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FUNDAMENTAL RESULTS ON SYSTEMS OF FRACTIONAL

DIFFERENTIAL EQUATIONS INVOLVING CAPUTO-FABRIZIO

FRACTIONAL DERIVATIVE

MOHAMMED AL-REFAI

Abstract. In this paper, we analyze the solutions of a linear system of fractional

differential equations involving the Caputo-Fabrizio fractional derivative. We first

transform the system to a equivalent system of integro-differential equations with

integer derivative. We then establish a uniqueness result for the system of fractional

differential equations and present a necessary condition to guarantee the existence

of a solution. Moreover, if the solution exists, the unique solution of the fractional

system is obtained explicitly and is given in a closed form. Two examples are

presented to illustrate the validity of the obtained results.

1. Introduction

In this paper, we consider the following linear system of fractional differential

equations

(1.1)
dα

dtα
Y(t) = AY(t) +G(t), t > a, Y(a) = Y0,

where Y,G ∈ R
n, A ∈ R

n ×R
n, 0 < α < 1, and dα

dtα
= CFCDα

a is the Caputo-Fabrizio

fractional derivative of Caputo sense.

Recently, several types of non-local fractional derivatives with non-singular kernel

have been introduced [7, 16]. The role of applications of these types of fractional
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derivatives is indicated by several authors, see [14, 17]. Since the theory of fractional

models is effected by the type of the fractional derivative, several papers have been

devoted to study the new types of fractional models, see [3, 8, 9, 15]. Also, it is been

noted that certain classes of fractional models involving the Caputo-Fabrizio frac-

tional derivative can be transformed to integro-differential models of especial types,

see [10, 11, 12, 13].

This paper is devoted to study linear systems of fractional differential equations

involving the Caputo-Fabrizio fractional derivative of order 0 < α < 1. While there

are some studies on systems of fractional differential equations, see [1, 18, 20, 23],

to the best of our knowledge, this is the first study on fractional systems involving

the Caputo-Fabrizio fractional derivative. We start with the definition and main

properties of the Caputo-Fabrizio fractional derivative.

Definition 1.1. For p ∈ [1,∞] and Ω an open subset of R, the Sobolev space H p(Ω)

is defined by

Hp(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), for all |α| ≤ p}.

Definition 1.2. [16] Let f ∈ H1(a, b), a < b, a ∈ (−∞, t), 0 < α < 1, the left

Caputo-Fabrizio fractional derivative in the Caputo sense is defined by

(CFCDα
a f)(t) =

N(α)

1− α

∫ t

a

f ′(s)e−
α

1−α
(t−s)ds,(1.2)

where N(α) > 0 is a normalization function satisfying N(0) = N(1) = 1.

The corresponding fractional integral is defined by, see [22]

(CFCIαa f)(t) =
1− α

N(α)
f(t) +

α

N(α)

∫ t

a

f(s)ds, 0 < α < 1.(1.3)

The relation between the Caputo-Fabrizio fractional derivative and the corresponding

integral is given by

(CFCIαa )(
CFCDα

a )f(t) = f(t)− f(a).(1.4)
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For more about the Caputo-Fabrizio fractional derivatives we refer the readers to

[2, 4, 16, 19, 22]. Let B(α) = N(α)
1−α

, and µα = α
1−α

, then

(1.5)

(CFCDα
a y)(t) = B(α)

∫ t

a

y′(s)e−µα(t−s)ds = B(α)e−µαt

∫ t

a

y′(s)eµαsds, 0 < α < 1.

2. Main Results

In this section, we present a necessary condition to guarantee the existence of a

solution to the system (1.1) and obtain a closed formula of the solution, if it exists.

We start with the following result in which we transform the fractional system to a

equivalent system of integro-differential equations. We have

Theorem 2.1. Consider the linear system in (1.1) with yi ∈ H1(a, b), and let

(2.1) vi(t) =

∫ t

a

eµαsyi(s)ds, i = 1, 2, · · · , n.

Then the system (1.1) is equivalent to the system of first order differential equations

(2.2) D V′ = −µαB(α)V−H(t), V(a) = 0,

where

D = A− B(α)I, H(t) = B(α)eµαaY(a) + eµαtG(t) and V (t) = (v1(t), · · · , vn(t)).

