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GENERALIZED NORMAL SUBGROUPS

F. MAHMUDI (1) AND A. GHOLAMI (2)

Abstract. In this paper, we generalize the concept of normal subgroups to

Nc-normal subgroups with respect to the variety of all nilpotent groups of class

at most c, (c ≥ 1). We state some properties of Nc-normal subgroups. Also we

determine N2-normal subgroups and N3-normal subgroups of Q4n, D2n, SD2n and

Nc-normal subgroups of SL(2, F ).

1. Introduction

A variety of groups is the class of all groups satisfying a fixed system of identity

relations, or laws, v(x1, ..., xn) = 1 where v runs through the non-empty set V (laws)

of the free group F .

Let V be a variety of groups defined by the set of laws V . There exist two important

subgroups associated to a given group G with respect to a variety V ,

V (G) = 〈v(g1, g2, ..., gr)| gi ∈ G, 1 ≤ i ≤ r, v ∈ V 〉

which is called the verbal subgroup of G, and

V ∗(G) = {g ∈ G| v(g1, g2, ..., gig, ..., gr) = v(g1, g2, ..., ggi, ..., gr)

= v(g1, g2, ..., gr) |gi ∈ G, 1 ≤ i ≤ r, v ∈ V }
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which is called the marginal subgroup of G (See also [1], [2] ,[3] and [4]).

The upper central series (or ascending central series) of a group G is the sequence

of subgroups

1 = Z0(G) / Z1(G) / ... / Zi(G) / Zi+1(G) / ...,

where each successive group is defined by:

Zi+1(G) = {x ∈ G | ∀y ∈ G, [x, y] = x−1y−1xy ∈ Zi(G)}

and is called the ith center of G. In this case, Z1(G) is the center of G, and for each

successive group, the factor group Zi+1(G)/Zi(G) is the center of G/Zi(G). This

series is called an upper central series of quotients.

The lower central series (or descending central series) of a group G is the sequence

of subgroups

G = γ1(G) ≥ γ2(G) ≥ ... ≥ γi(G) ≥ ...,

in which γi(G) = [G, γi−1(G)], i > 1. Notice that γi(G)/γi+1(G) lies in the center of

G/γi+1(G) and that each γi(G) is fully invariant in G. Also γ2(G) = [G,G] = G′ is

the derived subgroup of G.

Let Nc be the variety of nilpotent groups of class at most c, where c is a natural

number. In this variety, V (G) = γc+1(G) denotes (c+ 1)th-term of lower central series

of G and V ∗(G) = Zc(G) is (c+ 1)th-term of upper central series of G (See also [5],

[6]).

The concept of a normal subgroup of a group G is one of the most important

concepts and applied subjects in group theory. In this paper, we generalize this

concept to Nc-normal subgroup.

In Section 2, we define the concept of Nc-normal subgroup with respect to the

variety Nc (c ≥ 1) which is a new definition of normal subgroups and we will discuss

some properties of it.
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In Section 3, we determine N2-normal subgroups and N3-normal subgroups of Q4n,

D2n, SD2n and Nc-normal subgroups of SL(2, F ), for c ≥ 2.

2. Nc-Normal Subgroups

We begin with the definition of Nc-normal subgroups of a group.

Definition 2.1. Let G be a group, a subgroup H of G is called Nc-normal subgroup

if for all g ∈ G and h ∈ H, we have g−1hg ∈ HZc−1(G) or equivalency HZc−1(G) C G

and we denote it by H CNc G.

Clearly, if H CNc G, then H CNd
G, for d ≥ c.

Every normal subgroup is Nc-normal, but there exist Nc-normal subgroups which are

not normal. For instance, consider the dihedral group D8 = 〈a, b|a4 = b2 = (ab)2 = 1〉

and a subgroup H of D8. We have HZ(D8) = Z(D8) or D8 or [D8 : HZ(D8)] = 2. It

shows that HZ(D8) / D8. Thus H CN2 D8. Therefore H CNc D8, for c ≥ 2. Where

the subgroups < b >,< ab >,< a2b > and < a3b > of D8 are not normal in D8.

In the following, we state some useful and elementary results of Nc-normal sub-

groups.

Theorem 2.1. If G ∈ Nc, then every subgroup of G is Nd-normal, for d ≥ c.

