$\varphi-$ APPROXIMATE BIPROJECTIVE AND $(\varphi,\psi)-$ AMENABLE BANACH ALGEBRAS

Z. GHORBANI $^{(1)}$ AND J. BARADARAN $^{(2)}$

ABSTRACT. We introduce and study the concept of φ -approximate biprojective and (φ, ψ) -amenable Banach algebra A, where φ is a continuous homomorphism on A and $\psi \in \Phi_A$. We show that if A is (φ, ψ) -amenable then there exists a bounded net (m_α) in $(A \hat{\otimes} A)$ such that $||m_\alpha \cdot \varphi(a) - \psi \circ \varphi(a) \cdot m_\alpha|| \longrightarrow 0$ and $\psi \circ \pi(m_\alpha) \cdot \varphi(a) \longrightarrow \varphi(a)$ for all $a \in A$.

1. Introduction

Amenable Banach algebra was introduced by Johnson in [10]. He showed that A is amenable Banach algebra if and only if A has a approximate diagonal, that is a bounded net (m_{α}) in $(A \hat{\otimes} A)$ such that $m_{\alpha}a - am_{\alpha} \longrightarrow 0$ and $\pi(m_{\alpha})a \longrightarrow a$ for every $a \in A$. The notion of a biflat and biprojective Banach algebra was introduced by Helemskii [8, 9]. Indeed, A is called biprojective, if there exists a bounded A-bimodule map $\theta: A \longrightarrow A \hat{\otimes} A$ such that $\pi \circ \theta = id_A$.

He considered a Banach algebra to be amenable if A is biflat and has a bounded approximate identity[7, 9]. In fact, A is called biflat if there exists a bounded A-bimodule map $\theta: (A \hat{\otimes} A)^* \longrightarrow A^*$ such that $\theta \circ \pi^* = id_{A^*}$.

Received: Jan. 22, 2019 Accepted: March 3, 2020.

²⁰⁰⁰ Mathematics Subject Classification. 43A20, 46H25.

Key words and phrases. Banach algebra, φ -approximate biprojective, φ -approximate biflat. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Given a continuous homomorphism φ from A into A, authors in [13, 14] defined and studied φ -derivations and φ -amenability.

Recall that a character on A is a non-zero homomorphism from A into the scalar field. The set of all characters on A, called the character space of A, is denoted by Φ_A .

Motivated by these considerations, author and M. Lashkarizadeh Bami introduced some generalizations of Helemskii's concepts like φ -biflatness and φ -biproject-ivity, where φ is a continuous homomorphism from A into A [5, 6]. The author states that Banach algebra A is φ - biflat(φ - approximate biprojective) if there exists a bounded A-bimodule map $\theta: A \longrightarrow (A \hat{\otimes} A)^{**}$ ($\theta_{\alpha}: A \longrightarrow (A \hat{\otimes} A)$) such that $\pi^{**} \circ \theta \circ \varphi$ is the canonical embedding of A into $A^{**}(\pi \circ \theta_{\alpha}(a) \to \varphi(a))$.

In this paper, we define (φ, ψ) -amenability Banach algebra A, where φ is a continuous homomorphism on A and $\psi \in \Phi_A$. We prove that A is (φ, ψ) -amenable if and only if there exists a bounded net $(m_{\alpha}) \subset A$ such that $\|\varphi(a)m_{\alpha} - m_{\alpha}\psi \circ \varphi(a)\| \longrightarrow 0$ and $\psi \circ \varphi(m_{\alpha}) = 1$ for all α .

We shows that $(l^1)^{\sharp}$ is not biprojective Banach algebra which is φ - biprojective Banach algebra.

First we recall lemma and theorem that we shall need in this paper. The following result can be found in [13].

Lemma 1.1. Let A be a Banach algebra. Then there exists an A-bimodule homomorphism $\gamma: (A \hat{\otimes} A)^* \longrightarrow (A^{**} \hat{\otimes} A^{**})^*$ such that for any functional $f \in (A \hat{\otimes} A)^*$, elements $\varphi, \psi \in A^{**}$ and nets $(a_{\alpha}), (b_{\beta})$ in A with $w^* - \lim_{\alpha} a_{\alpha} = \varphi$ and $w^* - \lim_{\beta} b_{\beta} = \psi$, we have

$$\gamma(f)(\varphi \otimes \psi) = \lim_{\alpha} \lim_{\beta} f(a_{\alpha} \otimes b_{\beta}).$$

