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ACCEPTANCE SAMPLING PLANS BASED ON TRUNCATED

LIFE TESTS FOR THE MARSHALL-OLKIN INVERSE GAMMA

DISTRIBUTION

MOHAMMAD AL-TALIB (1), MOHAMMAD AL-KADIRI (2) AND ABEDEL-QADER

AL-MASRI (3)

Abstract. An acceptance sampling plans (AS) for a truncated life test is devel-

oped, when the lifetime follows the Marshall-Olkin Inverse Gamma distribution

(MOIG). The minimum sample size necessary to ensure the specified mean life is

obtained. Additionally, the operating characteristic function values of the proposed

sampling plans and producer’s risk are provided. Using the proposed model, some

tables are given and the results are illustrated by numerical examples. Finally,

Numerical examples for our proposed method are illustrated as well as a real life

application is demonstrated.

1. Introduction

Single sampling plans for acceptance or rejection of a lot play a crucial role as

an assay procedure in statistical quality control. Many researches considered Accep-

tance Sampling (AS) in different research fields such as agriculture, industry, ecology,

management, quality maintenance. . . etc. In the single sampling plan, products or

items have variations even though they are produced by the same producer, same

machine and under the same manufacturing conditions. Simply it can be said that
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the procedure will accept or reject some lots even though they may have the same

qualities. The producer and the consumer are subject to risks due to the decision on

the acceptance or rejection of lot of products based on sample results.

Consumer’s risk of accepting bad lots (type-II error, β) and Producer’s risk of

rejecting good lots (type-I error, α) may be minimized to a certain level by increasing

the sample size. But this will increase the cost of inspection. Therefore, we put a

random sample on test and accept the entire lot if no more than c (AS number)

failures occur during the experiment time. The lot is accepted if the specified life can

be stablished with preassigned probability (P ∗) specified by the consumer (e.g. [1],

[19]). So, that P ∗ can be considered as a minimum confidence level with which a lot

of true average life below ξ0 is rejected, by the sampling plan.

Many attempts have been made to study the single AS plans based on truncated

life tests. Such an example was by [15] while [30] discussed the issue for exponential

distribution, particularly. [18] and [20] considered AS plans for Weibull and gamma

distributions, respectively. Moreover, [21] addressed it for a half logistic distribution.

Recently, [22] defined it for log-logistic distribution whereas [31] defined it for the

inverse Rayleigh model. [6] applied the two-point approach to the designing of the

acceptance sampling plans based on a truncated life test for various life distributions

and log-logistic distributions. [8] considered the Pareto model of the second kind. [7],

considered the Birnbaum Saunders model and later on [11] applied the generalized

Birnbaum–Saunders distribution. And more of different distributions were considered

by [9], [3], [2] and [5].

[6] dealt with proposed variables sampling plan for life testing in a continuous

process under Weibull distribution. [4] studied a two points acceptance sampling

method were used to draw a decision on accepting or rejecting a tested product. It is

also, assumed that the life time product following a new distribution that formulated
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based on Weibull and Pareto life time distributions that it is known as new Weibull-

Pareto (NWP) distribution. [26] and [27] suggested time truncated chain sampling

plans for Marshall-Olkin extended exponential and generalized Rayleigh distribution.

[16] investigate properties of a new parametric distribution generated by Marshall and

Olkin extended family of distributions based on the Lomax model. Also they showed

that the proposed distribution can be expressed as a compound distribution with

mixing exponential model.

On the other hand, [23] derived a new method of including an extra positive shape

parameter to a given baseline model thus extending a new distribution. The Marshall-

Olkin transformation provides a wide range of behaviors with respect to the baseline

distribution ([28]). Adding parameters to a well-established distribution is a time-

honored devicefor obtaining more flexible new families of distributions ([14]). Several

new models have been proposed that are some way related to the weibull distribution

which is a very popular distribution formodelling data in reliability, engineering and

biological studies. Extendedforms of the weibull distribution and applications in the

literature such as [32], [12], [13] and [29].

This article aims to introduce an acceptance sampling plan (ASP) based on trun-

cated life tests when the lifetime of a product follows the Marshall-Olkin inverse

gamma distribution (MOIG) with a known shape parameter.