Proof. It is enough to show that H CNc G, for every subgroup H of G. We know

G = Zc(G), hence for all g ∈ G and h ∈ H we have g−1hg = h[h, g] ∈ HZc−1(G),

since G′ ≤ Zc−1(G). Thus H CNc G. �

Lemma 2.1. Let G be a group and H,K subgroups of G, where Zc−1(G) ⊆ Zc−1(K)

and H CNc G, then H ∩K CNc K and HK ≤ G.
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Proof. Let k ∈ K and x ∈ H ∩K, then by assumption and Dedekind’s Modular Law

we have k−1xk ∈ (HZc−1(G))∩K = (H ∩K)Zc−1(G) ⊆ (H ∩K)Zc−1(K). It implies

that H ∩K CNc K. Since Zc−1(G) ⊆ K, we can easily show that HK ≤ G. �

Consider the dihedral group D48 = 〈a, b | a24 = b2 = (ab)2 = 1〉. H = 〈a8, b〉 and

K = 〈a2, b〉 are subgroups of it, clearly Z2(D48) = Z2(K) =< a6 > and H CN3 D48.

Hence H = H ∩K CN3 K.

Remark 1. i) Let G be a group and H,K subgroups of G, where H CNc G, H ⊆ K

and Zc−1(G) ⊆ Zc−1(K), then H CNc K.

ii) Let H,K CNc G, where Zc−1(G) ⊆ K, then H ∩K CNc G.

iii) Let {Ni}ni=1 be a family of Nc-normal subgroups of a group G, where

Zc−1(G) ⊆ Ni, for i ≥ 2, then by part (ii), ∩ni=1Ni CNc G.

iv) Let G be a group and N a normal subgroup of G, where N ≤ H ≤ G and

N ∩ γc(G) = 1, then H CNc G if and only if H/N CNc G/N , for c ≥ 2.

Theorem 2.2. Let G and H be groups and α : G −→ H be a homomorphism. If

K CNc G, then α(K) CNc α(G). In particular, if α is an isomorphism, then K CNc G

if and only if α(K) CNc H.

Proof. It is obvious. �

Clearly, if G is a group and H a subgroup of G, then H CNc G if and only if

HZc−1(G)/Zc−1(G) is invariant under all inner automorphisms of G/Zc−1(G).

Remark 2. If a group G does not have nontrivial Nc-normal subgroups, then

G is simple. Now, assume that G is simple, if G is abelian, then G does not have

nontrivial Nc-normal subgroups. If Z(G) < G, then Z(G) = 1. Therefore Zc(G) = 1,

for c ≥ 2. Hence for every subgroup H of G, H C G if and only if H CNc G, so a

group G is simple if and only if G does not have nontrivial Nc-normal subgroups.
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3. Computing Nc-Normal Subgroups of Some Groups

At first, we determine N2-normal subgroups and N3-normal subgroups of the

generalized quaternion groups with the presentation

Q4n = 〈a, b | an = b2 , a2n = 1 , b−1ab = a−1〉.

Since Q4
∼= Z4, hence every subgroup of Q4 is Nc-normal, for c ≥ 1.

Theorem 3.1. (i) A subgroup H of Q4n is normal if and only if it is N2-normal, for

n ≥ 2.

(ii) If n ≥ 3 and odd, then the subgroup H of Q4n is normal if and only if it is

Nc-normal, for c ≥ 2.

Proof. (i) Clearly, if H is normal, then H is N2-normal. Now we assume that H is

N2-normal. If |H| is even, then the unique element of Q4n of order 2, an, belongs to

H, hence Z(Q4n) =< an >≤ H and HZ(Q4n) = H, thus H is normal. If |H| is odd,

then H ≤< a >, since |aib| = 4, for 0 ≤ i < 2n, hence H is normal.

(ii) We know Q4n/Z(Q4n) ∼= D2n, so Z2(Q4n)/Z(Q4n) = Z(Q4n/Z(Q4n)) ∼= Z(D2n),

since Z(D2n) = 1 we have Z2(Q4n) = Z(Q4n), thus Zc(Q4n) = Z(Q4n), for c ≥ 2.

Hence by part (i), H C Q4n if and only if H CNc Q4n, for c ≥ 2. �

Clearly, every subgroup of Q8 is Nc-normal, for c ≥ 1. We know Q16 ∈ N3, hence

every subgroup of Q16 is Nc-normal, for c ≥ 3.

Theorem 3.2. If n ≥ 6 and even, then Q4n has N3-normal subgroups (of order n)

which are not N2-normal if and only if n = 4(2k + 1), for natural number k.

Proof. Let G = Q4n and H CN3 G but H 6N2 G, so H 6 G, |H| is even and

Z(G) ≤ H ∩ Z2(G). We know Z2(G) =< a

n

2 > and |Z2(G)| = 4, hence

|H ∩ Z2(G)| = 2 or 4. |H ∩ Z2(G)| 6= 4 since HZ2(G) C G and H 6 G, so

|H ∩ Z2(G)| = 2, it implies that H ∩ Z2(G) = Z(G) and |HZ2(G)| = |H|.4
2

= 2|H|.



