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GENERAL METHOD TO GENERATE FUZZY EQUIVALENCE

RELATIONS IN MATRIX FORM

M. A. SHAKHATREH(1) AND T. A. QAWASMEH(2)

Abstract. In this paper, new method to generate fuzzy equivalence relations in

matrix form is considered, it is not easy to check fuzzy relation in matrix form if

it is equivalence relation or not, and if it is transitive or not transitive. We start

building fuzzy equivalence relation in matrix forms 3 × 3 and 4 × 4 matrices, then

by using mathematical induction we will build general method that generates fuzzy

equivalence relations of the form n × n matrices.

1. Introduction

Fuzzy relations played a key role in fuzzy control, fuzzy diagnosis, and fuzzy mod-

eling. They also have been utilized in many applications in fields such as Economics,

Medicine, Psychology, and Sociology. Relations are an appropriate method for char-

acterizing correspondences between objects. The employ of fuzzy relations started

from the observation that real-life objects can be linked to each other to a certain

degree. However, in many cases, we may assume that a certain object X is in rela-

tion R with another object Y to a certain degree, but it is possible that we are not

so sure about it. In other words, we may be uncertainty about the degree that is

assigned to the relationship between X and Y [1]. Uncertain information is inherent

and pervasive in many applications in the fields such as medical science, engineering,
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business management, and economics. Uncertain information in these fields could be

caused by the randomness of information, incomplete data, and delayed information

updates. The problem of uncertainty has been investigated for a long time by mathe-

maticians. A great number of research papers have been published to represent these

concepts mathematically [2]. The theory of fuzzy relations is a generalization of crisp

relations of a set. The notion of fuzzy set introduced by Zadeh (1965) is a very suc-

cessful approach to vagueness. Zadeh in [3] introduced the concept of fuzzy relations,

he also introduced the concept of fuzzy similarity relations in [4]. This provided an

impetus for research in this very important area. Many authors like Chakraborty

and Das, Murali, Nemitz [5, 6, 7, 8] studied fuzzy equivalence relations [9].

Shakhatreh, M and Hayajenh, M. They gave some results on fuzzy equivalence

relations [10], fuzzy equivalence classes and fuzzy partition [11], and defined S-H

Partition [12]. To check the fuzzy relation of form 10×10 matrix that is transitive or

not, according to the classic definition of transitivity, we need 1000 operations. In

general, it is not easy to build fuzzy equivalence relation of form n×n. In our paper,

we aim to find a method that generates fuzzy equivalence relation in matrix form of

size n × n.

2. Preliminaries

In this section, we give some definitions and results which will be used later.

Definition 2.1 (Fuzzy Set, see [13], [15], [3]). if X is a collection of objects denoted

generally by x, then a fuzzy set A
∼

in X is a set of orderd pairs :

A
∼

=
{

(x, µ
A
∼

(x)) : x ∈ X
}

, where µ
A
∼

(x) is the grade of membership of x in A
∼

Definition 2.2 (Fuzzy Relation, see [14]). Let X and Y be nonempty sets. Then

R
∼

=
{(

(x, y), µ
R
∼

(x, y)
)

: (x, y) ∈ X × Y
}

is called a fuzzy relation in X × Y .
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Definition 2.3 (Reflexitivity, see [14] ). Let R
∼

be a fuzzy relation in X × X. Then

R
∼

is called Reflexive if

µR
∼

(x, x) = 1, ∀x ∈ X.

Definition 2.4 (semmetry,see [14]). Let R
∼

be a fuzzy relation in X×Y . Then R
∼

is

called symmetric in X × X

if µR
∼

(x, y) = µR
∼

(y, x); ∀x, y ∈ X

Definition 2.5 (Max-Min Transitive Fuzzy Relation, see [14]). A relation R
∼

is called

Max-Min Transitive fuzzy relation

if µR
∼

(x, z) ≥ max
y

{

min
{

µR
∼

(x, y), µR
∼

(y, z)
}}

3. Fuzzy Equivalence Relations represented by a 3 × 3 Matrix

We begin with fuzzy relation of the form 3× 3 matrix, since it is easy to check the

fuzzy relation of the form 2×2 matrix whether it is fuzzy equivalence relation or not.