The article can be organized as follows; in section 2, some structural properties of

the Inverse Gamma distribution are provided. In Section 3, the proposed sampling

plans are established for the Marshall–Olkin Inverse gamma under a truncated life

test, along with the operating characteristic (OC) and some relevant tables are given.

Illustration of the tables and example for test plan is given in section 4, and then in

Section 5 we apply our sampling plan to a real-life application. Finally, in section 6

we provide a conclusion remark.
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2. Inverse Gamma Distribution

The Inverted Gamma (IG) distribution is a two-parameter continuous exponential

family and has positive support and thus, if a variable has a gamma distribution

then its reciprocal follow IG distribution. The Inverted Gamma distribution remains

marginally studied and used in practice. Mainly it applied for in Bayesian statistics

whereas it can also be useful in many problems of diffraction theory and corrosion

of new machines. Also, gamma distribution can be considered for modeling positive

data.

A significant difference between these two distributions, is that IG mode is al-

ways positive nevertheless for gamma distribution which can be zero. This property

makes the IG very attractive to distinguish some kind of positive activation from

stochastic noise which usually modeled using a Gaussian distribution ([10]). Also,

it is most often used as a conjugate prior distribution in Bayesian statistics. Some

other applications and motivations for this model can be found in [24] while [17] gave

a number of properties that are useful when considering IG distribution as a lifetime

of a product.

An IG random variable T can be derived by transforming a random variable

Y∼Gamma(η, ξ) with the multiplicative inverse, i.e., T = Y −1. Thus, as the pdf

of gamma distribution is given by

G (y|η, ξ) =
ξη

Γ(η)
yη−1exp (−ξy) , y, η, ξ ∈ R

+,

the pdf of the IG distribution(denoted by, IG(η, ξ)), the cdf (FIG (t|η, ξ)), the sur-

vivor function (SIG (t|η, ξ)), and the hazard function (hIG (t|η, ξ)) are respectively as

follows:

IG(t|η, ξ) =
ξη

Γ(η)
t−η−1exp

(
−ξt−1

)
,

FIG (t|η, ξ) =
Γ (η, ξt−1)

Γ (η)
,
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SIG (t|η, ξ) = 1−
Γ (η, ξt−1)

Γ (η)
,

hIG (t|η, ξ) =
ξη

γ (η, ξt−1)
t−η−1exp

(
−ξt−1

)
,

such that t ∈ R
+, with a shape parameterη, and a scale parameter ξ, where both

parameters belongs to the positive reals. Recall that Γ(.) is the Euler gamma function,

Γ(., .) is the upper incomplete gamma function, and γ(., .)is the lower incomplete

gamma function.

The r th moment about the origin is given as

EIG (T
r) =

ξrΓ (η − r)

Γ (η)
, η > r.

Therefore, the mean and the variance are

EIG (T ) =
ξ

η−1
, η > 1 and EIG(T − EIG (T ))

2 = ξ2

(η−1)(η−2)2
, η > 2.

3. Marshal-Olikin Inverse Gamma Distribution

If F(x) and f(x)denotes the survival function and probability density function (pdf ),

respectively, of a parent distribution, then the survival function of the Marshall–Olkin

(MO) family of distributions is defined by

(3.1) L (x;ϑ) =
ϑF(x)

1− ϑF(x)
, x ∈ R, ϑ ∈ R

+, ϑ = 1− ϑ.

Clearly, L (x; 1) = F(x).

The density function corresponding to (3.1) is given by

(3.2) ` (x;ϑ) = ϑf (x)
(
1− ϑF (x)

)−2
.

Assume that the lifetime of a product follows the Marshall–Olkin family of distri-

butions, then, by using transformation (3.1), the probability density function and

cumulative distribution function of Marshall–Olkin inverse gamma (MOIG) distribu-

tion, respectively, are;
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(3.3)

gMOIG (t|Θ) = ∇ (Θ) t−η−1exp
(
−ξt−1

) (
∇ (Θ) ξ−ηϑ−1−(1−ϑ)Λ (η, ξ)

)−2
, t ∈ R, ϑ ∈ R

+

and

(3.4) GMOIG (t|Θ) = 1 +
ϑΛ (η, ξ)

∇ (Θ) ξ−ηϑ−1−(1− ϑ)Λ (η, ξ)
,

where,ϑ is the shape parameter,Θ = (η, ξ, ϑ), ∇ (Θ) = ϑξηΓ (η) and Λ (η, ξ) =

Γ (η)−Γ (η, ξt−1) .