384 F. MAHMUDI AND A. GHOLAMI

We have HZ2(G) C G and HZ2(G) is not cyclic, hence |G : HZ2(G)| = 2,
4n

2|H|
= 2,

thus |H| = n. We conclude that H is one of the subgroups of the form 〈a4, aib〉,

0 ≤ i ≤ 3. Since Z(G) ≤ H and Z2(G) � H we have 4|n and 4 -
n

2
, hence

n = 4(2k + 1), for natural number k.

Conversely, if n = 4(2k + 1), then the subgroups Hi = 〈a4, aib〉, 0 ≤ i ≤ 3 are of

order n and they are not N2-normal, but they are N3-normal.

Since Z2(G) ∩Hi =< an > we have |HiZ2(G)| = n.4

2
= 2n, thus HiZ2(G) C G or

equivalency Hi CN3 G. �

Now we investigate N2-normal subgroups of the dihedral groups D2n with the

presentation

〈a, b | an = b2 = (ab)2 = 1〉.

If n is odd, then every subgroup H of D2n is normal if and only if it is Nc-normal,

for c ≥ 2.

Clearly, every subgroup of D4 is Nc-normal, for c ≥ 1. We know D8 ∈ N2, hence

every subgroup of D8 is Nc-normal, for c ≥ 2.

Theorem 3.3. If n ≥ 6 and even, then D2n has N2-normal subgroups (of order
n

2
)

which are not normal if and only if n = 4(2k + 1), for natural number k.

Proof. Let G = D2n and H CN2 G but H 6 G, then HZ(G) C G and HZ(G) 6= H,

therefore Z(G) � H. By the structure of the subgroups of D2n that are not normal,

we have H = 〈ad, arb〉 where d|n, 0 ≤ r < d and d 6= 1, 2. Since Z(G) � H we have

a

n

2 /∈ H , so d -
n

2
, Z(G) ∩H = 1 and |HZ(G)| = 4n

d
. Thus

4n

d
= n, that is d = 4.

We obtain 4|n and 4 -
n

2
, hence n = 4(2k + 1), for natural number k.

Conversely, if n = 4(2k + 1), then the subgroups Hi = 〈a4, aib〉, where 0 ≤ i ≤ 3

are of order
n

2
and they are not normal. Now we show that they are N2-normal. We
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have Z(G) =< a

n

2 >, clearly Z(G) ∩ Hi = 1, for 0 ≤ i ≤ 3, so |HiZ(G)| = n, it

implies that HiZ(G) C G or equivalency Hi CN2 G. �

We determine the N3-normal subgroups of D2n, where n is even.

If n = 2k and k is odd, then Z2(D2n) = Z(D2n), hence the subgroup H of D2n is

N3-normal if and only if it is N2-normal.

Every subgroup of D16 is Nc-normal, for c ≥ 3, since D16 ∈ N3.

Theorem 3.4. If n = 2k, k ≥ 6 and even, then D2n has N3-normal subgroups (of

order
n

2
and

n

4
) which are not N2-normal if and only if n = 8(2t + 1), for natural

number t.

Proof. If G = D2n, H CN3 G and H 6N2 G, then HZ2(G) C G and HZ(G) 6 G,

therefore HZ2(G) 6= HZ(G). Clearly Z2(G) ∩ H < Z2(G). Since Z2(G) =< a

n

4 >

and |Z2(G)| = 4 we have |Z2(G) ∩H| = 1 or 2.

Let |Z2(G) ∩ H| = 1. Since H is not normal we have H = 〈ad, arb〉, where d|n,

0 ≤ r < d and |H| = 2n

d
, so |HZ2(G)| = 8n

d
= n, therefore d = 8 and 8|n. But 8 -

n

2
,

hence n = 8(2t+ 1), for natural number t.

Let |Z2(G) ∩H| = 2. Then Z2(G) ∩H =< a

n

2 >, so |HZ2(G)| =
4n

d
and d = 4,

thus 4|n and 4|n
2

but 4 -
n

4
, so n = 8(2t+ 1), for natural number t.

Conversely, if n = 8(2t+1), then the subgroups Hi = 〈a4, aib〉, where 0 ≤ i ≤ 3 are

of order
n

2
. We know Hi 6 G and 4|n

2
, so a

n

2 ∈ Hi and Z(G) ≤ Hi, thus Hi 6N2 G.

