...,n}, foreach 1 € {1,2,...,m}, form 7", "i2_2 copies

of K. Thus, the > ", "i2_2 vertices {v; | J = 2,3, .5, 5+ 2,5 4+ 3,...,n},

for each ¢ € {1,2,...,m}, are minimum number of vertices to cover the edges of
A, Let S = {v; | j = 23,...,%,% +2,% + 3,...,n;}. Furthermore, since
v%vﬁ% .1 € E(Csgr). Thus, the vertex cover of the strong resolving graph of chain
cycle C(Cyy,Cryy .., Cp. ) with minimum cardinality is S = S U {v;}. Hence

O‘(CSR(CYnU Cn2> ey Cnm)) =1 + Z:?ll m2_2' D

Theorem 3.2. Let {C,,,}, be m disjoint cycles with each n; is even and n; > 4,

then sdim(C(Ch,, Cpy,...,Cp)) =1+>0, ni=2

2

Proof. The proof follows from Lemma 3.3 and Theorem 1.1. U

In the next theorem, we find the mutually maximally distant vertices in chain cycle
C(Cpy, Chyy - -, C,.), With each n; is odd, with respect to the vertices {v?, ., v |

Bemand
i=1,2,...,m—1}.

Theorem 3.3. Let v;'-, vf € Va, wherei, k € {1,2,...,m}, in a chain cycle C(Cy,, Cp,,

i+l
o Unyy vt o=

Ch,,) constructed by odd cycles with respect to the vertices {Uiii_"_l,
2
1,2,...,m—1}.
(a): Leti=k. Then v MMDv; if and only if d(v},v}) = d(Cy,).
(b): Let 1 # k.
(1): Fori =1 and k = m, then v MMDu™ if and only if j € {1,2} and

le{%“,"mT“le},
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(2): Fori =1 and k € {2,3,...,m — 1}, then v]lMMva‘C if and only if
. ni+1
je{l,2} and 1 =2

(3): Fori € {2,3,...,m — 1} and k = m, then vliMMDvgn if and only if
j=2andl € {futl mmtl 4 1}

(4): Forie {2,3,...,m—1} and k € {2,3,...,m — 1}, then v! MMDuf if

and only if j = 2 andl:"kTH.

Proof. (a). Proof is similar to the proof of Theorem 3.1 part (a).

(b). Let i # k. We prove the cases (1) and (2) and the proof of the cases (3) and
(4) are similar.

(1). Suppose that j € {1,2} and | € {?=ztl 2=l 4 1} We shall show that
v;MMDu;*. Note that N(v{) = {vy,v) } and N(vy) = {vi,v{}. Then P :=

1,,1 .1 2,,2 m,,m m m e yl,,1,01 2,,2 m,,m

/Ullunlvnl_l e Ulvnz PR /Ul 'Un’m PR Unm2+1+21)nm2+1+1 al’ld P2 - /U2/U3/U4 . e /Ullunz . e /Ul /Unm

VM1, Ui, | are shortest path from vt to Vi1, and from vs to Uiti1 s TE-
2 2 2 2

ni—l _

spectively, of length 7", s. Thus from P; and P», we have

d(vl  om ) =d(vi, vm )=s—1.

+1 +1
ny’ 7L7n2 +1 —n"é +1
That is, leDvaH for j € {1,2}.
Again note that N( "m+1+1) {va+1+2, v . }. Then
2 2

e ,m m m—1 m—1 2,1 1,1
Ql - Unn,é+1+1 Unn,é+1+2 . e 'Ul U"m721+1+2 U7lm;1+1+3 e U1Un1+1+2 . e ’Umvl and

e ,m m m, m—1 m—1 2,,1 1,,1
Qs = vnm2+1+11)nm2+1+2 - vnmEﬁlenm REUPRY vlvnﬁl ... U3V, are shortest path

from UT”;“H to vi and from UTWEH to vd of lenght s. Thus from @Q; and Q,, we

have
1 . m _ 1 m _

(32) d(vlv UanH+2> - d('U27rUan+1+2) =s—1

m—1 m—1 1,1 R
Also, Q)3 —vnm+1vnm+1 R vnm21+1+2vnmgl+1+3 vlvn1+1+2 - Up, vy and Qy =

m—1 m—1 2,1 1,1
Vi1 Vg1« - 01 V11 CH . BRSOV vlvnlﬂ. . V30, are shortest path from vnm+1
2 2 2

to v{ and from van to vi of lenght s. Thus from (Qs3, Q4 and equation (3.2), w
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have UTm+1+1MDU]1- for j € {1,2}. Hence 1)]1-1\/[1\/[va1”m+1+1 for j € {1,2}. Similarly,
2 2