Remark: In general, weak convergence implies weak* convergence but the converse is not always true. However, the notions are equivalent if the normed space X is

reflexive. Let X be Banach space. The closed unit ball of X, denoted by B_X is defined to be the set $B_X = \{x \in X : ||x|| \le 1\}$

Theorem 1.1 (Goldstine's Theorem). ([4]) Let X be a Banach space and $\overline{B_X}$ be a closed unit ball identified as a subset of X^{**} under the canonical embedding. Then B_X is weak* dense in $B_{X^{**}}$

2. Main Results

In this section we investigate the hereditary properties of φ -biprojective Banach algebra. The main result (Proposition 2.1) converse the projective tensor product of two Banach algebra.

Let A be a Banach algebra and X, Y be Banach A-bimodules. Then A-bimodule morphism from X to Y is a morphism $\varphi: X \longrightarrow Y$ with

$$\varphi(a \cdot x) = a \cdot \varphi(x), \quad \varphi(x \cdot a) = \varphi(x) \cdot a \ (a \in A, x \in X)$$

In the next result $\varphi: A \longrightarrow A$ is a homomorphism and I is a closed ideal of A. We define the map $\tilde{\varphi}: A/I \longrightarrow A/I$ by $\tilde{\varphi}(a+I) = \varphi(a) + I$.

Theorem 2.1. Suppose that A is a φ - approximate biprojective Banach algebra. If I is a closed ideal of A, then A/I is $\tilde{\varphi}$ - approximate biprojective.

Proof. Let $\theta_{\alpha}: A \longrightarrow (A \hat{\otimes} A)$ be a continuous A-bimodule map such that $\pi \circ \theta_{\alpha}(a) \to \varphi(a)$. Let $q: A \longrightarrow A/I$ be the quotient map. Define a map $\tilde{\theta}_{\alpha}: A/I \longrightarrow (A/I \hat{\otimes} A/I)$ by $a+I \mapsto (q \hat{\otimes} q) \circ \theta_{\alpha}(a)$ $(a \in A)$. We prove that $\tilde{\theta}_{\alpha}$ is an A/I- bimodule

map. Let $a, b, c \in A$. Then we have

$$\tilde{\theta}_{\alpha}((a+I)(b+I)(c+I)) = \tilde{\theta}_{\alpha}(abc+I)$$

$$= (q \hat{\otimes} q) \circ \theta_{\alpha}(abc)$$

$$= (q \hat{\otimes} q)(a \cdot \theta_{\alpha}(b) \cdot c)$$

$$= a \cdot (q \hat{\otimes} q)(\theta_{\alpha}(b) \cdot c)$$

$$= (a+I) \cdot \tilde{\theta}_{\alpha}(b+I) \cdot (c+I),$$

and also we have

$$\pi_{A/I} \circ \tilde{\theta}_{\alpha}(a+I) = \pi_{A/I} \circ (q \otimes q) \circ \theta_{\alpha}(a)$$
$$= q \circ \pi_{A} \circ \theta_{\alpha}(a) \to q(\varphi(a)) = \tilde{\varphi}(a+I).$$

That is, A/I is $\tilde{\varphi}$ -approximate biprojective.

Theorem 2.2. Suppose that A is a φ -approximate biprojective Banach algebra. If I is a closed ideal of A with one sided bounded approximate identity and $\varphi(I) \subset I$. Then I is $\varphi|_{I}$ -approximate biprojective.

Proof. Assume that $\theta_{\alpha}: A \longrightarrow (A \hat{\otimes} A)$ is a continuous A-bimodule map such that $\pi \circ \theta_{\alpha}(a) \to \varphi(a)$. Let $\iota: I \hookrightarrow A$ be the inclusion map. Then $\theta_{\alpha}|_{I} = \theta_{\alpha} \circ \iota: I \longrightarrow (A \hat{\otimes} A)$ is I-bimodule homomorphism. If I^{3} denotes span $\{abc: a, b, c \in I\}^{-}$, then $I^{3} = I$ because of I has a one sided bounded approximate identity and

$$\theta_{\alpha}|_{I} = \theta_{\alpha}(I)$$

$$= \theta_{\alpha}(I^{3})$$

$$\subseteq span\{a \cdot \theta_{\alpha}(b) \cdot c\}^{-}$$

$$\subseteq span\{a \cdot m \cdot c : a, c \in I, m \in A \otimes A\}^{-} \subseteq I \otimes I.$$

Therefore, for every $a \in I$, we have

$$\pi \circ \theta_{\alpha}|_{I}(a) = \pi(\theta_{\alpha}(a))$$
 $\rightarrow \varphi(a).$

Let A is φ -approximate biprojective and B is ψ -approximate biprojective Banach algebra, then $A \otimes B$ is $\varphi \otimes \psi$ -approximate biprojective. We now prove a partial converse.