Theorem 3.1. Let X = {x1, x2, x3} . Then a fuzzy equivalence relation R
∼

in X × X

can be represented by a 3 × 3 matrix.

Proof. To ensure reflexivity of R
∼

, we must have µR
∼

(xi, xi) = 1, ∀i = 1, 2, 3. And this

requires that we must have 1’s along the main diagonal of the matrix. For our relation

to be symmetric, we must have µR
∼

(xi, xj) = µR
∼

(xj, xi), ∀xi, xj ∈ X, i, j ∈ {1, 2, 3}.

Assume that:

µR
∼

(x1, x2) = µR
∼

(x2, x1) = a

µR
∼

(x1, x3) = µR
∼

(x3, x1) = b

µR
∼

(x2, x3) = µR
∼

(x3, x2) = c, where a, b, and c ∈ [0, 1].

We can represent our relation as Table 1 below.
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Table 1. Reflexive and symmetric fuzzy relation represented as a 3 × 3 matrix

y

R
∼

x1 x2 x3

x1 1 a b

x2 a 1 c

x3 b c 1

a, b, c ∈ [0, 1]

Now, to make this fuzzy relation transitive, we need to fulfill the following require-

ment:

µR
∼

(x, z) ≥ max
y

{

min
{

µR
∼

(x, y), µR
∼

(y, z)
}}

It is enough to discuss only the upper triangle (or lower triangle), since the fuzzy

relation is reflexive and symmetric. Now notice that:

a. µR
∼

(x
1
,x2) = a

min
{

µR
∼

(x1, x1), µR
∼

(x1, x2)
}

= min {1, a} = a ≤ a

min
{

µR
∼

(x1, x2), µR
∼

(x2, x2)
}

= min {a, 1} = a ≤ a

(3.1) min
{

µR
∼

(x1, x3), µR
∼

(x3, x2)
}

= min {b, c} ≤ a

b. µR
∼

(x
1
,x3) = b

min
{

µR
∼

(x1, x1), µR
∼

(x1, x3)
}

= min {1, b} = b ≤ b
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(3.2) min
{

µR
∼

(x1, x2), µR
∼

(x2, x3)
}

= min {a, c} ≤ b

min
{

µR
∼

(x1, x3), µR
∼

(x3, x3)
}

= min {b, 1} = b ≤ b

c. µR
∼

(x
2
,x3) = c

(3.3) min
{

µR
∼

(x2, x1), µR
∼

(x1, x3)
}

= min {a, b} ≤ c

min
{

µR
∼

(x2, x2), µR
∼

(x2, x3)
}

= min {1, c} = c ≤ c

min
{

µR
∼

(x2, x3), µR
∼

(x3, x3)
}

= min {c, 1} = c ≤ c

From (3.1), (3.2), and (3.3) we have:

min {b, c} ≤ a

min {a, c} ≤ b

min {a, b} ≤ c

(3.4) From (3.1) we have: b ≤ c =⇒ b ≤ a

(3.5) From (3.2) we have: a ≤ c =⇒ a ≤ b

From (3.4) and (3.5) we get: a = b, and hence:

(3.6) 0 ≤ a = b ≤ c ≤ 1 (Type1)
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Table 2 below shows a fuzzy equivalence relations (Type 1) represented as a 3× 3

matrix.

Table 2. Fuzzy Equivalence Relations represented as a 3× 3 matrix

(Type 1)

y

R
∼

x1 x2 x3

x1 1 a a

x2 a 1 c

x3 a c 1

0 ≤ a ≤ c ≤ 1

�

4. Fuzzy Equivalence Relations represented by a 4 × 4 Matrix

To generate fuzzy equivalence relation of the form 4 × 4 matrix, we will use the

generated fuzzy equivalence relation of the form 3×3 matrix and enlarging this matrix

(Table 2) by adding a column and a row to the matrix. The fuzzy relation matrix of

the form 4 × 4 is reflexive and symmetric fuzzy relation as shown in Table 3.