In this article, we consider the lifetime of submitted products follows a MOIG dis-

tribution with scale parameter ξ as defined in (3.3) and (3.4). The life test terminates

at a preassigned time t0 and notes the number of failures during the time interval

[0, t]. Thus, our desired goal is to establish a specified average life with a given

probability of at least P ∗ (probability of rejecting a bad lot). Then, the decision is to

accept the specified average life occurs if and only if the number of observed failures at

the end of the fixed time t does not exceed a given number c (reference value) which

is called the acceptance number (maximum number of allowable bad items to accept

the lot). The acceptance sampling plan under a truncated life test is to set up the

minimum sample size n for this given acceptance number c such that the consumer’s

risk, the probability of accepting a bad lot, does not exceed 1− P ∗. Therefore, for a

given P ∗, the proposed acceptance sampling plan can be characterized by the triplet

(n, c, t/ξ0), such that n is the number of units on test, c is the acceptance number,

t is the maximum test duration and t/ξ0 is the ratio where ξ0 is the specified average

life.

The authors would stress out, that one of the objectives of these experiments is

to set a lower confidence limit on the average life. It is then desired to establish a

specified average life with a given probability of at least P ∗. The consumer’s risk,

i.e., the probability of accepting a bad lot not to exceed 1 − P ∗, so that P ∗ is a
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minimum confidence level with which a lot of true average life below ξ0 is rejected,

by the sampling plan.

The binomial probability distribution theory can be used in this analysis by as-

suming the lot size can be seen as infinite. The problem is, for given values of P ∗

with support (0, 1), ξ0 and c the smallest positive integer n is to be determined such

that

(3.5)
∑c

k=0

(
n

k

)
pk0(1− p0)

n−k ≤ 1− P ∗,

where,p0 = GMOIG (t; ξ0) is given by (3.4) and it is the probability of a failure

observed during the time t, which depends only on the ratio t/ξ0, it is sufficient

to specify this ratio for designing the experiment.If the number of observed fail-

ures within the time t is at most c, then from (3.5) we can confirm with probability

P ∗that GMOIG (t; ξ) ≤ GMOIG (t; ξ0), which implies ξ0 ≤ ξ, as it is a monotonically

increasing function of t/ξ0.

The values of t/ξ0and P ∗presented in this work are the same with the corresponding

values of many authors ([7],[22] and [20]). For t/ξ0 = 0.942, 1.257, 1.571, 2.356,

3.141, 3.927, 4.712, with P ∗ =0.75, 0.9, 0.95, 0.99 and c =0, 1, 2,. . . ,10. The min-

imum sample sizes that satisfy above inequality based on the suggested acceptance

sampling plan and the values stated above are presented in Table 1 for η = 1 and

ϑ = 2.

Table 1. Minimum sample size n necessary to assert the average life to exceed a

given value ξo with probability P ∗and the corresponding acceptance number c for

η = 1,ϑ = 2

t/ξo

P∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.712

0.75 0 12 6 5 4 3 2 2 2

1 23 12 9 7 5 4 4 3
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t/ξo

2 34 18 13 10 8 6 6 5

3 45 24 17 14 10 8 7 7

4 55 29 21 17 12 10 9 8

5 65 35 25 20 14 12 11 10

6 75 40 29 23 17 14 12 12

7 85 45 32 26 19 16 14 13

8 94 51 36 29 21 18 16 15

9 104 56 40 32 23 20 18 16

10 114 61 44 35 26 22 19 18

0.90 0 20 10 7 6 4 3 3 3

1 33 18 12 10 7 6 5 5

2 46 24 17 14 10 8 7 6

3 58 31 21 17 12 10 9 8

4 69 37 26 21 15 12 11 10

5 80 43 30 24 17 14 13 12

6 91 48 34 27 20 16 14 13

7 102 54 38 31 22 18 16 15

8 113 60 42 34 24 20 18 17

9 123 66 46 37 27 22 20 18

10 134 71 50 40 29 24 21 20

0.95 0 25 13 9 7 5 4 3 3

1 40 21 15 12 8 7 6 5

2 54 28 20 16 11 9 8 7

3 67 35 25 19 14 11 10 9

4 79 42 29 23 16 14 12 11
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t/ξo