Proposition 2.1. Let A be a unital Banach algebra and B be a Banach algebra containing a non-zero idempotent b_0 . If $A \otimes B$ is $\varphi \otimes \psi$ -approximate biprojective. Then A is φ -approximate biprojective.

Proof. There exists an $A \hat{\otimes} B$ -bimodule $\theta_{\alpha} : A \hat{\otimes} B \longrightarrow (A \hat{\otimes} B) \hat{\otimes} (A \hat{\otimes} B)$ with $\pi_{A \hat{\otimes} B} \circ \theta_{\alpha}(a \otimes b) \to \varphi \otimes \psi(a \otimes b)$. We consider $A \hat{\otimes} B$ as an A-bimodule with the actions given by

$$a_1 \cdot (a_2 \otimes b) = a_1 a_2 \otimes b, \text{ and } (a_2 \otimes b) \cdot a_1 = a_2 a_1 \otimes b \text{ } (a_1, a_2 \in A, b \in B)$$

Thus, for every $a_1, a_2 \in A$, we have

$$\theta_{\alpha}(a_1 a_2 \otimes b_0) = \theta_{\alpha}((a_1 \otimes b_0)(a_2 \otimes b_0))$$

$$= (a_1 \otimes b_0) \cdot \theta_{\alpha}((a_2 \otimes b_0))$$

$$= a_1 \cdot (e_A \otimes b_0) \cdot \theta_{\alpha}((a_2 \otimes b_0))$$

$$= a_1 \cdot \theta_{\alpha}(a_2 \otimes b_0).$$

Similarly, we can show a right-module version of this equation. So we have

$$\theta_{\alpha}(a_1 a_2 \otimes b_0) = a_1 \cdot \theta_{\alpha}(a_2 \otimes b_0) = \theta_{\alpha}(a_1 \otimes b_0) \cdot a_2 \quad (a_1, a_2 \in A)$$

Take $f \in \Phi_A$ with $f(b_0) = 1$ and define

$$\rho: (A \otimes B) \otimes A \otimes B \longrightarrow (A \otimes A); (a_1 \otimes b_1) \otimes (a_2 \otimes b_2) \mapsto f(b_1 b_2) a_1 \otimes a_2$$

Then ρ is an A-bimodule morphism.

We now define $\tilde{\theta}_{\alpha}: A \longrightarrow (A \otimes A)$ by

$$\tilde{\theta}_{\alpha}(a) = \rho \circ \theta(a \otimes \psi(b0)) \quad (a \in A).$$

Then $\tilde{\theta}_{\alpha}$ is an A-bimodule morphism and

$$\pi_A \circ \rho = (id_A \otimes f) \circ \pi_{A \hat{\otimes} B}.$$

Therefore

$$\pi_{A} \circ \tilde{\theta}_{\alpha}(a) = \pi_{A} \circ \rho \circ \theta_{\alpha}(a \otimes \psi(b0))$$

$$= (id_{A} \otimes f) \circ \pi_{A \hat{\otimes} B} \circ \theta_{\alpha}(a \otimes \psi(b0))$$

$$\to \varphi(a).$$

That is, A is φ -approximate biprojective.

We remind that a Banach algebra A is φ - approximate biflat if there is a net $\theta_{\alpha}: A \longrightarrow (A \hat{\otimes} A)^{**} \quad (\alpha \in I)$ of bounded A-bimodule morphisms such that $\pi^{**} \circ \theta_{\alpha}(a) \to \varphi(a)$.

Proposition 2.2. Let A be a unital Banach algebra and B be a Banach algebra containing a non-zero idempotent b_0 . If $A \otimes B$ is $\varphi \otimes \psi$ -approximate biflat. Then A is φ -approximate biflat.