we can prove that U;MMDU@ for j € {1,2}. Summing up, we have U;MMDvlm for
j€{1,2} and | € {Rutl mmdl 4 7}
Conversely, Suppose v MMDu;™ then we show that j € {1,2} and [ € {"=aH 2atly
1}. On the contrary, we shall prove the following cases:
Case 1: j ¢ {1,2} but | € {2mtl nudl 4 1}
Case 2: | ¢ {Z=tl mmtl 4 9} but j € {1,2},
Case 3: j ¢ {1,2} and [ ¢ {2l madl 4 73
Case 1: First suppose that j ¢ {1,2} and [ € {2zt tmtl 11} Tetj € {3,4,..., 25}

m m m
N, * ° ° 'Un,mQ+1+2U

v +1

1y o1 1 1,1 .1 2,2
Note that N (v;) = {vj_;,v; 11} Thenvjvj vi ... vfv;, .. v

m
ng 1

is a shortest path from v} to UT%H of length say r. But vj_jvjvi, 05,

+1

Um

A nm2+1+2v

is a shortest path from vjl»_l to v . of
2

m
nomtl g +1

Thus vjl» and v}, 4, | are not MMD.
2

Now let j € {™ 42, M+l 43 . ni}. Note that N(v}) = {vl_;,v},;}. Then

1,,1 1 2,,2 m m
vjvj_lvj_z Ce Ul’Un2 v

m
vt mtl

v™ ., is ashortest path from v} to v,
nmdl g j nmtl g

1 1 2,,2 m,,m m

! 1 1 m :
of length say r’. But v; vjvj_1vj_5...v{v,, ... 0" v, ... mt1 Vi1 | 15 @ short-

est path from v} to Ui,i1,, of length 7' + 1. That is,
2
d(vjl+17 UTyyéﬁ'l_,’_l) =7 +1

1 m
Thus v; and o7}, 4,

. . . 1
o1, Are not MMD for j ¢ {1,2}. Similarly, we can prove that v;

and v ., are not MMD for j ¢ {1,2}. Summing up, we have v} and v" are not
2
MMD for j ¢ {1,2} and [ € {2mtL nmtl 4 1}
Case 2: Secondly, suppose that [ ¢ {2zl tmtl 4 1} and j € {1,2}. Let | €

{2,3,... 2t 1} Note that N(v/") = {vj",v/%;}. Then vj"v}"; .. .v{“vtﬁgil” vl
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1

v .vp 1 is a shortest path from v} to vy of length say ¢. But v} v]"v" ...

an+1 4o

m, m—1 2,,1 1,1 ; m 1
VI Vbt g Vilnmss o -+ U, U1 38 @ shortest path from v;}, to vy of length ¢ + 1.
That is,

d(vi, vty =t +1.

Thus v and v{ are not MMD.
Now let | € {mutl 4 2 mmtl 4 3 p_}. Note that N(v*) = {v/";,v/%;}. Then

m—1 2,,1 1,1

m,,m m : m 1
v ] U"mz“+2 .. -U1Unm2+1+2 ... U, vy is a shortest path from v;" to vy of length

m—1 2,,1 1,1

!/ m m,,m m -
say t'. But v v"vl, .. 0] Vnmtt g ViV p - - Up, U1 1S @ shortest path from

v, to vi of length ¢’ + 1. That is,
d(vi,om ) =t + 1.

This implies, v/" and v{ are not MMD. Hence v/" and vj are not MMD for [ ¢

’ 2

{"m+1 2mtl 1}, Summing up, we have v]" and vj are not MMD for [ ¢ {#atl 2atl i
1} and j € {1,2}.
Case 3: Thirdly, suppose that [ ¢ {2+l m=tl i1} and j ¢ {1,2}. Then the proof

+ 1}. Similarly, we can prove that v/* and v are not MMD for [ ¢

is straigt forward from the cases [ ¢ {2t 2mtl 41} or j ¢ {1,2}. This completes
the proof of (1).

(2). Suppose that j € {1,2} and [ = 2L, We shall show that v;MMDuy. Note
that N(vi) = {v3,v5,} and N(v3) = {v3,v1}. Then

SRS DRSS 2,2 k, .k k k
P3:=wvjv, v,y .. 070, - 07Uy V1 Vnenn and
2 2
e 11,01 2,2 k, .k k k 1 k
Py = vyv5vy . .. VUL, - VTV U, 1U"k“ are shortest path from vy to v, ,, and
2 2

n;—1

from v to vnﬁl, respectively, of length ZZ 1

= 5. Thus from P; and P,, we

have

d(vél,vé}ﬁ) = d(U%,Uiﬁ_ﬁ_l) =s— 1.
2 2
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That is, vll\/IDvnk+1 for j € {1,2} and | = 2