Proof. Integration by parts of (CFCDα
a yi)(t) yields

(CFCDα
a yi)(t) = B(α)e−µαt

∫ t

a

eµαsy′i(s)ds

= B(α)e−µαt

(

eµαsyi(s)|
t
a − µα

∫ t

a

eµαsyi(s)ds

)

= B(α)

(

yi(t)− yi(a)e
−µα(t−a) − µαe

−µαt

∫ t

a

eµαsyi(s)ds

)

.

Since vi(t) =
∫ t

a
eµαsyi(s)ds, and yi is continuous, we have

(2.3) v′i(t) = eµαtyi(t), or yi(t) = e−µαtv′i(t).
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Thus,

(CFCDα
a yi)(t) = B(α)e−µαt

(

v′i(t)− eµαayi(a)− µαvi(t)

)

.(2.4)

We have the system (1.1)

CFCDα
a y1 = a11y1 + a12y2 + · · ·+ a1nyn + g1(t),

CFCDα
a y2 = a21y1 + a22y2 + · · ·+ a2nyn + g2(t),

...

CFCDα
a yn = an1y1 + an2y2 + · · ·+ annyn + gn(t).

Using the results in Eq.’s (2.3)-(2.4), we have

B(α)e−µαt (v′1 − eµαay1(a)− µαv1) = e−µαt (a11v
′

1 + a12v
′

2 + · · ·+ a1nv
′

n) + g1(t),

B(α)e−µαt (v′2 − eµαay2(a)− µαv2) = e−µαt (a21v
′

1 + a22v
′

2 + · · ·+ a2nv
′

n) + g2(t),

...

B(α)e−µαt (v′n − eµαayn(a)− µαvn) = e−µαt (an1v
′

1 + an2v
′

2 + · · ·+ annv
′

n) + gn(t).

The above system is reduced to

(

a11 −B(α)
)

v′1 + a12v
′

2 + · · ·+ a1nv
′

n = −µαB(α)v1 − B(α)eµαay1(a)− eµαtg1(t),

a21v
′

1 +
(

a22 − B(α)
)

v′2 + · · ·+ a2nv
′

n = −µαB(α)v2 − B(α)eµαay2(a)− eµαtg2(t),

...

an1v
′

1 + an2v
′

2 + · · ·+
(

ann −B(α)
)

v′n = −µαB(α)vn − B(α)eµαayn(a)− eµαtgn(t),

which proves the result. �
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Proposition 2.1. A necessary condition for the existence of a solution to the system

(1.1) is that

(2.5) AY(a) +G(a) = 0,

where Y = (yi)
n
i=1, and yi ∈ H1(a, b) ∩ C[a, b].

Proof. Since (CFCDα
a yi)(ai) = 0, see [8], then

(

dα

dtα
Y
)

(a) = 0, and the result follows

by the continuity of a solution to (1.1). �

Remark 2.1. Analogous conditions were discussed in the case of Atangana-Baleanu

fractional derivative, see [5, 6, 21]. The author in [6] generalized the Mittag-Leffler

kernel to remove the necessary condition (2.5), and such that the homogenous equation

has a nontrivial solution.

Proposition 2.2. Consider the homogeneous system (1.1) with G(t) = 0. If A is

invertible then it has only the zero solution.

Proof. Since G(a) = 0, and A is invertible by the necessary condition in Eq. (2.5)

we have Y(a) = 0. Then by Eq. (2.2) the problem is equivalent to the homogeneous

system

(2.6) Dv′ = −µαB(α)V, V(a) = 0.

Applying the Laplace transform to the above system and using the fact thatV(a) = 0,

we have
(

sD + µαB(α)I

)

L(V) = 0.

Since the matrix sD + µαB(α)I, is nonsingular, then the above system has only the

zero solution L(V) = 0. By the continuity of V, we have V = 0. Thus the system

(2.6) possesses only the zero solution and hence the result. �
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Proposition 2.3. Consider the system of first order differential equations

(2.7) Z = AZ′ +R(t),

where Z,G ∈ R
n, and A ∈ R

n × R
n. Let λ1, · · · , λn, be the eigenvalues of A and

X1, · · · ,Xn be the corresponding n-linearly independent eigenvectors of A. Let Zp be

a particular solution to (2.7). If λi 6= 0, i = 1, · · · , n, then the general solution to

(2.7) is given by

(2.8) Z = c1e
1

λ1
t
X1 + c2e

1

λ2
t
X2 · · ·+ cne

1

λn
t
Xn + Zp.