Proof. There exists an $A \,\hat{\otimes}\, B$ -bimodule $\theta_{\alpha}: A \,\hat{\otimes}\, B \longrightarrow (A \,\hat{\otimes}\, B) \,\hat{\otimes} (A \,\hat{\otimes}\, B)^{**}$ with $\pi_{A \,\hat{\otimes}\, B}^{**} \circ \theta_{\alpha} \to (\varphi \otimes \psi)$. The following proof is similar to that of Proposition 2.1. We now define $\tilde{\theta}: A \longrightarrow (A \,\hat{\otimes}\, A)^{**}$ by

$$\tilde{\theta}_{\alpha}(a) = \rho^{**} \circ \theta_{\alpha}(a \otimes \psi(b0)) \quad (a \in A).$$

Then $\tilde{\theta}_{\alpha}$ is an A-bimodule morphism and

$$\pi_A^{**} \circ \tilde{\theta}_\alpha \to \varphi.$$

That is, A is φ -approximate biflat.

Suppose that A is a Banach algebra and Λ is a non-empty set. We denote by $M_{\Lambda}(A)$ the set of $\Lambda \times \Lambda$ matrices $(a_{ij})_{i,j \in \Lambda}$ with entries in A such that

$$||(a_{ij})|| = \sum_{i,j} ||a_{ij}||_A < \infty.$$

 $M_{\Lambda}(A)$ is a Banach algebra with matrix multiplication. The matrix units in $M_{\Lambda}(\mathbb{C})$ are denoted by $e_{i,j}$ so that

$$e_{i,j}e_{k,l} = \delta_{i,k}e_{i,l} \quad (i,j,k,l \in \Lambda),$$

where $\delta_{j,k} = 1$ if j = k and $\delta_{j,k} = 0$ if $j \neq k$. The map

$$\theta: M_{\Lambda}(A) \longrightarrow (A \hat{\otimes} M_{\Lambda}(\mathbb{C})) \ \ given \ by \ \ (a_{ij}) \mapsto \sum_{i,j} a_{ij} \otimes e_{i,j},$$

is an isometric algebra isomorphism.

Corollary 2.1. Let A be a unital Banach algebra and let Λ be a non-empty set and also $\varphi = \varphi_0 \otimes \varphi_1$, $\varphi_0 \in Hom(A)$ and $\varphi_1 \in Hom(M_{\Lambda}(\mathbb{C}))$. Then $M_{\Lambda}(A)$ is φ -approximate biprojectiv(φ -approximate biflat) if and only if A is φ_0 -approximate biprojective(φ -approximate biflat).

Proof. Let $M_{\Lambda}(A)$ be φ -approximate biprojective(φ -approximate biflat). Since $M_{\Lambda}(A) = A \hat{\otimes} M_{\Lambda}(\mathbb{C})$, the result follows from Proposition 2.1 and Proposition 2.2. Conversely, fix $k_0 \in \Lambda$ and define $\theta_{\alpha} : M_{\Lambda}(\mathbb{C}) \longrightarrow (M_{\Lambda}(\mathbb{C}) \hat{\otimes} M_{\Lambda}(\mathbb{C}))$ by

$$\theta_{\alpha}(a) = \sum_{i,j \in \Lambda} \varphi_1(a_{ij}) e_{i,k_0} \otimes e_{k_0,j} \quad (a = (a_{i,j}) \in M_{\Lambda}(\mathbb{C})).$$

The sum converges because of $\sum_{i,j} |a_{ij}| < \infty$. Hence

$$\pi_{M_{\Lambda}(\mathbb{C})} \circ \theta(a) = \pi_{M_{\Lambda}(\mathbb{C})} \circ \sum_{i,j \in \Lambda} \varphi_{1}(a_{ij}) e_{i,k_{0}} \otimes e_{k_{0},j}$$

$$\to \varphi_{1}(a_{ij}) = \varphi_{1}(a).$$

That is, $M_{\Lambda}(\mathbb{C})$ is φ -approximate biprojective. Therefore, $M_{\Lambda}(A)$ φ -approximate biprojective $(\varphi$ -approximate biflat).

In analogy with the classical case we characterize the second dual of Banach algebra if φ^{**} -approximate biprojective then its φ -approximate biflat.

Theorem 2.3. Suppose that A is a Banach algebra and $\varphi \in Hom(A)$. If A^{**} is φ^{**} -approximate biprojective. Then A is φ -approximate biflat.

