GENERALIZED NORMAL SUBGROUPS

F. MAHMUDI (1) AND A. GHOLAMI (2)

ABSTRACT. In this paper, we generalize the concept of normal subgroups to \mathcal{N}_c -normal subgroups with respect to the variety of all nilpotent groups of class at most c, $(c \geq 1)$. We state some properties of \mathcal{N}_c -normal subgroups. Also we determine \mathcal{N}_2 -normal subgroups and \mathcal{N}_3 -normal subgroups of Q_{4n} , D_{2n} , SD_{2n} and \mathcal{N}_c -normal subgroups of SL(2,F).

1. Introduction

A variety of groups is the class of all groups satisfying a fixed system of identity relations, or laws, $v(x_1, ..., x_n) = 1$ where v runs through the non-empty set V (laws) of the free group F.

Let \mathcal{V} be a variety of groups defined by the set of laws V. There exist two important subgroups associated to a given group G with respect to a variety \mathcal{V} ,

$$V(G) = \langle v(g_1, g_2, ..., g_r) | g_i \in G, 1 \le i \le r, v \in V \rangle$$

which is called the verbal subgroup of G, and

$$V^*(G) = \{ g \in G | v(g_1, g_2, ..., g_i g, ..., g_r) = v(g_1, g_2, ..., gg_i, ..., g_r)$$
$$= v(g_1, g_2, ..., g_r) | g_i \in G, 1 \le i \le r, v \in V \}$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 16 U70,\ 20 D15,\ 20 D06.$

Key words and phrases. \mathcal{N}_c -normal subgroups, variety of all nilpotent groups, upper central series of a group.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

which is called the marginal subgroup of G (See also [1], [2], [3] and [4]).

The upper central series (or ascending central series) of a group G is the sequence of subgroups

$$1 = Z_0(G) \triangleleft Z_1(G) \triangleleft \dots \triangleleft Z_i(G) \triangleleft Z_{i+1}(G) \triangleleft \dots,$$

where each successive group is defined by:

$$Z_{i+1}(G) = \{x \in G \mid \forall y \in G, [x,y] = x^{-1}y^{-1}xy \in Z_i(G)\}$$

and is called the *i*th center of G. In this case, $Z_1(G)$ is the center of G, and for each successive group, the factor group $Z_{i+1}(G)/Z_i(G)$ is the center of $G/Z_i(G)$. This series is called an upper central series of quotients.

The lower central series (or descending central series) of a group G is the sequence of subgroups

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \dots \ge \gamma_i(G) \ge \dots$$

in which $\gamma_i(G) = [G, \gamma_{i-1}(G)], i > 1$. Notice that $\gamma_i(G)/\gamma_{i+1}(G)$ lies in the center of $G/\gamma_{i+1}(G)$ and that each $\gamma_i(G)$ is fully invariant in G. Also $\gamma_2(G) = [G, G] = G'$ is the derived subgroup of G.

Let \mathcal{N}_c be the variety of nilpotent groups of class at most c, where c is a natural number. In this variety, $V(G) = \gamma_{c+1}(G)$ denotes $(c+1)^{th}$ -term of lower central series of G and $V^*(G) = Z_c(G)$ is $(c+1)^{th}$ -term of upper central series of G (See also [5], [6]).

The concept of a normal subgroup of a group G is one of the most important concepts and applied subjects in group theory. In this paper, we generalize this concept to \mathcal{N}_c -normal subgroup.

In Section 2, we define the concept of \mathcal{N}_c -normal subgroup with respect to the variety \mathcal{N}_c ($c \geq 1$) which is a new definition of normal subgroups and we will discuss some properties of it.

In Section 3, we determine \mathcal{N}_2 -normal subgroups and \mathcal{N}_3 -normal subgroups of Q_{4n} , D_{2n} , SD_{2n} and \mathcal{N}_c -normal subgroups of SL(2, F), for $c \geq 2$.

2. \mathcal{N}_c -Normal Subgroups

We begin with the definition of \mathcal{N}_c -normal subgroups of a group.

Definition 2.1. Let G be a group, a subgroup H of G is called \mathcal{N}_c -normal subgroup if for all $g \in G$ and $h \in H$, we have $g^{-1}hg \in HZ_{c-1}(G)$ or equivalency $HZ_{c-1}(G) \triangleleft G$ and we denote it by $H \triangleleft_{\mathcal{N}_c} G$.

