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STATISTICAL INFERENCE FOR THE LOMAX DISTRIBUTION

UNDER PARTIALLY ACCELERATED LIFE TESTS WITH

PROGRESSIVELY TYPE-II CENSORING WITH BINOMIAL

REMOVAL

R. ZAMAN (1), P. NASIRI (2) AND A. SHADROKH (3)

Abstract. In this paper a step-stress Partially Accelerated Life Test (SSPALT) is

obtained for Lomax distribution under progressive Type II censoring with random

removals, assuming that the number of units removed at each failure time has a

binomial distribution. The maximum likelihood estimators (MLEs) are derived

using the expectation-maximization (EM) algorithm. The Confidence intervals for

the model parameters are constructed. SSPALT plan is used to minimize the Gen-

eralized Asymptotic Variance (GAV) of the ML estimators of the model parameters.

We explain the performance of our procedures using a simulation study.

1. Introduction

Lomax distribution was introduced by Lomax for the first time [1] to model the

business failure data. It has been used in areas of statistical modelling such as reliabil-

ity theory and economics, too. The Lomax distribution has been under consideration

for years.
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The most important scheme in life-time experiments is the progressive Type-II cen-

sored sampling scheme. For more information on the subject of progressively censor-

ing, see [2] and [3]. Under this scheme, n units are placed on a life test at time zero,

and m failures are going to be observed. Now at the time of the first failure, R1 of sur-

viving units are randomly selected and removed from the experiment, and so on. Fi-

nally, at the time of themth failure, all the remaining Rm = n−R1−R2−...−Rm−1−m

surviving units are removed from the experiment. In the progressive Type-II censored

sampling scheme, R1, R2, ..., Rm are all prefixed. In many reliability experiments, the

pattern of removal is random at each failure [4]. We suppose that any test unit being

withdrawn from the life test is independent of the others but with the same removal

probability (as a binomial parameter), p. The number of test units dropped out at

each failure time has a binomial distribution. Statistical inference on the parameters

of some distributions under progressive Type-II censoring with random removals and

with binomial removals has been studied by several researchers [5][6][7][8][9].

The life tests of products with high reliability need longer time period. Then, the

accelerated life tests (ALT) or partially accelerated life tests (PALT) are used to

shorten the time period. Actually, with the help of these methods, all or some of test

units go under stress to obtain failure units, faster.

In an ALT, the acceleration factor is presumed as a known value or there is a known

mathematical model which identifies the relationship between lifetime and stress con-

ditions. In some situations, such life-stress relationship is unknown and cannot be

presumed. Then, in this condition, PALTs are the superior criterion for performing

life test to estimate the acceleration factor and parameters of the life distribution.

The ALT was first introduced by Chernoff and Bessler [10][11].

The stress can be applied in various ways, one of these methods is step-stress in

which test units go under stress at a pre-determined time [12]. Several authors have

studied ALT and PALT under step-stress based on censored data [13][14][15][16].
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Asgharzadeh and Valiollahi [17] obtained the estimation of the scale parameter of

the Lomax distribution under progressive censoring. Helu and et al. [18] studied

estimation of the parameter of the Lomax distribution under progressive censoring

using EM algorithm. In reference to the literature, there is no research work about

optimum partially accelerated life test plans for the Lomax distribution under the

progressive type-II censoring scheme with random removals. In this paper, we con-

sider progressively Type-II censored data from the Lomax distribution with binomial

removals. Comparing to progressive censoring, the proposed censoring scheme pro-

vides a more general method. The progressive type-II censoring leads to the efficient

use of time and costs associated with the testing procedure. In section 2, the max-

imum likelihood estimators (MLEs) for the scale parameter and acceleration factor

using the expectation-maximization (EM) are obtained. Moreover, the confidence

intervals obtained by the sampling distribution of the mentioned parameters of the

MLEs are also presented. The optimization of test plans is explained in section 3.

For illustrating the theoretical results, the simulation studies are explained in section

4. Finally, conclusions are presented in section 5.

2. Estimation of parameters

Suppose that the life distribution, T , has a Lomax distribution with shape param-

eter k and scale parameter β, with the probability density function (pdf) and the

cumulative distribution function (cdf) given by

fT (t) = kβ(1 + βt)−(k+1), t > 0, k > 0, β > 0.