Now we prove that Hi /N3 G. Clearly Hi ∩ Z2(G) =< a

n

2 >, hence |HiZ2(G)| = n,

as desired. Also the subgroups Ki = 〈a8, aib〉 are of order
n

4
, where 0 ≤ i ≤ 7, also

|Ki ∩ Z(G)| = 1 and |KiZ(G)| = n

2
. We have KiZ(G) 6 G, hence Ki 6N2 G, but it

is easy to show that |KiZ2(G)| = n, hence Ki /N3 G. �
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In the following, we investigate the semidihedral groups SD2n with the presentation

〈a, b | a2 = 1 , b2
n−1

= 1 , a−1ba = b2
n−2−1〉.

We know SD8 = C2 × C4, hence every subgroup of it is Nc-normal, for c ≥ 1.

Theorem 3.5. If n ≥ 4 is a natural number, then the subgroup H of SD2n is normal

if and only if it is N2-normal.

Proof. Let G = SD2n . If H is normal, then it is N2-normal. Suppose that H CN2 G,

then HZ(G) C G. We know |Z(G)| = 2, therefore |H ∩ Z(G)| = 1 or 2.

If |H ∩ Z(G)| = 2, then Z(G) ≤ H and HZ(G) = H, hence H C G. Now we

assume that |H ∩ Z(G)| = 1, by the structure of the normal subgroups of SD2n we

have HZ(G) ≤< b > or [G : HZ(G)] = 2.

If HZ(G) ≤< b >, then H ≤< b >, hence H C G as < b > is a normal cyclic

subgroup of G. We claim that the case [G : HZ(G)] = 2 doesn’t happen.

If [G : HZ(G)] = 2, then |H| = 2n−2, hence H =< b2 > or H = 〈abi, b4〉, for

0 ≤ i ≤ 3. Clearly, Z(G) ≤ H thus |H ∩ Z(G)| = 2, which is a contradiction. �

We know SD16 ∈ N3, hence every subgroup of SD16 is Nc-normal, for c ≥ 3.

Lemma 3.1. If n ≥ 5 is a natural number, then a subgroup H of SD2n is normal if

and only if it is N3-normal.

Proof. It is enough to show that if H is a N3-normal subgroup of G = SD2n , then it

is normal. Let H CN3 G. Then HZ2(G) C G, since |Z2(G)| = 4. Now three cases

may happen:

Case 1: |H ∩ Z2(G)| = 4, thus Z2(G) ≤ H and H C G.

Case 2: |H ∩ Z2(G)| = 2, since HZ2(G) C G, we have HZ2(G) ≤< b > or

[G : HZ2(G)] = 2.
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If HZ2(G) ≤< b >, then H ≤< b > and H C G. We claim that the case [G :

HZ2(G)] = 2 doesn’t happen. If [G : HZ2(G)] = 2, then |H| = 2n−2 so H =< b2 >

or H = 〈abi, b4〉, for 0 ≤ i ≤ 3. As n ≥ 5 we have Z2(G) ≤ H, hence |Z2(G)∩H| = 4,

which is a contradiction.

Case 3: |H ∩ Z2(G)| = 1, clearly if HZ2(G) ≤< b >, then H C G. It is easy to

check that the case [G : HZ2(G)] = 2 doesn’t happen. �

Finally, we determine Nc-normal subgroups of the special linear group SL(2, F ),

where F is a finite field.

Theorem 3.6. Let F be a finite field, then a subgroup H of SL(2, F ) is normal if

and only if it is N2-normal.

Proof. Since SL(2, 2) ∼= S3, the proof is clear. If G = SL(2, 3), then |G| = 24 and

G has two nontrivial normal subgroups, one of them is Z(G) (the only subgroup of

order 2) and another is isomorphic to Q8(the only subgroup of order 8). Let H CN2 G

or equivalency HZ(G) C G, then one of the following cases happens:

Case 1: |HZ(G)| = 2, hence HZ(G) = Z(G), thus H C G.

Case 2: |HZ(G)| = 8. We have |H ∩ Z(G)| =1 or 2, hence |H| = 4 or 8. |H| can’t

be 4, since every subgroup of order 4 contains Z(G), therefore HZ(G) = H, thus

H C G.

Case 3: |HZ(G)| = 24, we don’t have the subgroup of order 12, hence H = G, as

desired.

Let G = SL(2, F ) where |F | ≥ 4 and H CN2 G, hence HZ(G) C G. Therefore

HZ(G) ≤ Z(G) or HZ(G) = G. If HZ(G) ≤ Z(G), then H ≤ Z(G) so H C G. If

HZ(G) = G, then since |Z(G)| = 2 we have H ∩ Z(G) = 1 or H ∩ Z(G) = Z(G),

therefore [G : H] = 2 or G = H, as desired. �

By above theorem, we have the following corollary.
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Corollary 3.1. If G = SL(2, F ), where |F | ≥ 3, then a subgroup H of G is normal

if and only if it is Nc-normal, for c ≥ 2.
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