Theorem 4.1. Let X = {x1, x2, x3, x4} . Then a fuzzy equivalence relation R
∼

in X × X

can be represented by a 4 × 4 matrix.

Proof. We can represent our relation (reflexive and symmetric Fuzzy Relation) as

shown in Table 3. Now we discuss the transitivity of the 4 × 4 matrix given in Table

3. It is enough to discuss only the upper triangle (or lower triangle), since the fuzzy

relation is reflexive and symmetric. We have:

a. µR
∼

(x
1
,x2) = a

min
{

µR
∼

(x1, x1), µR
∼

(x1, x2)
}

= min {1, a} = a ≤ a
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Table 3. Reflexive and Symmetric Fuzzy Relation represented as a

4 × 4 Matrix

y

R
∼

x1 x2 x3 x4

x1 1 a a d

x2 a 1 c e

x3 a c 1 f

x4 d e f 1

0 ≤ a ≤ c ≤ 1

d, e, f ∈ [0, 1]

min
{

µR
∼

(x1, x2), µR
∼

(x2, x2)
}

= min {a, 1} = a ≤ a

min
{

µR
∼

(x1, x3), µR
∼

(x3, x2)
}

= min {a, c} = a ≤ a

(4.1) min
{

µR
∼

(x1, x4), µR
∼

(x4, x2)
}

= min {d, e} ≤ a

b. µR
∼

(x
1
,x3) = a

min
{

µR
∼

(x1, x1), µR
∼

(x1, x3)
}

= min {1, a} = a ≤ a

min
{

µR
∼

(x1, x2), µR
∼

(x2, x3)
}

= min {a, c} = a ≤ a

min
{

µR
∼

(x1, x3), µR
∼

(x3, x3)
}

= min {a, 1} = a ≤ a
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(4.2) min
{

µR
∼

(x1, x4), µR
∼

(x4, x3)
}

= min {d, f} ≤ a

c. µR
∼

(x
2
,x3) = c

min
{

µR
∼

(x2, x1), µR
∼

(x1, x3)
}

= min {a, a} = a ≤ c

min
{

µR
∼

(x2, x2), µR
∼

(x2, x3)
}

= min {1, c} = c ≤ c

min
{

µR
∼

(x2, x3), µR
∼

(x3, x3)
}

= min {c, 1} = c ≤ c

(4.3) min
{

µR
∼

(x2, x4), µR
∼

(x4, x3)
}

= min {e, f} ≤ c

d. µR
∼

(x
1
,x4) = d

min
{

µR
∼

(x1, x1), µR
∼

(x1, x4)
}

= min {1, d} = d ≤ d

(4.4) min
{

µR
∼

(x1, x2), µR
∼

(x2, x4)
}

= min {a, e} ≤ d

(4.5) min
{

µR
∼

(x1, x3), µR
∼

(x3, x4)
}

= min {a, f} ≤ d

min
{

µR
∼

(x1, x4), µR
∼

(x4, x4)
}

= min {d, 1} = d ≤ d

e. µR
∼

(x
2
,x4) = e

(4.6) min
{

µR
∼

(x2, x1), µR
∼

(x1, x4)
}

= min {a, d} ≤ e
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min
{

µR
∼

(x2, x2), µR
∼

(x2, x4)
}

= min {1, e} = e ≤ e

(4.7) min
{

µR
∼

(x2, x3), µR
∼

(x3, x4)
}

= min {c, f} ≤ e

min
{

µR
∼

(x2, x4), µR
∼

(x4, x4)
}

= min {e, 1} = e ≤ e

f. µR
∼

(x
3
,x4) = f

(4.8) min
{

µR
∼

(x3, x1), µR
∼

(x1, x4)
}

= min {a, d} ≤ f

(4.9) min
{

µR
∼

(x3, x2), µR
∼

(x2, x4)
}

= min {c, e} ≤ f

min
{

µR
∼

(x3, x3), µR
∼

(x3, x4)
}

= min {1, f} = f ≤ f

min
{

µR
∼

(x3, x4), µR
∼

(x4, x4)
}

= min {f, 1} = f ≤ f

From equations (4.1)-(4.9), we have:

min {d, e} ≤ a

min {d, f} ≤ a

min {e, f} ≤ c
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min {a, e} ≤ d

min {a, f} ≤ d

min {a, d} ≤ e

min {c, f} ≤ e

min {a, d} ≤ f

min {c, e} ≤ f

From (4.4), we get: a ≤ e =⇒ a ≤ d

From (4.1), we get: e ≤ d =⇒ e ≤ a but a ≤ e =⇒ a = e

(4.10) ∴ a = e

From (4.5), we get: f ≤ a =⇒ f ≤ d

(4.11) f ≤ a = e

From (4.3) and (4.11), we get: =⇒ f ≤ c

From (4.8), we get: a ≤ d =⇒ a ≤ f but f ≤ a =⇒ a = f .

(4.12) ∴ a = e = f

Now, we have:

0 ≤ a = e = f ≤ d ≤ 1
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0 ≤ a = e = f ≤ c ≤ 1

Table 4. Fuzzy Equivalence Relations represented as a 4 × 4 Matrix

y

R
∼

x1 x2 x3 x4

x1 1 a a d

x2 a 1 c a

x3 a c 1 a

x4 d a a 1

0 ≤ a ≤ c ≤ 1

0 ≤ a ≤ d ≤ 1

�

5. Fuzzy Equivalence Relations represented by a n × n Matrix

In Table 4, we built a fuzzy equivalence relation of form 4 × 4 matrix. Now, we

will show that a fuzzy equivalence relation in X× X with X = {x1, x2, . . . , xn} can be

represented by a n×n matrix which is satisfied a certain condition. We can represent

our relation as shown in Table 5 below. Before begin with the proof, we give a lemma

and some notes related to our proof.

Lemma 5.1. Let R
∼

be any fuzzy relation in X × X, and µR
∼

(x, z) be any grade of

membership in [0, 1] of the fuzzy relation of the form n × n matrix, such that µR
∼

(x, z)

is the maximum value of its row or the maximum value of its column i.e.

µR
∼

(x, z) = max
y

{

µR
∼

(x, y)
}

, for all y ∈ X

or

µR
∼

(x, z) = max
y

{

µR
∼

(y, z)
}

, for all y ∈ X
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Table 5. Fuzzy Relation represented as a n × n Matrix

y

R
∼

x1 x2 x3 x4 x5 x6 · · · · · · · · · · · · xn

x1 1 a a a4 a5 a6 · · · · · · · · · · · · an

x2 a 1 c a a a · · · · · · · · · · · · a

x3 a c 1 a a a · · · · · · · · · · · · a

x4 a4 a a 1 a5 a6 · · · · · · · · · · · · an

x5 a5 a a a5 1 a6 · · · · · · · · · · · · an

x6 a6 a a a6 a6 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
. . . · · · · · · · · ·

...
...

...
...

...
...

...
...

...
. . . · · · · · ·

...
...

...
...

...
...

...
...

...
...

. . . · · ·
...

...
...

...
...

...
...

...
...

... · · ·
. . . an

xn an a a an · · · · · · · · · · · · · · · an 1

0 ≤ a ≤ an ≤ an−1 ≤ · · · ≤ a5 ≤ a4 ≤ 1

0 ≤ a ≤ c ≤ 1

Then: µR
∼

(x, z) Satisfies the Condition of the Fuzzy Transitive Relation.