Proof. Let $\kappa: A \longrightarrow A^{**}$, $\kappa_1: A^* \longrightarrow A^{***}$ and $\kappa_*: A^{**} \longrightarrow A^{****}$ denote the natural inclusions, π (** π , respectively) the product maps on A (A^{**} , respectively) and γ be defined as in Lemma (1.1). Then the following diagram commutes:

for each $a^* \in A^*$, elements $a_1^{**}, a_2^{**} \in A^{**}$ and nets $(a_\alpha), (b_\beta) \subset A$ with $w^* - \lim_\alpha a_\alpha = a_1^{**}, w^* - \lim_\beta b_\beta = a_2^{**}$, we get

$$(\gamma(\pi^*(a^*)))(a_1^{**} \otimes a_2^{**}) = \lim_{\alpha} \lim_{\beta} \pi^*(a^*)(a_{\alpha} \otimes b_{\beta})$$

$$= \lim_{\alpha} \lim_{\beta} a^*(a_{\alpha}b_{\beta})$$

$$= w^* - \lim_{\alpha} w^* - \lim_{\beta} \kappa(a_{\alpha}b_{\beta})(a^*)$$

$$= \kappa_1(a^*)(a_1^{**}a_2^{**})$$

$$= \kappa_1(a^*)(*^*\pi(a_1^{**} \otimes a_2^{**})) = (*^*\pi^*(\kappa_1(a^*)))(a_1^{**} \otimes a_2^{**}).$$

Thus $\gamma \circ \pi^* = {}^{**}\pi^* \circ \kappa_1$. So $\pi^{**} \circ \gamma^* = \kappa_1^* \circ {}^{**}\pi^{**}$. Since A^{**} is φ^{**} -approximate biprojective, there is an A-bimodule map $\theta_{0\alpha} : A^{**} \longrightarrow (A^{**} \hat{\otimes} A^{**})$ such that $\pi \circ \theta_{0\alpha} \to \varphi^{**}$. Putting $\theta_{\alpha} := \gamma^* \circ \theta_{0\alpha} \circ \kappa$, then for each $a \in A$ we have

$$\pi^{**} \circ \theta_{\alpha}(a) = \pi^{**} \circ \gamma^{*} \circ \theta_{0\alpha} \circ \kappa(a)$$

$$= \kappa_{1}^{*} \circ \pi^{**} \circ \theta_{0\alpha} \circ \kappa(a)$$

$$= \kappa_{1}^{*} \circ \pi^{**} \circ \theta_{0\alpha}(a^{**})$$

$$\to \kappa_{1}^{*}(\varphi^{**}(a)) = \varphi(a).$$

That is, A is φ -approximate biflat.

Theorem 2.4. Suppose that A is a φ -approximate biflat Banach algebra with one sided bounded approximate identity. If I is a closed ideal of A. Then A/I is $\tilde{\varphi}$ -approximate biflat.

Proof. Let $\theta_{\alpha}: A \longrightarrow (A \hat{\otimes} A)^{**}$ be a bounded A-bimodule map such that $\lim_{\alpha} \pi^{**} \circ \theta_{\alpha}(a) = \varphi(a)$. Let $q: A \longrightarrow A/I$ be the quotient map. Define a map $\tilde{\theta}_{\alpha}: A/I \longrightarrow (A/I \hat{\otimes} A/I)^{**}$ by $a+I \mapsto (q \hat{\otimes} q)^{**} \circ \theta_{\alpha}(a)$ $(a \in A)$. If (e_{β}) is a bounded left

approximate identity for A (the right case is similar), then

$$\| (q \, \hat{\otimes} \, q)^{**}(\theta_{\alpha}(a)) \| = \lim_{\beta} \| (q \, \hat{\otimes} \, q)^{**}(\theta_{\alpha}(e_{\beta}a)) \|$$

$$= \lim_{\beta} \| q(a)(q \, \hat{\otimes} \, q)^{**}(\theta_{\alpha}(e_{\beta})) \|$$

$$\leq \| q \|^{2} \| \theta_{\alpha} \| \sup_{\beta} \| e_{\beta} \| \| q(a) \|.$$