FT (t) = 1− (1 + βt)−k, t > 0(2.1)
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and the failure-rate function is

(2.2) hT (t) =
kβ

(1 + βt)

In the step-stress PALT, the total lifetime, Y , can be written as

(2.3) Y =











T T ≤ τ

τ + T−τ
α

T > τ

where τ is the stress change time and α is the acceleration factor, α ≥ 1. So,

the probability density function and the cumulative distribution function of Y are

respectively,

(2.4) f(y) =



























0 y ≤ 0

f1(y) = kβ(1 + βy)−(k+1) 0 < y ≤ τ

f2(y) = αkβ(1 + βτ + αβ(y − τ))−(k+1) y > τ

(2.5) F (y) =



























0 y ≤ 0

F1(y) = 1− (1 + βy)−k 0 < y ≤ τ

F2(y) = 1− (1 + β(α(y − τ) + τ))−k y > τ

Let nu and na be number of items failed at normal and accelerated condition respec-

tively. The experimental values of the total lifetime Y are expressed by

y(1) ≤ ... ≤ y(nu) ≤ τ ≤ y(nu+1) ≤ ... ≤ y(m)

Also suppose that δ1i = I(Yi ≤ τ) and δ2i = I(τ < Yi ≤ y(m)).

Let Y = (Y1:m:n, Y2:m:n, ..., Ym:m:n) be a progressively Type-II right censored sample

from a life test of size m from a sample of size n, and R = (R1, R2, ..., Rm) be the

progressive censoring scheme where lifetimes have a Lomax distribution with pdf

as given by (2.1). Then, the likelihood function based on this progressively type-II
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censored sample is

(2.6) L(y;α, β, δ1i, δ2i | R = r) =

m
∏

i=1

[f1(yi)(R1(yi))
ri ]δ1i [f2(yi)(R2(yi))

ri ]δ2i

where R1(yi) = 1− F1(yi), R2(yi) = 1− F2(yi) and r = (r1, r2, ..., rm).

By substituting (2.4) into (2.6), for the progressive Type-II with determined num-

ber of removals R = r, the conditional likelihood and log-likelihood function are,

respectively,

(2.7) L(β, α | R = r) =

m
∏

i=1

[kβ(1 + βyi)
−(k+1)(1 + βyi)

−kri]δ1i [αkβA
−(k(1+ri)+1)
i ]δ2i

where Ai = 1 + β(τ + α(yi − τ)).

l(β, α | R = r) = m log k +m log β + na logα− (k + 1)

nu
∑

i=1

log(1 + βyi)

− k

nu
∑

i=1

ri log(1 + βyi)− (k + 1)

na
∑

i=1

logAi − k

na
∑

i=1

ri logAi(2.8)

Suppose that an individual unit is removed from the life test. As we know, it is

independent of the other units, but with the same probability p. Then, the number

of units removed at each failure time follows a binomial distribution such that

(2.9) P (R1 = r1) =

(

n−m

r1

)

pr1(1− p)n−m−r1 , r1 = 0, ..., n−m

and

P (Ri = ri | Ri−1 = ri−1, ..., R1 = r1) =

(

n−m−
∑i−1

k=1 rk

ri

)

. pri(1− p)n−m−

∑i
k=1

rk(2.10)

where ri = 0, ..., n−m−
∑i−1

k=1 rk, i = 2, 3, ..., m− 1.

Moreover, suppose that Ri is independent of Yi. Then, the joint likelihood function

Y = (Y1, Y2, ..., Ym) and R = (R1, R2, ..., Rm) can be expressed as
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(2.11) L(β, p; x, r) = L(β, x | R = r)P (R = r)

where

P (R = r) = P (Rm−1 = rm−1 | Rm−2 = rm−2, ..., R1 = r1)

... P (R2 = r2 | R1 = r1)P (R1 = r1)(2.12)

By substituting (2.9) and (2.10) into (2.12), we have

P (R = r) =
(n−m)!

∏m−1
i=1 ri!(n−m−

∑m−1
i=1 ri)!

. p
∑m−1

i=1
ri(1− p)(m−1)(n−m)−

∑m−1

i=1
(m−i)ri(2.13)

Also, by substituting (2.8) and (2.12) into (2.11), then the likelihood function can be

written as

(2.14) L(β, α, p; x, r) = CL1(β, α)L2(p)

where C = (n−m)!km
∏m−1

i=1
ri!(n−m−

∑m−1

i=1
ri)!

.

(2.15) L1(β, α) =

m
∏

i=1

[β(1 + βyi)
−(k+1)(1 + βyi)

−kri]δ1i [αβA
−(k(1+ri)+1)
i ]δ2i

(2.16) L2(p) = p
∑m−1

i=1
ri(1− p)(m−1)(n−m)−

∑m−1

i=1
(m−i)ri

In the following, the maximum likelihood estimates of the parameters β, p and α are

obtained based on progressively type-II censored sample with binomial removals.