Clearly, if $H \triangleleft_{\mathcal{N}_c} G$, then $H \triangleleft_{\mathcal{N}_d} G$, for $d \geq c$.

Every normal subgroup is \mathcal{N}_c -normal, but there exist \mathcal{N}_c -normal subgroups which are not normal. For instance, consider the dihedral group $D_8 = \langle a, b | a^4 = b^2 = (ab)^2 = 1 \rangle$ and a subgroup H of D_8 . We have $HZ(D_8) = Z(D_8)$ or D_8 or $[D_8 : HZ(D_8)] = 2$. It shows that $HZ(D_8) \triangleleft D_8$. Thus $H \triangleleft_{\mathcal{N}_2} D_8$. Therefore $H \triangleleft_{\mathcal{N}_c} D_8$, for $c \geq 2$. Where the subgroups $\langle b \rangle, \langle ab \rangle, \langle a^2b \rangle$ and $\langle a^3b \rangle$ of D_8 are not normal in D_8 .

In the following, we state some useful and elementary results of \mathcal{N}_c -normal subgroups.

Theorem 2.1. If $G \in \mathcal{N}_c$, then every subgroup of G is \mathcal{N}_d -normal, for $d \geq c$.

Proof. It is enough to show that $H \triangleleft_{\mathcal{N}_c} G$, for every subgroup H of G. We know $G = Z_c(G)$, hence for all $g \in G$ and $h \in H$ we have $g^{-1}hg = h[h,g] \in HZ_{c-1}(G)$, since $G' \leq Z_{c-1}(G)$. Thus $H \triangleleft_{\mathcal{N}_c} G$.

Lemma 2.1. Let G be a group and H, K subgroups of G, where $Z_{c-1}(G) \subseteq Z_{c-1}(K)$ and $H \triangleleft_{\mathcal{N}_c} G$, then $H \cap K \triangleleft_{\mathcal{N}_c} K$ and $HK \leq G$.

Proof. Let $k \in K$ and $x \in H \cap K$, then by assumption and Dedekind's Modular Law we have $k^{-1}xk \in (HZ_{c-1}(G)) \cap K = (H \cap K)Z_{c-1}(G) \subseteq (H \cap K)Z_{c-1}(K)$. It implies that $H \cap K \triangleleft_{\mathcal{N}_c} K$. Since $Z_{c-1}(G) \subseteq K$, we can easily show that $HK \subseteq G$.

Consider the dihedral group $D_{48} = \langle a, b \mid a^{24} = b^2 = (ab)^2 = 1 \rangle$. $H = \langle a^8, b \rangle$ and $K = \langle a^2, b \rangle$ are subgroups of it, clearly $Z_2(D_{48}) = Z_2(K) = \langle a^6 \rangle$ and $H \triangleleft_{\mathcal{N}_3} D_{48}$. Hence $H = H \cap K \triangleleft_{\mathcal{N}_3} K$.

Remark 1. i) Let G be a group and H, K subgroups of G, where $H \triangleleft_{\mathcal{N}_c} G, H \subseteq K$ and $Z_{c-1}(G) \subseteq Z_{c-1}(K)$, then $H \triangleleft_{\mathcal{N}_c} K$.

- ii) Let $H, K \triangleleft_{\mathcal{N}_c} G$, where $Z_{c-1}(G) \subseteq K$, then $H \cap K \triangleleft_{\mathcal{N}_c} G$.
- iii) Let $\{N_i\}_{i=1}^n$ be a family of \mathcal{N}_c -normal subgroups of a group G, where $Z_{c-1}(G) \subseteq N_i$, for $i \geq 2$, then by part (ii), $\bigcap_{i=1}^n N_i \triangleleft_{\mathcal{N}_c} G$.
- iv) Let G be a group and N a normal subgroup of G, where $N \leq H \leq G$ and $N \cap \gamma_c(G) = 1$, then $H \triangleleft_{\mathcal{N}_c} G$ if and only if $H/N \triangleleft_{\mathcal{N}_c} G/N$, for $c \geq 2$.

Theorem 2.2. Let G and H be groups and $\alpha: G \longrightarrow H$ be a homomorphism. If $K \triangleleft_{\mathcal{N}_c} G$, then $\alpha(K) \triangleleft_{\mathcal{N}_c} \alpha(G)$. In particular, if α is an isomorphism, then $K \triangleleft_{\mathcal{N}_c} G$ if and only if $\alpha(K) \triangleleft_{\mathcal{N}_c} H$.