Proof. We have

Z′ =
c1

λ1

e
1

λ1
t
X1 +

c2

λ2

e
1

λ2
t
X2 · · ·+

cn

λn

e
1

λn
t
Xn + Zp,

and

AZ′ =
c1

λ1
e

1

λ1
t
AX1 +

c2

λ2
e

1

λ2
t
AX2 · · ·+

cn

λn

e
1

λn
tAXn + AZ′

p,

= c1e
1

λ1
t
X1 + c2e

1

λ2
t
X2 · · ·+ cne

1

λn
t
Xn + AZ′

p.

Thus,

AZ′ +R(t) = c1e
1

λ1
t
X1 + c2e

1

λ2
t
X2 · · ·+ cne

1

λn
t
Xn + AZ′

p +R(t),

= c1e
1

λ1
t
X1 + c2e

1

λ2
t
X2 · · ·+ cne

1

λn
t
Xn + Zp = Z,

which proves the result. �

As a consequence of the above result, we have the following existence and unique-

ness result for the system (1.1).

Theorem 2.2. Consider the system (1.1) with det(A) 6= 0, then the system has a

unique solution given by Eq. (2.8).
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3. Illustrated Examples

In this section, we present two examples to illustrate the efficiency of the obtained

results.

Example 3.1. Consider the homogenous system (1.1) with

A =





B(α) B(α)µα

B(α)µα B(α)



 , t > 0,Y(0) =





y1(0)

y2(0)



 .

We have |A| = B(α)2
(

1−µ2
α

)

. If µα 6= ∓1 then A is invertible, and by Proposition 2.2

the system possesses only the zero solution. We now discuss the solution for µα = 1,

or α = 1
2
. The case µα = −1 is not valid as µα = α

1−α
. The system is equivalent to

the system of ordinary differential equations

DV′ = −B(α)V −B(α)Y(0),(3.1)

V(0) = 0,(3.2)

where D = A− B(α)I. Let

E = −
1

B(α)
D = −

1

B(α)
(A−B(α)I) =





0 −1

−1 0



 .

The eigenvalues of E are 1 and −1 and the corresponding eigenvectors are





1

−1





and





1

1



 respectively. Thus, the solution of Eq. (3.1) is given by

V (t) = c1e
t





1

−1



 + c2e
−t





1

1



−





y1(0)

y2(0)



 .

The condition V(0) = 0, yields c1 = y1(0)−y2(0)
2

, and c2 = y1(0)+y2(0)
2

. The necessary

condition in (2.5) yields y2(0) = −y1(0), and thus c1 = y1(0), c2 = 0, and the general

solution of V(t) is given by
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V(t) = y1(0)e
t





1

−1



−





y1(0)

−y1(0)



 = y1(0)(e
t − 1)





1

−1



 .

Thus

Y = e−µαtV′ = e−tV′ = y1(0)





1

−1



 .

Example 3.2. Consider the system (1.1) with

A =





1 −2B(α)

0 1
2
B(α)



 ,G(t) = e−2t





−1

B(α)t(1
2
− t)



 ,Y(0) =





1

0



 ,

and α = 2
3
. The above system is equivalent to the system of of first order differential

equations

D V′ = −2B(α)V−H(t), V(0) = 0,

where

D =





1−B(α) −2B(α)

0 −B(α)
2



 and H(t) =





B(α)− 1

B(α)t(1
2
− t)



 .

The eigenvalues of the matrix E = − 1
2B(α)

D, are 1
4
and r, and the corresponding

eigenvectors are (1 1 − r)t, and (1 0)t, where r = B(α)−1
2B(α)

. The particular solution

is given by

Vp =





t

1
2
t2



 .

Thus the general solution is

V = c1e
1

r
t





1

0



+ c2e
4t





1

1
4
− r



 +





t

1
2
t2



 .

The condition V(0) = 0 yields c1 = c2 = 0, and thus
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V(t) =





t

1
2
t2



 .

The solution Y is given by

Y(t) = e−2tV′(t) = e−2t





1

t



 .

4. Concluding Remarks

We have established existence and uniqueness results for a system of fractional

differential equations of order 0 < α < 1. The unique solution of the system is given

in a closed form. The obtained results are of interests for many researchers as the

Caputo-Fabrizio derivative is connected with many applications.
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