Proof. We want to proof that:

µR
∼

(x, z)≥max
y

{

min
{

µR
∼

(x, y),µR
∼

(y, z)
}}

, for all y ∈ X

Case 1: If µR
∼

(x, z) = max
y

{

µR
∼

(x, y)
}

, for all y ∈ X, and µR
∼

(x, z) = max
y

{

µR
∼

(y, z)
}

,

for all y ∈ X. Then:

µR
∼

(x, z)= max
y

{

min
{

µR
∼

(x, y),µR
∼

(y, z)
}}

, for all y ∈ X
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Case 2: If µR
∼

(x, z) = max
y

{

µR
∼

(x, y)
}

, for all y ∈ X but µR
∼

(x, z) 6= max
y

{

µR
∼

(y, z)
}

,

for all y ∈ X. Then:

=⇒ min
{

µR
∼

(x, y),µR
∼

(y, z)
}

≤ max
y

{

µR
∼

(x, y)
}

, for all y ∈ X

=⇒ µR
∼

(x, z) ≥ max
y

{

min
{

µR
∼

(x, y),µR
∼

(y, z)
}}

, for all y ∈ X

Case 3: If µR
∼

(x, z) = max
y

{

µR
∼

(y, z)
}

, for all y ∈ X but µR
∼

(x, z) 6= max
y

{

µR
∼

(x, y)
}

,

for all y ∈ X. Then: Case 3 is the same as Case 2.

From Case 1, Case 2, and Case 3, we conclude that the fuzzy relation satisfies the

condition of fuzzy transitive for the grade µR
∼

(x, z). �

Conclusion 1:

If µR
∼

(x, x) = 1, then this grade satisfies the condition of the Fuzzy transitive and

fuzzy symmetric relation.

Conclusion 2:

If the fuzzy relation is symmetric i.e. µR
∼

(x, y) = µR
∼

(y, x), ∀x, y ∈ X, then the

upper triangle of the fuzzy matrix has the same cases of the lower triangle. Notice

that:

(1) If all the values of the same column in fuzzy relation matrix are equal i.e.

µR
∼

(x, y) = a, ∀y ∈ X, 0 ≤ a ≤ 1, then all grades of this column satisfy the

condition of the Fuzzy transitive relation.

(2) If all the values of the same row in fuzzy relation matrix are equal i.e.

µR
∼

(y, z) = a, ∀y ∈ X, 0 ≤ a ≤ 1, then all grades of this row satisfy the con-

dition of the Fuzzy transitive relation.

(3) A fuzzy relation of the form n × n matrix that has entries of the same value

is transitive fuzzy relation.
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Theorem 5.1. Let X = {x1, x2, . . . , xn}. Then a fuzzy equivalence relation R
∼

in

X × X can be represented by a n × n matrix.

Proof. Using mathematical induction, when n=3, according to our previous results

in Table 2, the following matrix represent fuzzy equivalence relation.

Suppose that the statement is true for n=k, then the following k×k matrix shown

in Table 6 generates fuzzy equivalence relation.

Table 6. Fuzzy Equivalence Relations represented as a k × k Matrix

y

R
∼

x1 x2 x3 x4 x5 x6 · · · · · · · · · · · · xk

x1 1 a a a4 a5 a6 · · · · · · · · · · · · ak

x2 a 1 c a a a · · · · · · · · · · · · a

x3 a c 1 a a a · · · · · · · · · · · · a

x4 a4 a a 1 a5 a6 · · · · · · · · · · · · ak

x5 a5 a a a5 1 a6 · · · · · · · · · · · · ak

x6 a6 a a a6 a6 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
. . . · · · · · · · · ·

...
...

...
...

...
...

...
...

...
. . . · · · · · ·

...
...

...
...

...
...

...
...

...
...

. . . · · ·
...

...
...

...
...

...
...

...
...

...
...

. . . ak

xk ak a a ak · · · · · · · · · · · · · · · ak 1

0 ≤ a ≤ ak ≤ ak−1 ≤ · · · ≤ a5 ≤ a4 ≤ 1

0 ≤ a ≤ c ≤ 1

Now, we want to prove it when n = k + 1, i.e. we want to prove that the following

k + 1 × k + 1 matrix ( see Table 7) generates a fuzzy equivalence relation.