Proof. It is obvious. \Box

Clearly, if G is a group and H a subgroup of G, then $H \triangleleft_{\mathcal{N}_c} G$ if and only if $HZ_{c-1}(G)/Z_{c-1}(G)$ is invariant under all inner automorphisms of $G/Z_{c-1}(G)$.

Remark 2. If a group G does not have nontrivial \mathcal{N}_c -normal subgroups, then G is simple. Now, assume that G is simple, if G is abelian, then G does not have nontrivial \mathcal{N}_c -normal subgroups. If Z(G) < G, then Z(G) = 1. Therefore $Z_c(G) = 1$, for $c \geq 2$. Hence for every subgroup H of G, $H \triangleleft G$ if and only if $H \triangleleft_{\mathcal{N}_c} G$, so a group G is simple if and only if G does not have nontrivial \mathcal{N}_c -normal subgroups.

3. Computing \mathcal{N}_c -Normal Subgroups of Some Groups

At first, we determine \mathcal{N}_2 -normal subgroups and \mathcal{N}_3 -normal subgroups of the generalized quaternion groups with the presentation

$$Q_{4n} = \langle a, b \mid a^n = b^2, a^{2n} = 1, b^{-1}ab = a^{-1} \rangle.$$

Since $Q_4 \cong Z_4$, hence every subgroup of Q_4 is \mathcal{N}_c -normal, for $c \geq 1$.

Theorem 3.1. (i) A subgroup H of Q_{4n} is normal if and only if it is \mathcal{N}_2 -normal, for $n \geq 2$.

(ii) If $n \geq 3$ and odd, then the subgroup H of Q_{4n} is normal if and only if it is \mathcal{N}_c -normal, for $c \geq 2$.

Proof. (i) Clearly, if H is normal, then H is \mathcal{N}_2 -normal. Now we assume that H is \mathcal{N}_2 -normal. If |H| is even, then the unique element of Q_{4n} of order 2, a^n , belongs to H, hence $Z(Q_{4n}) = \langle a^n \rangle \leq H$ and $HZ(Q_{4n}) = H$, thus H is normal. If |H| is odd, then $H \leq \langle a \rangle$, since $|a^ib| = 4$, for $0 \leq i < 2n$, hence H is normal.

(ii) We know $Q_{4n}/Z(Q_{4n}) \cong D_{2n}$, so $Z_2(Q_{4n})/Z(Q_{4n}) = Z(Q_{4n}/Z(Q_{4n})) \cong Z(D_{2n})$, since $Z(D_{2n}) = 1$ we have $Z_2(Q_{4n}) = Z(Q_{4n})$, thus $Z_c(Q_{4n}) = Z(Q_{4n})$, for $c \geq 2$. Hence by part (i), $H \triangleleft Q_{4n}$ if and only if $H \triangleleft_{\mathcal{N}_c} Q_{4n}$, for $c \geq 2$.

Clearly, every subgroup of Q_8 is \mathcal{N}_c -normal, for $c \geq 1$. We know $Q_{16} \in \mathcal{N}_3$, hence every subgroup of Q_{16} is \mathcal{N}_c -normal, for $c \geq 3$.

Theorem 3.2. If $n \geq 6$ and even, then Q_{4n} has \mathcal{N}_3 -normal subgroups (of order n) which are not \mathcal{N}_2 -normal if and only if n = 4(2k+1), for natural number k.

Proof. Let $G = Q_{4n}$ and $H \triangleleft_{\mathcal{N}_3} G$ but $H \not \triangleleft_{\mathcal{N}_2} G$, so $H \not \triangleleft G$, |H| is even and $Z(G) \leq H \cap Z_2(G)$. We know $Z_2(G) = \langle a^{\frac{n}{2}} \rangle$ and $|Z_2(G)| = 4$, hence $|H \cap Z_2(G)| = 2$ or $|H \cap Z_2(G)| \neq 4$ since $|H \cap Z_2(G)| = 2$ and $|H \not \triangleleft G| = 2$ so $|H \cap Z_2(G)| = 2$, it implies that $|H \cap Z_2(G)| = |H| = 2$.