And $\tilde{\theta}_{\alpha}$ is well-defined. We show that $\tilde{\theta}_{\alpha}$ is an A/I- bimodul map. To do this, choose $a, b, c \in A$, then we have

$$\tilde{\theta}_{\alpha}((a+I)(b+I)(c+I)) = (q \hat{\otimes} q)^{**} \circ \theta_{\alpha}(abc)$$

$$= (q \hat{\otimes} q)^{**}(a \cdot \theta_{\alpha}(b) \cdot c)$$

$$= a \cdot (q \hat{\otimes} q)^{**}(\theta_{\alpha}(b) \cdot c)$$

$$= (a+I) \cdot \tilde{\theta}_{\alpha}(b+I) \cdot (c+I).$$

We also have

$$\lim_{\alpha} \pi_{A/I}^{**} \circ \tilde{\theta}_{\alpha}(a+I) = \lim_{\alpha} \pi_{A/I}^{**} \circ (q \otimes q)^{**} \circ \theta_{\alpha}(a)$$
$$= \lim_{\alpha} q^{**} \circ \pi_{A}^{**} \circ \theta_{\alpha}(a) \longrightarrow q(\varphi(a)) = \tilde{\varphi}(a+I).$$

That is, A/I is $\tilde{\varphi}$ -approximate biflat.

The proof of the next result is similar to that of Theorem (2.4) and we omit it.

Theorem 2.5. Suppose that A is a Banach algebra and $\varphi \in Hom(A)$. If A^{**} is φ^{**} -approximate biflat. Then A is φ -approximate biflat.

Example 2.1. Consider $A = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} : a, b \in \mathbb{C} \right\}$ under the standard operator norm, we see that A has neither identity nor right approximate identity. Therefore

A is not φ -approximate amenable Banach algebra. Put

$$f = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

we define

$$\theta_{\alpha} \left(\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \right) = a(f \otimes f).$$

Then for $a \in A$ and $\varphi \begin{pmatrix} \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$. we have $\pi \circ \theta_{\alpha} \to \varphi$. Thus A is φ -approximate biprojective Banach algebra, but A is not φ -approximate biflat.

In the next example, we bring a φ -biprojective Banach algebra which is not biprojective Banach algebra.

Example 2.2. The Banach algebra l^1 with respect to pointwise product is non-amenable and biprojective Banach algebra [4, Example 4.1.42]. Hence, $(l^1)^{\sharp}$ (unitization of l^1) not biprojective. If we define $\varphi:(l^1)^{\sharp} \longrightarrow (l^1)^{\sharp}$ by $\varphi(a + \lambda e) = \lambda$ for $a \in l^1$ and $\lambda \in \mathbb{C}$, then $(l^1)^{\sharp}$ is φ - biprojective and so φ - approximate biprojective Banach algebra.

3. (φ, ψ) -AMENABLE BANACH ALGEBRAS

We begin this section with the following definition of (φ, ψ) -amenable Banach algebra. Let $\psi \in \Phi_A$. Then ψ has a unique extension $\tilde{\psi}$ on A^{**} and defined by $\tilde{\psi}(F) = F(\psi)$ for every $F \in A^{**}$.

Definition 3.1. Let A be a Banach algebra and $\varphi \in Hom(A), \psi \in \Phi_A$. Then A is called (φ, ψ) -amenable if there exists $M \in A^{**}$ such that $M(\psi \circ \varphi) = 1$ and $M(\varphi(a) \cdot f) = M(f \cdot \psi \circ \varphi(a))$ for all $a \in A$, $f \in A^*$.

The next theorem characterizes (φ, ψ) -amenability of Banach algebra. We are now going to prove the main result in this section.

Theorem 3.1. Let A be a Banach algebra and $\varphi \in Hom(A), \psi \in \Phi_A$. Then A is (φ, ψ) -amenable if and only if there exists a bounded net $(m_{\alpha}) \subset A$ such that $\|\varphi(a)m_{\alpha} - m_{\alpha}\psi \circ \varphi(a)\| \longrightarrow 0$ and $\psi \circ \varphi(m_{\alpha}) = 1$ for all α .

Proof. There exists $M \in A^{**}$ such that $M(\psi \circ \varphi) = 1$, $M(\varphi(a) \cdot f) = M(f \cdot \psi \circ \varphi(a))$ for $a \in A$, $f \in A^*$. Choose a net (a_{α}) in A with $a_{\alpha} \longrightarrow M$ in the w^* -topology of A^{**} and $||a_{\alpha}|| \leq ||M||$ for all α . Since $\langle \psi \circ \varphi, a_{\alpha} \rangle \longrightarrow \langle \psi \circ \varphi, M \rangle = 1$, passing to a subnet and replacing (a_{α}) by $(1/\psi \circ \varphi(a_{\alpha}))a_{\alpha}$, we may assume that $\psi \circ \varphi(a_{\alpha}) = 1$ and $||a_{\alpha}|| \leq ||M|| + 1$ for all α . Consider the product space A^A endowed with the product of norm topologies. If and define a linear map $T: A \longrightarrow A^A$ by $T(b) = \varphi(a)b - b\varphi(a)$, for all $b \in A$.