Again note that N( nkﬂ) = {“nkHH nkﬂ } Then
2
ok k m, m—1 m—1 11
Rl - — 'Unk2+1 Unk2+1—l Ul ,Un'm 1+1+2,Un7n—21+1+3 P ,Ul,Un1+1 492 “ e Unl'Ul and
Ry =% ok L, L vfyﬁk 11+1+2U]Z;11+1+3 vlvn1+1 ... v3v3 are shortest path from
2 2 2

v’;ikﬂ to v and from vnkﬂ to vs of lenght s. Thus from R, and R, we have

1k 1k
(33) d(v17vnk+1_1) = d(/U27/Unk:+1_1) =S5—= 1
2 2

ok k k, k—1 k—1 2,1 1,1 ._

Also, R3 := vnk2+1+lvnk+1+2 VAT 21+1+2vnk721+1+3 vlvn1+1+2 v, vy and Ry =
k k k, k—1 E—1 2.1 1,1 k
Unk2+1+1vnk2+l+2 .. 'U1U7lk—1+1+2vnk—1+1+3 U1U7L12+1 ... U3V, are shortest path from vnﬁl
2 2

to v} and from U]flwlﬂ to vs of lenght s. Thus from Rz, Ry and equation (3.3), w
5
have v’@MDvl for j € {1,2}. Hence U}MMDM@ for j € {1,2}. Thus we have
1MMDvl for j € {1,2} and [ = 2=t

Conversely, Suppose v}MMDvl and we show that j € {1,2} and [ = ”’“H On the
contrary, we shall prove the following cases:

Case 1: j ¢ {1,2} but [ = 2
Case 2: | # " but j € {1,2},
Case 3: j ¢ {1,2} and | # “£H.

Case 1: First suppose that j ¢ {1,2} and [ = ”’“TH Let j € {3,4,...,"17“}.
Note that N(vj) = {vj_j, v}, }. Then vlvl vl ,. .. 0f v2, ... vfvs .. -U]Zk%l_lvlik%l is
a shortest path from vjl- to v’kaH of length say z. But

o

11,1 o1 2,2 ko k k ke g+l
Vj_qUjVj VgV Upy - . VI Ug .. -Unk2+1_1v 5

of length x 4+ 1. That is,

is a shortest path from v _, to vnkﬂ

Thus v} and v%,;, are not MMD.
2
Now let j € {®F + 2, M+ 4+ 3. ny}. Note that N(v}) = {v}_j,vl,;}. Then

1,1 1 2,2 ky ok k
VjU;_qUj_ g UTUp, o UV .. Uy

U] v’;ik+1 is a shortest path from vjl- to v',ikﬂ of
2 2 2

-1

+1



CHAIN CYCLE 321

/ 1 1,0 ol 2.2 ko k k koo
length say z'. But v; vjv; v 5 ... 070, ... 0705 ... Unss _ Vngpr 15 8 shortest path
2 2

from v} to v}, ., of length 2’ + 1. That is,
2
d(vj vk 0) =2 + 1.
2

Thus v} and v}, ,, are not MMD for j ¢ {1,2}. Summing up, we have v; and v;" are
2

not MMD for j ¢ {1,2} and [ = 2&L,

Case 2: Secondly, suppose that [ = "’“TH and j € {1,2}. Letl € {2,3,... "’“TH—I}.

kY _ [k ok ko k ko k-1 2,1 1,1
Note that N(v/') = {v;" 1, v/, }. Then vivy ... v} Vit y o VlUngs1 o Un U1 05 @
2 2
shortest path from v]" to v of length say y. But v vfvf ;.. -vaﬁ;hw . .v%v}lkﬂw
2 2

...v} vi is a shortest path from vf,, to v of length y + 1. That is,
d(v%’ Ulk—l—l) =y+1

Thus vy and vi are not MMD.

Now let | € {2mtl 4 2 mmtl 4 3 n}. Note that N(vf) = {vf;,vf,;}. Then

k,k k,k—1

1
VUL UV
2

nk+1
“ET 42

/ ko ko k k, k=1 2,1
say y'. But v’ v .. VUi, e ViV
2 2

cviv ...v} vi is a shortest path from v} to vi of length

+2

1,1 k
Ly UnyUr s A shortest path from v}’ ,

to v] of length ¢y’ + 1. That is,
d(v%’ Ulk—l) =y + 1.

This implies, vf and v} are not MMD. Hence vf and v} are not MMD for [ # “£tL.
Summing up, we have v}" and v} are not MMD for I # £ and j € {1,2}.