We have $HZ_2(G) \triangleleft G$ and $HZ_2(G)$ is not cyclic, hence $|G: HZ_2(G)| = 2$, $\frac{4n}{2|H|} = 2$, thus |H| = n. We conclude that H is one of the subgroups of the form $\langle a^4, a^i b \rangle$, $0 \le i \le 3$. Since $Z(G) \le H$ and $Z_2(G) \not \le H$ we have 4|n and $4 \nmid \frac{n}{2}$, hence n = 4(2k+1), for natural number k.

Conversely, if n = 4(2k + 1), then the subgroups $H_i = \langle a^4, a^i b \rangle$, $0 \le i \le 3$ are of order n and they are not \mathcal{N}_2 -normal, but they are \mathcal{N}_3 -normal.

Since $Z_2(G) \cap H_i = \langle a^n \rangle$ we have $|H_i Z_2(G)| = \frac{n.4}{2} = 2n$, thus $H_i Z_2(G) \triangleleft G$ or equivalency $H_i \triangleleft_{\mathcal{N}_3} G$.

Now we investigate \mathcal{N}_2 -normal subgroups of the dihedral groups D_{2n} with the presentation

$$\langle a, b \mid a^n = b^2 = (ab)^2 = 1 \rangle.$$

If n is odd, then every subgroup H of D_{2n} is normal if and only if it is \mathcal{N}_c -normal, for $c \geq 2$.

Clearly, every subgroup of D_4 is \mathcal{N}_c -normal, for $c \geq 1$. We know $D_8 \in \mathcal{N}_2$, hence every subgroup of D_8 is \mathcal{N}_c -normal, for $c \geq 2$.

Theorem 3.3. If $n \ge 6$ and even, then D_{2n} has \mathcal{N}_2 -normal subgroups (of order $\frac{n}{2}$) which are not normal if and only if n = 4(2k+1), for natural number k.

Proof. Let $G = D_{2n}$ and $H \triangleleft_{\mathcal{N}_2} G$ but $H \not \triangleleft G$, then $HZ(G) \triangleleft G$ and $HZ(G) \neq H$, therefore $Z(G) \not \leq H$. By the structure of the subgroups of D_{2n} that are not normal, we have $H = \langle a^d, a^r b \rangle$ where $d|n, 0 \leq r < d$ and $d \neq 1, 2$. Since $Z(G) \not \leq H$ we have $a^{\frac{n}{2}} \notin H$, so $d \nmid \frac{n}{2}$, $Z(G) \cap H = 1$ and $|HZ(G)| = \frac{4n}{d}$. Thus $\frac{4n}{d} = n$, that is d = 4. We obtain 4|n and $4 \nmid \frac{n}{2}$, hence n = 4(2k+1), for natural number k.

Conversely, if n = 4(2k + 1), then the subgroups $H_i = \langle a^4, a^i b \rangle$, where $0 \le i \le 3$ are of order $\frac{n}{2}$ and they are not normal. Now we show that they are \mathcal{N}_2 -normal. We

have $Z(G) = \langle a^{\frac{n}{2}} \rangle$, clearly $Z(G) \cap H_i = 1$, for $0 \leq i \leq 3$, so $|H_i Z(G)| = n$, it implies that $H_i Z(G) \triangleleft G$ or equivalency $H_i \triangleleft_{\mathcal{N}_2} G$.

We determine the \mathcal{N}_3 -normal subgroups of D_{2n} , where n is even.

If n = 2k and k is odd, then $Z_2(D_{2n}) = Z(D_{2n})$, hence the subgroup H of D_{2n} is \mathcal{N}_3 -normal if and only if it is \mathcal{N}_2 -normal.

Every subgroup of D_{16} is \mathcal{N}_c -normal, for $c \geq 3$, since $D_{16} \in \mathcal{N}_3$.

Theorem 3.4. If n = 2k, $k \ge 6$ and even, then D_{2n} has \mathcal{N}_3 -normal subgroups (of order $\frac{n}{2}$ and $\frac{n}{4}$) which are not \mathcal{N}_2 -normal if and only if n = 8(2t + 1), for natural number t.