The log-likelihood function of L1 is given by

l1(β, α) = m log β + na logα− (k + 1)
nu
∑

i=1

log(1 + βyi)

− k

nu
∑

i=1

ri log(1 + βyi)− (k + 1)

na
∑

i=1

logAi − k

na
∑

i=1

ri logAi(2.17)
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In fact, the MLE of α and β can be obtained from the following equations

∂l1(β, α)

∂α
=

na

α
− (k + 1)

na
∑

i=1

β(yi − τ)

Ai

− k

na
∑

i=1

ri(β(yi − τ))

Ai

= 0

∂l1(β, α)

∂β
=

m

β
− (k + 1)

nu
∑

i=1

yi

1 + βyi
− k

nu
∑

i=1

riyi

1 + βyi

− (k + 1)
na
∑

i=1

τ + α(yi − τ)

Ai

− k

na
∑

i=1

ri(τ + α(yi − τ))

Ai

= 0(2.18)

Regarding the formulas of the likelihood equations in (2.18), the numerical methods

are used to estimate the parameters. Here, we apply the EM algorithm to estimate

of parameters, for more details on the EM algorithm and its applications, the readers

are referred to a book by McLachlan an Krishnan [19]. Dempster et al. [20] introduced

the EM algorithm for incomplete data sets. Let Y be an incomplete observed data

and Z = (Z1, Z2, ..., Zm) with Zj = (zj1, zj2, ..., zjRj
), j = 1, ..., m, be the censored

data. We consider the censored data as the missing data. The combination of (Y, Z) =

X constitutes the complete data set. Log-likelihood function based on X can be

written as

lc(X;α, β) = n ln(kβ) + (n− nu −

nu
∑

i=1

Ri) lnα− (k + 1)

nu
∑

i=1

ln(1 + βyi)

− (k + 1)

nu
∑

i=1

Rnu
∑

j=1

ln(1 + βzij)− (k + 1)

na
∑

i=1

lnAi − (k + 1)

na
∑

i=1

Rna
∑

j=nu+1

ln ηij(2.19)

where ηij = 1 + β(τ + α(zij − τ)), and zij is the removed data.

Then, the MLE of β and α for complete sample of X can be achieved from the
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following equation

∂lc(X; β, α)

∂β
=

n

β
− (k + 1)

nu
∑

i=1

yj

(1 + βyj)
− (k + 1)

nu
∑

i=1

Rnu
∑

j=1

zij

(1 + βzij)

− (k + 1)

na
∑

i=1

τ + α(yj − τ)

Ai

− (k + 1)

na
∑

i=1

Rna
∑

j=nu+1

τ + α(zij − τ)

ηij

= 0(2.20)

∂lc(X; β, α)

∂α
=

n− nu −
∑nu

i=1 Ri

α
− (k + 1)

na
∑

i=1

β(yj − τ)

Ai

− (k + 1)

na
∑

i=1

Rna
∑

j=nu+1

β(zij − τ)

ηij

= 0(2.21)

There are two steps in the EM algorithm. In the E-step (expectation step), the ex-

pected value of the complete log-likelihood lc(X;α, β) has been obtained with respect

to the conditional distribution of Z given the observed data Yi = yi and the current

estimate of the parameter β(k−1) at the (k − 1)th iteration.

∂lc(X; β, α)

∂β
=

n

β
− (k + 1)

nu
∑

i=1

yj

(1 + βyj)
− (k + 1)

nu
∑

i=1

Rnu
∑

j=1

A1(α, β)

− (k + 1)

na
∑

i=1

β(yj − τ)

Ai

− (k + 1)

na
∑

i=1

Rna
∑

j=nu+1

A2(α, β) = 0(2.22)

∂lc(X; β, α)

∂α
=

n− nu −
∑nu

i=1 Ri

α
− (k + 1)

na
∑

i=1

β(yj − τ)

Ai

− (k + 1)

na
∑

i=1

Rna
∑

j=nu+1

A3(α, β) = 0(2.23)
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where

A1(α, β) = E(
zij

(1 + βzij)
| Zij > yi)

=
1 + kβyi(1 + βyi)

−1 − (1 + βyi)
k(1 + βτ)−k(1 + kβτ(1 + βτ)−1)

β(k + 1)

A2(α, β) = E(
τ + α(zij − τ)

1 + β(τ + α(zij − τ))
| Zij > yi)

=
k

(1 + β(τ + α(yi − τ)))−k

. [
(τ + α2 − τα)(1 + β(τ + α2 − τα))−(k+1)

k + 1
+

(1 + β(τ + α2 − τα))−k

k(k + 1)β
]

A3(α, β) = E(
β(zij − τ)

1 + β(τ + α(zij − τ))
| Zij > yi)

=
(1 + βτ)−k+1

α(k − 1)(1 + β(τ + α(yi − τ)))−k+1
(2.24)

In the M-step (maximization step), the EM algorithm will maximize A1(β, α) and

A2(β, α) with respect to β to give an update value β(k) until convergence with an

acceptable error occurs

∂lc(X, β)

∂β
=

n

β(k+1)
− (k + 1)

nu
∑

i=1

yi

1 + β(k+1)yj
− (k + 1)

nu
∑

i=1

RiA1(α
(k), β(k))

− (k + 1)
na
∑

i=1

τ + αk(yi − τ)

1 + β(k+1)(τ + α(k)(yi − τ))
− (k + 1)

na
∑

i=1

RiA2(α
(k), β(k))

= 0(2.25)

Once β(k+1) is obtained from equation (2.21), α(k+1) is achieved by solving the fol-

lowing equation.