5 91 48 34 27 19 16 14 13

6 102 54 38 30 22 18 16 14

7 113 60 42 34 24 20 18 16

8 125 66 47 37 27 22 19 18

9 136 72 51 41 29 24 21 20

10 147 78 55 44 31 26 23 21

0.99 0 39 20 14 11 7 6 5 5

1 56 29 20 16 11 9 8 7

2 71 37 26 20 14 12 10 9

3 86 45 31 25 17 14 12 11

4 99 52 36 29 20 16 14 13

5 112 59 41 33 23 19 16 15

6 125 66 46 36 26 21 18 17

7 137 72 51 40 28 23 20 19

8 149 79 55 44 31 25 22 20

9 161 85 60 47 34 28 24 22

10 173 92 64 51 36 30 26 24

The operating characteristic function (OC) of the sampling plan (n, c, t/ξ0)is the

probability of accepting a lot is given by

(3.6) L (p) =
∑c

k=0

(
n

k

)
pk(1− p)n−k,

where,p = GMOIG(t0; ξ), for η = 1, considered as a function of ξ (the lot quality

parameter), and values of the L(p) is a function of ξ/ξ0 for some selected sampling

plan are given in Table 2.
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Table 2. Operating characteristic values for the sampling plan (n, c, t/ξo) for a

given P ∗when c=2 for η = 1,ϑ = 2

t/ξo

P∗ n t/ξo 2 4 6 8 10 12

0.75 34 0.628 0.96530 1 1 1 1 1

18 0.942 0.89715 0.99972 1 1 1 1

13 1.257 0.82380 0.99768 0.99998 1 1 1

10 1.571 0.78602 0.99344 0.99985 1 1 1

8 2.356 0.62265 0.96114 0.99675 0.99974 0.99998 1

6 3.141 0.62755 0.94148 0.99151 0.99877 0.99982 0.99997

6 3.972 0.47600 0.87022 0.97143 0.99380 0.99865 0.99971

5 4.712 0.52618 0.87173 0.96675 0.99125 0.99766 0.99936

0.90 46 0.628 0.92674 0.99999 1 1 1 1

24 0.942 0.80610 0.99932 1 1 1 1

17 1.257 0.69775 0.99482 0.99995 1 1 1

14 1.571 0.59542 0.98238 0.99955 1 1 1

10 2.356 0.46020 0.92848 0.99345 0.9995 0.99996 1

8 3.141 0.40504 0.87251 0.97894 0.9968 0.99951 0.99993

7 3.972 0.35014 0.80936 0.95456 0.9897 0.99771 0.99949

6 4.712 0.37030 0.79400 0.94146 0.9838 0.99554 0.99877

0.95 54 0.628 0.89392 0.99998 1 1 1 1

28 0.942 0.73756 0.99893 1 1 1 1

20 1.257 0.60040 0.99172 0.99992 1 1 1

16 1.571 0.50390 0.97449 0.99931 0.99998 1 1

11 2.356 0.38876 0.90879 0.99126 0.99926 0.9999 1

9 3.141 0.31523 0.83096 0.97026 0.99528 0.9993 0.9999
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t/ξo

8 3.972 0.25025 0.74319 0.93387 0.98443 0.9965 0.9992

7 4.712 0.25012 0.70913 0.90970 0.97378 0.9926 0.9979

0.99 71 0.628 0.81011 0.99997 1 1 1 1

37 0.942 0.57861 0.99758 1 1 1 1

26 1.257 0.42179 0.98282 0.99982 1 1 1

20 1.571 0.34562 0.95395 0.99865 0.99997 1 1

14 2.356 0.22195 0.83900 0.98241 0.99843 0.99987 1

12 3.141 0.13578 0.69151 0.93492 0.98871 0.99820 0.9997

10 3.972 0.11970 0.60628 0.88250 0.97005 0.99287 0.9984

9 4.712 0.10438 0.53873 0.83091 0.94599 0.98378 0.9953

If the producer’s risk is given and a sampling plan (n, c, t/ξ0) is adopted, one

interesting question is what value of ξ/ξ0(≥ 1) will insure the producer’s risk to