Proof. If $G = D_{2n}$, $H \triangleleft_{\mathcal{N}_3} G$ and $H \not \triangleleft_{\mathcal{N}_2} G$, then $HZ_2(G) \triangleleft G$ and $HZ(G) \not \triangleleft G$, therefore $HZ_2(G) \neq HZ(G)$. Clearly $Z_2(G) \cap H < Z_2(G)$. Since $Z_2(G) = \langle a^{\frac{1}{4}} \rangle$ and $|Z_2(G)| = 4$ we have $|Z_2(G) \cap H| = 1$ or 2.

Let $|Z_2(G) \cap H| = 1$. Since H is not normal we have $H = \langle a^d, a^r b \rangle$, where d|n, $0 \le r < d$ and $|H| = \frac{2n}{d}$, so $|HZ_2(G)| = \frac{8n}{d} = n$, therefore d = 8 and 8|n. But $8 \nmid \frac{n}{2}$, hence n = 8(2t+1), for natural number t.

Let $|Z_2(G) \cap H| = 2$. Then $Z_2(G) \cap H = \langle a^{\frac{n}{2}} \rangle$, so $|HZ_2(G)| = \frac{4n}{d}$ and d = 4, thus 4|n and $4|\frac{n}{2}$ but $4 \nmid \frac{n}{4}$, so n = 8(2t+1), for natural number t.

Conversely, if n=8(2t+1), then the subgroups $H_i=\langle a^4,a^ib\rangle$, where $0\leq i\leq 3$ are of order $\frac{n}{2}$. We know $H_i \not \lhd G$ and $4|\frac{n}{2}$, so $a^{\frac{n}{2}}\in H_i$ and $Z(G)\leq H_i$, thus $H_i\not \lhd_{\mathcal{N}_2}G$. Now we prove that $H_i \triangleleft_{\mathcal{N}_3}G$. Clearly $H_i\cap Z_2(G)=\langle a^{\frac{n}{2}}\rangle$, hence $|H_iZ_2(G)|=n$, as desired. Also the subgroups $K_i=\langle a^8,a^ib\rangle$ are of order $\frac{n}{4}$, where $0\leq i\leq 7$, also $|K_i\cap Z(G)|=1$ and $|K_iZ(G)|=\frac{n}{2}$. We have $K_iZ(G)\not \lhd G$, hence $K_i\not \lhd_{\mathcal{N}_2}G$, but it is easy to show that $|K_iZ_2(G)|=n$, hence $K_i\triangleleft_{\mathcal{N}_3}G$.

In the following, we investigate the semidihedral groups SD_{2^n} with the presentation

$$\langle a, b \mid a^2 = 1, b^{2^{n-1}} = 1, a^{-1}ba = b^{2^{n-2}-1} \rangle.$$

We know $SD_8 = C_2 \times C_4$, hence every subgroup of it is \mathcal{N}_c -normal, for $c \geq 1$.

Theorem 3.5. If $n \geq 4$ is a natural number, then the subgroup H of SD_{2^n} is normal if and only if it is \mathcal{N}_2 -normal.

Proof. Let $G = SD_{2^n}$. If H is normal, then it is \mathcal{N}_2 -normal. Suppose that $H \triangleleft_{\mathcal{N}_2} G$, then $HZ(G) \triangleleft G$. We know |Z(G)| = 2, therefore $|H \cap Z(G)| = 1$ or 2.

If $|H \cap Z(G)| = 2$, then $Z(G) \leq H$ and HZ(G) = H, hence $H \triangleleft G$. Now we assume that $|H \cap Z(G)| = 1$, by the structure of the normal subgroups of SD_{2^n} we have $HZ(G) \leq < b >$ or [G : HZ(G)] = 2.

If $HZ(G) \le < b >$, then $H \le < b >$, hence $H \triangleleft G$ as < b > is a normal cyclic subgroup of G. We claim that the case [G: HZ(G)] = 2 doesn't happen.

If [G:HZ(G)]=2, then $|H|=2^{n-2}$, hence $H=\langle b^2>$ or $H=\langle ab^i,b^4\rangle$, for $0\leq i\leq 3$. Clearly, $Z(G)\leq H$ thus $|H\cap Z(G)|=2$, which is a contradiction.

We know $SD_{16} \in \mathcal{N}_3$, hence every subgroup of SD_{16} is \mathcal{N}_c -normal, for $c \geq 3$.

Lemma 3.1. If $n \geq 5$ is a natural number, then a subgroup H of SD_{2^n} is normal if and only if it is \mathcal{N}_3 -normal.