$$B = \{b \in A : ||b|| \le ||M|| + 1 \text{ and } \psi \circ \varphi(ba) = 1\}$$

Clearly, B is convex and so T(B) is a convex subset of A^A . For every $f \in A^*$, we have

$$\langle f, \varphi(a) a_{\alpha} - a_{\alpha} \psi \circ \varphi(a) \rangle = \langle f, \varphi(a) a_{\alpha} \rangle - \langle f, a_{\alpha} \psi \circ \varphi(a) \rangle$$

$$= \langle f \cdot \varphi(a), a_{\alpha} \rangle - \langle \psi \circ \varphi(a) \cdot f, a_{\alpha} \rangle$$

$$\longrightarrow \langle M, f \cdot \varphi(a) \rangle - \langle M, \psi \circ \varphi(a) \cdot f \rangle = 0.$$

By Theorem 1.1 we can replace weak* convergence in equations by weak convergence and Aapplying Mazur's Theorem, then we obtain a net (m_{α}) in A such that $\|\varphi(a)m_{\alpha}-m_{\alpha}\psi\circ\varphi(a)\|\longrightarrow 0$ and $\psi\circ\varphi(m_{\alpha})=1$.

Conversely, assume that a net (m_{α}) exists. Let M be a w^* -cluster point of the net (m_{α}) in A^{**} . Then, $\langle M, \psi \circ \varphi \rangle = \lim_{\alpha} \langle \psi \circ \varphi, m_{\alpha} \rangle = 1$. For every $a \in A$ and

 $f \in A^*$, we get

$$< M, f \cdot \varphi(a) > = \lim_{\alpha} < f \cdot \varphi(a), a_{\alpha} > = \lim_{\alpha} < f, \varphi(a)a_{\alpha} >$$

$$= \lim_{\alpha} < f, \varphi(a)a_{\alpha} - a_{\alpha}\psi \circ \varphi(a) > + \lim_{\alpha} < f, a_{\alpha}\psi \circ \varphi(a) >$$

$$= \lim_{\alpha} < \psi \circ \varphi(a) \cdot f, a_{\alpha} > = < M, \psi \circ \varphi(a) \cdot f > .$$

Definition 3.2. Let A be a Banach algebra and $\varphi \in Hom(A), \psi \in \Phi_A$. An element M of $(A \hat{\otimes} A)^{**}$ is a (φ, ψ) – virtual diagonal for A if

i)
$$\varphi(a) \cdot M = M \cdot \psi \circ \varphi(a)$$
 $(a \in A)$.

$$ii)\ \tilde{\psi} \circ \pi^{**}(M) \cdot \varphi(a) = \varphi(a) \qquad (a \in A).$$

Proposition 3.1. Let A be a Banach algebra and $\varphi \in Hom(A), \psi \in \Phi_A$. Then a Banach algebra A has a (φ, ψ) - virtual diagonal if and only if there exists a bounded net (m_{α}) in $(A \otimes A)$ such that $m_{\alpha} \cdot \varphi(a) - \psi \circ \varphi(a) \cdot m_{\alpha} \longrightarrow 0$ and $\psi \circ \pi(m_{\alpha}) \cdot \varphi(a) \longrightarrow \varphi(a)$ for every $a \in A$.

Proof. Let M be a φ - virtual diagonal for A and let (m_{α}) be a net in $(A \hat{\otimes} A)$ such that $M = w^* - \lim_{\alpha} m_{\alpha}$. Then a routine verification shows that for the net (m_{α}) , $m_{\alpha} \cdot \varphi(a) - \psi \circ \varphi(a) \cdot m_{\alpha} \longrightarrow 0$ and $\psi \circ \pi(m_{\alpha}) \cdot \varphi(a) \longrightarrow \varphi(a)$ for every $a \in A$, holds in the $weak^*$ - topology. Following the argument given in the proof of [4, Lemma 2.9.64] we can show that there exists a net (m_{β}) of convex combinations of (m_{α}) 's satisfying both conditions.