Case 3: Thirdly, let j ¢ {1,2} and [ # ", Then the proof is straigt forward
from the cases j ¢ {1,2} or [ # 2. This completes the proof of (2). O

From Theorem 3.3 (a), for all i € {2,3,...,m — 1}, we have
(B4 Av={vjvl w |G =120 25 B 2} € B(Cr),
(35) A2 = {UTU‘;Z”l'rn*l | ] = 27 37 M 7nm} g E(CSR)7
2

(3.6) Az = {v;‘.v;‘,w%l |j=2,3,... m 2t 49 n} C E(Csg).
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From Theorem 3.3 (b), for all 4,k € {2,3,...,m — 1}, we have

(3.7) By ={vlvj" | j=1,2. and | = 2=+l 2atl 41} C E(Cgp),
(3.8) By = {u;v’;k%l |j=1,2.} C E(Csg),

(3.9) By = {vyoj" | 1 = ", 2t 4 1.} € E(Csp),

(3.10) B, = {vévl@} C E(Cgg).

Thus from (3.4)~(3.10), we have A; U Ay U A3 U B; U By U B3 U By = E(Cgg).
Note that the set of edges A; form a path P,,_; with initial vertex v{ and final

vertex vi, that is,

[ B | 1 1
Proot 5= V100 Vg Vi) )

where 1+ (n1 — 2)[ %] = 2 (mod ny).

Similarly, the set of edges A, form a path P, _; with initial vertex v ,, and final

m
2

vertex v ., ., that is,

2 +1’

“-— m m m m
B =1 1= Vg Vi Vit g - - Vo o —2) | 2

where 22t + (n,, — 2)| %2 | = 2t 41 (mod n,).
Also, the set of edges Az form m — 2 paths P,, o, i € {2,3,...,m — 1}, with initial
vertex v} and final vertex v’ .,, that is,
5

P 1= 03Uy gV o - Vg i3y )

where 2 + (n; — 3)[%] = 22 (mod n;).

Lemma 3.4. Let C(Cyy, Chy, ..., Ch,,) ba a chain cycle constructed by odd cycles
with respect to the vertices {viiﬂﬂ, vitt i =1,2,...,m—1} and eachn; > 5. Then
o

a(CSR(Cnlv an IR Cnm) =m-—1+ L%J + L%J + 27;51 Lm2—2J .
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Proof. We construct a vertex cover of Csgr(Ch,, Cps,, - - ., Cp, ) with minimum cardinal-
ity. Note that the m vertices v{ and v, i € {2,3,...,m—1}, are nonadjacent vertices
in Csg(Chy, Chy, ..., Cy, ) and cover all edges of sets By, By, By and By. Let S =

{vi,v§|i=2,3,...,m—1}. In order to cover the edges of path P,,_; we need 21

vertices. Since v{,v) € S, therefore we must take -1 —1 more vertices of P,,_1. Thus
1

vl vl
2] B P14 B Pl (na—3) |

- ._ 1,1 1 1
set S by taking S := SU{v PUppa ) U V(g —3)

we take the vertices v | in S. That is, we augment the
2

] }. Similarly, to cover
2

N —1
2

the edges of the path P, _;, we must take vertices of P, _j. Thus we take

m
, U

3 m m
the vertices ”Unm;l , Unm2+1 Bt (0 -3)

m . )
2 ) U"”E+1+4L"7’”J’ o | in S. That is, we

again augment the set S by taking S := S U {UT’”“’UTM“HL"—’”J’UT’”“HL”—WJ’ ey
2 2 2 2 2

m

'Un,mé+1+(nm_3

[2=2] vertices of P,,_1, i € {2,3,...,m — 1}. Since vj € S, therefore we take

) J}' Finally, to cover the edges of each path P,,_» we must take
2

|-m—2

5~ more vertices of P,,_1, i € {2,3,...,m — 1}. Thus we take the vertices

v;+2(n_q,v;+4(n_q,...,v;+(n,_3)[ﬂ1, i € {2,3,...,m — 2} in S. That is, we again
2 2 z 2

augment the set S by taking S := S U {v’

i -
2+2[%1>U2+4[%1"“’U L=

2+(ni—3)[ 5] |

2,3,...,m—2}. Thus S is the vertex cover of the strong resolving graph of the chain

cycle C(Cyp,, Chy, ..., Cy,,) with minimum cardinality [S| =m — 14+ 3] + [%] +

pib] 0

Theorem 3.4. Let {C,,,}*, be m disjoint cycles with each n; is odd and n; > 5, then
sdim(C(Coys Oy Co)) = m—= 1 [ 4 [ ] + 5005252,

Proof. The proof follows from Lemma 3.4 and Theorem 1.1. O
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