Proof. It is enough to show that if H is a \mathcal{N}_3 -normal subgroup of $G = SD_{2^n}$, then it is normal. Let $H \triangleleft_{\mathcal{N}_3} G$. Then $HZ_2(G) \triangleleft G$, since $|Z_2(G)| = 4$. Now three cases may happen:

Case 1: $|H \cap Z_2(G)| = 4$, thus $Z_2(G) \leq H$ and $H \triangleleft G$.

Case 2: $|H \cap Z_2(G)| = 2$, since $HZ_2(G) \triangleleft G$, we have $HZ_2(G) \le < b >$ or $[G : HZ_2(G)] = 2$.

If $HZ_2(G) \le < b >$, then $H \le < b >$ and $H \triangleleft G$. We claim that the case $[G : HZ_2(G)] = 2$ doesn't happen. If $[G : HZ_2(G)] = 2$, then $|H| = 2^{n-2}$ so $H = < b^2 >$ or $H = \langle ab^i, b^4 \rangle$, for $0 \le i \le 3$. As $n \ge 5$ we have $Z_2(G) \le H$, hence $|Z_2(G) \cap H| = 4$, which is a contradiction.

Case 3: $|H \cap Z_2(G)| = 1$, clearly if $HZ_2(G) \le < b >$, then $H \triangleleft G$. It is easy to check that the case $[G : HZ_2(G)] = 2$ doesn't happen.

Finally, we determine \mathcal{N}_c -normal subgroups of the special linear group SL(2, F), where F is a finite field.

Theorem 3.6. Let F be a finite field, then a subgroup H of SL(2, F) is normal if and only if it is \mathcal{N}_2 -normal.

Proof. Since $SL(2,2) \cong S_3$, the proof is clear. If G = SL(2,3), then |G| = 24 and G has two nontrivial normal subgroups, one of them is Z(G) (the only subgroup of order 2) and another is isomorphic to Q_8 (the only subgroup of order 8). Let $H \triangleleft_{\mathcal{N}_2} G$ or equivalency $HZ(G) \triangleleft G$, then one of the following cases happens:

Case 1: |HZ(G)| = 2, hence HZ(G) = Z(G), thus $H \triangleleft G$.

Case 2: |HZ(G)| = 8. We have $|H \cap Z(G)| = 1$ or 2, hence |H| = 4 or 8. |H| can't be 4, since every subgroup of order 4 contains Z(G), therefore HZ(G) = H, thus $H \triangleleft G$.

Case 3: |HZ(G)| = 24, we don't have the subgroup of order 12, hence H = G, as desired.

Let G = SL(2, F) where $|F| \ge 4$ and $H \triangleleft_{\mathcal{N}_2} G$, hence $HZ(G) \triangleleft G$. Therefore $HZ(G) \le Z(G)$ or HZ(G) = G. If $HZ(G) \le Z(G)$, then $H \le Z(G)$ so $H \triangleleft G$. If HZ(G) = G, then since |Z(G)| = 2 we have $H \cap Z(G) = 1$ or $H \cap Z(G) = Z(G)$, therefore [G:H] = 2 or G = H, as desired.

By above theorem, we have the following corollary.

Corollary 3.1. If G = SL(2, F), where $|F| \ge 3$, then a subgroup H of G is normal if and only if it is \mathcal{N}_c -normal, for $c \ge 2$.

References

- [1] Ph. Hall, Verbal and marginal subgroups, J. Reine Angew. Math. 182 (1940), 156-157.
- [2] N. S. Hekster, Varieties of groups and isologisms, J. Austral. Math. Soc. Ser. A. 46 (1989), no. 1, 22-60.
- [3] C. R. Leedham-Green and S. McKay, Baer-invariants, isologism, varietal laws and homology, Acta Math. 137 (1976), 99-150.
- [4] H. Neumann, Varieties of groups, Springer-Verlag, (1967).
- [5] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed. Springer -Verlag, Berlin, New york, (1996).
- [6] J. S. Rose, A Course on Group Theory, Cambridge University Press, (1978).
- (1) Department of Mathematics, Faculty of Science, University of Qom, Qom, I. R. IRAN

 $Email\ address: {\tt mahmodi.fateme64@gmail.com}$

(2) Department of Mathematics, Faculty of Science, University of Qom, Qom, I. R. IRAN

Email address: a.gholami@qom.ac.ir