Conversely, let $(m_{\alpha}) \subset (A \hat{\otimes} A)$ be a bounded net such that $m_{\alpha} \cdot \varphi(a) - \psi \circ \varphi(a) \cdot m_{\alpha} \longrightarrow 0$ and $\psi \circ \pi(m_{\alpha}) \cdot \varphi(a) \longrightarrow \varphi(a)$ for every $a \in A$. After passing to a subnet if necessary, let $M \in (A \hat{\otimes} A)^{**}$ be a w^* -cluster point of the net (m_{α}) . Since $w^* - \lim m_{\alpha} \cdot \varphi(a) - \psi \circ \varphi(a) \cdot m_{\alpha} = 0$, it can easily be shown that $\varphi(a) \cdot M = M \cdot \varphi(a)$, for every $a \in A$. Also the w^* -continuity of π^{**} implies that $\tilde{\psi} \circ \pi^{**}(M) \cdot \varphi(a) = \varphi(a)$ and the proof is complete.

Finally, we prove the following result related to (φ, ψ) – virtual diagonal and (φ, ψ) – amenability.

Theorem 3.2. Assume that A is a Banach algebra and $\varphi \in Hom(A), \psi \in \Phi_A$. If A is (φ, ψ) -amenable, then A has a (φ, ψ) - virtual diagonal.

Proof. Let A be (φ, ψ) -amenable, then by Theorem(3.1) there exists a bounded net $(m_{\alpha}) \subset A$ such that $\|\varphi(a)m_{\alpha} - m_{\alpha}\psi \circ \varphi(a)\| \longrightarrow 0$ and $\psi \circ \varphi(m_{\alpha}) = 1$ for all α . Define $a_{\alpha} = \varphi(m_{\alpha}) \otimes \varphi(m_{\alpha})$, therefore

$$\psi \circ \pi(a_{\alpha}) \cdot \varphi(a) = \psi \circ \pi(\varphi(m_{\alpha}) \otimes \varphi(m_{\alpha})) \cdot \varphi(a)$$
$$= \psi \circ \varphi(m_{\alpha}) \psi \circ \varphi(m_{\alpha}) \cdot \varphi(a)$$
$$= \varphi(a).$$

So by proposition (3.1), A has a (φ, ψ) – virtual diagonal.

Acknowledgement

We would like to thank the editor and the referees for their valuable suggestions and comments

References

- O. Yu. Aristov, Biprojective algebras and operator spaces, J. Math. Sci. (New York) 111 (2002), 3339 – 3386
- [2] M. Ashraf and N.Rehman, On $(\sigma \tau)$ derivations in prime rings, Arch. Math. (BRNO) 38 (2002), 259 264
- [3] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, 1973
- [4] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs 24 (Clarendon Press, Oxford), 2000
- [5] Z. Ghorbani and M. Lashkarizadeh Bami, φ amenable and φ biflat Banach algebras, Bull. Iranian Math. Soc. **39** (2013), 507–515

- [6] Z. Ghorbani and M. Lashkarizadeh Bami, φ -approximate biflat and φ amenable Banach algebras, *Proc. Ro. Acad. Series A.* **13** (2012), 3–10
- [7] A. Ya. Helemskii, Banach and locally convex algebras, Clarendon Press, Oxford University Press, New York, 1993.
- [8] A. Ya. Helemskii, Flat Banach modules and amenable algebras (translated from the Russian).Trans. Moscow Math. Soc. 47 (1985), 199–224
- [9] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, 41 of Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1989.
- [10] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127(1972)
- [11] E. Kaniuth, A. Lau, and J. Pym, On φ -amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc* **144** (2008), 85–96
- [12] J. L. Kelley, General topology, D. Van Nostrand Company, Inc., New Yprk, 1955.
- [13] M. Mirzavaziri and M.S. Moslehian, σ -derivations in Banach algebras, Bull. Iranian Math. Soc. (2006), 65–78
- [14] M.S. Moslehian and A.N. Motlagh, Some notes on (σ, τ) -amenability of Banach algebras, *Stud. Univ. Babes-Bolyai Math.* **53** (2008), 57–68
- [15] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer, 2002.
 - (1) Department of Mathematics, Jahrom University, Jahrom, Iran

Email address: ghorbani@jahromu.ac.ir

(2) DEPARTMENT OF MATHEMATICS, JAHROM UNIVERSITY, JAHROM, IRAN *Email address*: baradaran@jahromu.ac.ir