It is obvious that the fuzzy relation of the form k + 1 × k + 1 matrix (Table 7) is

Reflexive and Symmetric. Now, it is enough to prove that the fuzzy relation in (Table
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Table 7. Fuzzy Relation represented as a k + 1 × k + 1 Matrix

y

R
∼

x1 x2 x3 x4 x5 x6 · · · · · · · · · · · · xk xk+1

x1 1 a a a4 a5 a6 · · · · · · · · · · · · ak ak+1

x2 a 1 c a a a · · · · · · · · · · · · a a

x3 a c 1 a a a · · · · · · · · · · · · a a

x4 a4 a a 1 a5 a6 · · · · · · · · · · · · ak ak+1

x5 a5 a a a5 1 a6 · · · · · · · · · · · · ak

...

x6 a6 a a a6 a6 1 · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

. . . · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
. . . · · · · · ·

...
...

...
...

...
...

...
...

...
...

...
. . . · · ·

...
...

...
...

...
...

...
...

...
...

...
...

. . . ak ak+1

xk ak a a ak · · · · · · · · · · · · · · · ak 1 ak+1

xk+1 ak+1 a a ak+1 · · · · · · · · · · · · · · · ak+1 ak+1 1

0 ≤ a ≤ ak+1 ≤ ak ≤ · · · ≤ a5 ≤ a4 ≤ 1

0 ≤ a ≤ c ≤ 1

7) is transitive. Since the fuzzy relation in (Table 7) is symmetric fuzzy relation; it

is enough to prove that the upper triangle in (Table 7) is transitive. To prove that,

we will divide our proof into two parts:

Part One : The upper triangle of the fuzzy relation of the form k × k matrix is

still transitive in the form k + 1 × k + 1 matrix, i.e. If µR
∼

(xi, xj),∀i, j = 1, 2, ....., k.

be any grade of membership of the fuzzy relation of the form k × k matrix, then it

satisfies the condition of the transitive fuzzy relation on the form k × k matrix i.e.

µR
∼

(xi, xj) ≥ max
y

{

min
{

µR
∼

(xi, y), µR
∼

(y, xj)
}}

, ∀y ∈ X,∀i, j = 1, 2, ....., k
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Now, we have:

µR
∼

(xi, xj) ≥















































min
{

µR
∼

(xi, x1), µR
∼

(x1, xj)
}

min
{

µR
∼

(xi, x2), µR
∼

(x2, xj)
}

min
{

µR
∼

(xi, x3), µR
∼

(x3, xj)
}

...
...

...
...

...
...

...

min
{

µR
∼

(xi, xk), µR
∼

(xk, xj)
}

In the matrix of the form k + 1 × k + 1 , we want to prove that:

µR
∼

(xi, xj) ≥







































































min
{

µR
∼

(xi, x1), µR
∼

(x1, xj)
}

min
{

µR
∼

(xi, x2), µR
∼

(x2, xj)
}

min
{

µR
∼

(xi, x3), µR
∼

(x3, xj)
}

...
...

...
...

...
...

...

min
{

µR
∼

(xi, xk), µR
∼

(xk, xj)
}

























min
{

µR
∼

(xi, xk+1), µR
∼

(xk+1, xj)
}

Already proved when n = k

So, it is obvious that we just need to prove that:

µR
∼

(xi, xj) ≥ min
{

µR
∼

(xi, xk+1), µR
∼

(xk+1, xj)
}

Part Two: Xk+1Column in the form k + 1 × k + 1 matrix is satisfies the condition

of the fuzzy transitive relation i.e. If µR
∼

(xi, xk+1), i = 1, 2, ....., k, k + 1. be any type

of the fuzzy relation of the form k + 1 × k + 1 matrix, then

µR
∼

(xi, xk+1) ≥ max
y

{

min
{

µR
∼

(xi, xj), µR
∼

(xj, xk+1)
}}

, ,∀j = 1, 2, ....., k, k + 1

Now, we present the full proof for part one and part two:

Part One: The upper triangle of the fuzzy relation of the form k × k matrix is

still transitive in the form k + 1 × k + 1 matrix.
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µR
∼

(x
1
,x2) = a

min
{

µR
∼

(x1, xk+1), µR
∼

(xk+1, x2)
}

= min {ak+1, a} = a ≤ a

µR
∼

(x
1
,x3) = a

min
{

µR
∼

(x1, xk+1), µR
∼

(xk+1, x3)
}

= min {ak+1, a} = a ≤ a

µR
∼

(x
2
,x3) = c

min
{

µR
∼

(x2, xk+1), µR
∼

(xk+1, x3)
}

= min {a, a} = a ≤ c

Now, we have:

0 ≤ a ≤ ak+1 ≤ ak ≤ ak−1 ≤ · · · · · · ≤ a5 ≤ a4 ≤ 1

if ∀i = 4, 5, · · · , k, then a ≤ ak+1≤ ai

µR
∼

(x
1
,xi) = ai,∀i = 4, 5, · · · , k.

min
{

µR
∼

(x1, xk+1), µR
∼

(xk+1, xi)
}

= min {ak+1, ak+1} = ak+1 ≤ ai

µR
∼

(x
2
,xj) = µ

R
∼

(x
3
,xj) = a,∀i = 4, 5, · · · , k.

min
{

µR
∼

(x2, xk+1), µR
∼

(xk+1, xj)
}

= min {a, ak+1} = a ≤ a

min
{

µR
∼

(x3, xk+1), µR
∼

(xk+1, xj)
}

= min {a, ak+1} = a ≤ a

Now if l = 5, 6 · · · , k, then a ≤ ak+1≤ al

µR
∼

(xm,xl) = al,∀m = 4, 5, · · · , k − 1, ∀l = m + 1, m + 2, ....., k − 1, k.
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min
{

µR
∼

(xm, xk+1), µR
∼

(xk+1, xl)
}

= min {ak+1, ak+1} = ak+1 ≤ al

∴ The upper triangle of the fuzzy relation of the form k × k matrix is still transitive

in the form k + 1 × k + 1 matrix.

Part Two: Xk+1 column in the form k + 1 × k + 1 matrix is satisfies the condition

of the fuzzy transitive relation i.e.µR
∼

(xi, xk+1), i = 1, 2, ....., k+1 satisfies the condition

of the fuzzy transitive relation.

µR
∼

(x
1
,xk+1) = ak+1

max {ak+1, a, a, ak+1, · · · · · · , ak+1} = ak+1 ≤ ak+1

µR
∼

(x
2
,xk+1) = µ

R
∼

(x
3
,xk+1) = a

max{a, a, a, a, · · · · · · , a} = a ≤ a.

µR
∼

(xi,xk+1) = ak+1
, ∀i = 4, 5, ..., k

max {ak+1, a, a, ak+1, ...., ak+1} = ak+1 ≤ ak+1

∴Xk+1 Column in the form k + 1 × k + 1 matrix is satisfies the condition of the

fuzzy transitive relation.

The upper triangle of the fuzzy relation of the form k + 1 × k + 1 matrix is tran-

sitive and also the generated fuzzy relation of the form k + 1 × k + 1 matrix is tran-

sitive.

∴ The generated fuzzy relation of the form k + 1 × k + 1 matrix is fuzzy equiva-

lence relation of the form k + 1 × k + 1 Matrix. �
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6. Conclusion

In this paper, we present a new method to generate fuzzy equivalence relations in

matrix form. The new method check if fuzzy relation in matrix form is equivalence

relation or not, in particular if it is transitive or not transitive. We start building

fuzzy equivalence relation in matrix forms 3 × 3 and 4 × 4 matrices, then by using

mathematical induction we build general method that generates fuzzy equivalence

relations of the form n × n matrices.
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