be at least 0.95,Then ξ/ξ0 is the smallest positive number for which p satisfied the

inequality

(3.7)
∑c

k=0

(
n

k

)
pk(1− p)n−k ≥ 0.95,

where,p = GMOIG

(
t
ξ0

ξ0
ξ

)
. For the given acceptance sampling plan (n, c, t/ξ0),

at a specified confidence level P ∗, the minimum values of ξ/ξo satisfying (3.7) are

presented in Table 3 for η = 1 and ϑ = 2.

Table 3. Minimum ratio of true mean life to specified mean life for the acceptability

of a lot with producer’s risk of 0.05 for η = 1,ϑ = 2.

t/ξo

P∗ c 0.628 0.942 1.257 1.571 2.356 3.141 3.972 4.712

0.75 0 3 3.85 4.91 5.79 8.02 9.45 11.95 14.18

1 2.19 2.67 3.2 3.6 4.6 5.43 6.86 6.76

2 1.91 2.28 2.63 2.88 3.8 4.17 5.27 5.4
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t/ξo

3 1.77 2.07 2.34 2.63 3.17 3.55 3.98 4.72

4 1.67 1.91 2.16 2.38 2.79 3.18 3.63 3.78

5 1.6 1.83 2.04 2.22 2.53 2.93 3.39 3.61

6 1.55 1.75 1.95 2.09 2.48 2.75 2.93 3.47

7 1.51 1.69 1.84 2 2.32 2.61 2.83 3.05

8 1.47 1.65 1.79 1.93 2.2 2.51 2.76 3.01

9 1.45 1.61 1.75 1.87 2.1 2.42 2.69 2.72

10 1.42 1.57 1.72 1.82 2.1 2.34 2.47 2.71

0.90 0 3.32 4.33 5.33 6.42 8.68 10.69 13.51 16.03

1 2.42 3.05 3.56 4.16 5.4 6.71 7.76 9.2

2 2.1 2.54 2.96 3.4 4.31 5.06 5.87 6.25

3 1.93 2.31 2.6 2.92 3.58 4.23 4.94 5.32

4 1.81 2.14 2.42 2.7 3.29 3.72 4.38 4.77

5 1.73 2.02 2.26 2.49 2.96 3.38 4 4.39

6 1.67 1.91 2.14 2.33 2.83 3.13 3.48 3.81

7 1.62 1.85 2.05 2.26 2.64 2.94 3.3 3.65

8 1.58 1.8 1.97 2.16 2.48 2.8 3.17 3.52

9 1.55 1.76 1.91 2.08 2.44 2.68 3.06 3.2

10 1.52 1.71 1.86 2.01 2.33 2.58 2.81 3.13

0.95 0 3.46 4.57 5.64 6.66 9.2 11.57 13.51 16.03

1 2.54 3.2 3.84 4.45 5.71 7.2 8.48 9.2

2 2.2 2.69 3.17 3.61 4.54 5.42 6.4 6.97

3 2.02 2.42 2.81 3.09 3.94 4.51 5.34 5.86

4 1.9 2.25 2.55 2.84 3.43 4.18 4.7 5.19

5 1.81 2.12 2.41 2.66 3.21 3.77 4.27 4.74

6 1.74 2.02 2.27 2.49 3.04 3.47 3.96 4.12

7 1.68 1.94 2.17 2.39 2.82 3.24 3.72 3.92

8 1.65 1.88 2.11 2.28 2.73 3.06 3.36 3.76

9 1.61 1.83 2.04 2.22 2.59 2.92 3.23 3.62

10 1.58 1.79 1.98 2.14 2.47 2.8 3.12 3.33
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t/ξo

0.99 0 3.74 4.98 6.19 7.36 9.98 12.83 15.5 18.39

1 2.75 3.5 4.2 4.9 6.46 7.99 9.63 10.79

2 2.38 2.95 3.49 3.95 5.1 6.32 7.27 8.14

3 2.17 2.66 3.08 3.52 4.38 5.25 6.04 6.77

4 2.04 2.45 2.82 3.19 3.94 4.58 5.28 5.93

5 1.94 2.31 2.64 2.96 3.63 4.27 4.76 5.37

6 1.86 2.2 2.5 2.76 3.41 3.92 4.39 4.96

7 1.8 2.11 2.4 2.63 3.16 3.64 4.1 4.64

8 1.75 2.05 2.29 2.53 3.03 3.42 3.87 4.19

9 1.71 1.98 2.23 2.42 2.93 3.35 3.69 4.02

10 1.68 1.94 2.15 2.36 2.78 3.2 3.54 3.87

4. Illustration and Example for Test Plan

Assume that the life distribution is a MOIG distribution and the experimenter is

interested in showing that the true unknown average life is at least 1000 hours. Let

the consumer’s risk be set to 1− P ∗ = 0.05. It is desired to stop the experiment at

t = 942 hours. Then, for an acceptance numberc = 2, the required n is the entry in

Table 1 is 28. If during 942 hours no more than 2 failures out of 28 are observed,

then the experimenter can assert with a confidence level of 0.95 that the average life

is at least 1000 hours.

For the sampling plan(n = 28, c = 2, t/ξo = 0.942), the operating characteristic

values from (3.6) are as follows

ξ/ξ0 2 4 6 8 10 12

t/ξ0 0.73756 0.99893 1 1 1 1

This implies that if the true mean life is twice the specified mean life(ξ/ξ0 = 2),

the producer’s risk is about 0.26, and when ξ/ξ0 = 4, producer’s risk is about 0.1%.
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However, the producer’s risk approaches zero the mean life is at least 10000 or ξ/ξ0 ≥

6. (while it is about zero when the true mean life is 6 times the specified mean life.)

Table 3 used to get the value of ξ/ξ0 for various values of c, t/ξ0 when the producer’s

risk may not exceed 0.05. For example, for c = 2, t/ξ0 = 0.942, P ∗ = 0.95, the value

of ξ/ξ0 is 2.69. This means that the product should have an average life of 2.69 times

the specified average life if 1000 hours in order that the product be accepted with

probability 0.95.

5. Application

A numerical example using a real data set studied by Meeker and Escobar (1988),

which gives the times of failure and running times for a sample of devices from a

field-tracking study of a larger system. At a certain point in time, 30 units were

installed in normal service conditions. Two causes of failure were observed for each

unit that failed, the failure caused by an accumulation of randomly occurring damage

from power-line voltage spikes during electric storms and failure caused by normal

product wear. The times are: 275, 13, 47, 23, 181, 30, 65, 10,300, 173, 106, 300, 300,

212, 300, 300, 300, 2, 261, 293, 88, 247, 28, 143, 300, 23, 300, 80,245, 266.

The maximum likelihood estimators for the MOIG parameters are η̂ =0.6789, ξ̂

=0.2103 and ϑ̂ =0.00542.

The following table gives Anderson-Darling (AD) statistic, Kolmogorov-Smirnov (KS)

test and their p-values, alongside the value of Min (-log Likelihood).

Table 4. Goodness of fit measures

p-value

Statistic A-D K-S statistic Min (-log Likelihood)

2.2946 0.2386 189.9843

p-value 0.0568 0.06561

Based on the goodness of fit tests, there is no strong evidence against that the

MOIG distribution provides a good fit to this data set.
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Suppose that the specified mean life ξ0 = 10 hours and testing time be t = 12.57

hours. Therefore, for acceptance number c = 2 with probability P ∗ = 0.99, the

minimum sample size is found from Table 1 to be 26.

The lot will be accepted only if the number of failures before 12.57 hours is at most

2. Since there are two failures at 2 and 10 from the data set before the time hours,

then we will accept the lot, asserting a mean life time 10 hours with probability 0.99

(with significance level α = 0.01).

6. Conclusion

This study established the acceptance sampling plans for the Marshall-Olkin in-

verse gamma (MOIG) life time distribution based on truncated lifetime tests. Various

values of the MOIG distribution parameters are considered and the necessary tables

based on the suggested sampling plan are presented. Both artificial and real life data

sets were demonstrated to show our findings.

In future work, developing sampling plans based on the MOIG to satisfy both con-

sumer’s risk and producer’s risk might prove important.
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