∂lc(X, β)

∂α
=

n− nu −
∑nu

i=1 Ri

α(k+1)
− (k + 1)

na
∑

i=1

β(k+1)(yj − τ)

1 + β(k+1)((τ + α(k+1)(yj − τ))

− (k + 1)

na
∑

i=1

RiA3(α
(k), β(k)) = 0(2.26)



448 R. ZAMAN, P. NASIRI AND A. SHADROKH

On the other hand, L2(p) is only a function based on p, then (2.16) is used to

obtain MLE of p. The log-likelihood function of L2 is

(2.27) logL2(p) =

m−1
∑

i=1

ri log p+ ((m− 1)(n−m)−

m−1
∑

i=1

(m− i)ri) log(1− p)

Thus, the MLE of p can be found

(2.28) p̂ =

∑m−1
i=1 ri

(m− 1)(n−m)−
∑m−1

i=1 (m− i− 1)ri

2.1. Interval Estimation. In this section, the approximate confidence intervals for

the parameters (α, β) based on the asymptotic distributions of the MLE are de-

rived. The asymptotic distribution of the MLE (α̂, β̂) is ((α̂ − α), (β̂ − β)) →

N2(0, I
−1(α, β))[21], where I−1(α, β) is the variance-covariance matrix of the param-

eters (α, β) may be written as

I−1(α̂, β̂) =





−∂2 logL(α,β)
∂α2 −∂2 logL(α,β)

∂α∂beta

−∂2 logL(α,β)
∂β∂α

−∂2 logL(α,β)
∂β2





−1

(α,β)=(α̂,β̂)

=





V ar(α̂) cov(α̂, β̂)

cov(β̂, α̂) V ar(β̂)





where

∂2 logL(α, β)

∂α2
=

−na

α2

∂2 logL(α, β)

∂β2
=

−m

β2
+ (k + 1)

nu
∑

i=1

(1 +Ri)y
2
i

(1 + βyi)2
+

nu
∑

i=1

y2i
(1 + βyi)2

+ (k + 1)
na
∑

i=1

(1 +Ri)(τ + α(yi − τ))2

A2
i

+
na
∑

i=1

(τ + α(yi − τ))2

A2
i

∂2 logL(α, β)

∂α∂β
=

∂2 logL(α, β)

∂β∂α
= −k

na
∑

i=1

(1− Ri)(yi − τ)(Ai − β(τ + α(yi − τ)))

A2
i

−

na
∑

i=1

(yi − τ)(Ai − β(τ + α(yi − τ)))

A2
i

(2.29)
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The approximate 100(1 − γ)% confidence intervals of the parameters β and α are

derived, respectively,

α̂EM ± z γ

2

√

var(α̂)

β̂EM ± z γ

2

√

var(β̂)(2.30)

where z γ
2

is the upper γ

2
th percentile of the standard normal distribution.

3. Optimum test plans

In step-stress, the analysers try to estimate the mean life time as an important

characteristic in reliability theory, preciously. The optimum test plans are essential

in enhancing the quality of the statistical inference.

In this section, the optimal stress-change time τ ∗ is formed based on progressive

type-II censoring with binomial removals under different schemes. The optimal stress

change time, τ ∗ is chosen to minimize the generalized asymptotic variance (GAV) of

the ML estimators of the model parameters. This method as an optimality criterion

is often utilized and given below as the reciprocal of the determinant of the Fisher

information matrix F([22]).

(3.1) GAV (α̂, β̂) =
1

|F|
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Where

|F| =
(−na

α2
+ (k + 1)

na
∑

i=1

β2(yi − τ)2

A2
i

+ k

na
∑

i=1

Riβ
2(yi − τ)2

A2
i

)

×
(−m

β2
+ (k + 1)

nu
∑

i=1

(1 +Ri)y
2
i

(1 + βyi)2
+

nu
∑

i=1

y2i
(1 + βyi)2

+ (k + 1)

na
∑

i=1

(1 +Ri)(τ + α(yi − τ))2

A2
i

+

na
∑

i=1

(τ + α(yi − τ))2

A2
i

)

−
(

k

na
∑

i=1

(1− Ri)(yi − τ)(Ai − β(τ + α(yi − τ)))

A2
i

+

na
∑

i=1

(yi − τ)(Ai − β(τ + α(yi − τ)))

A2
i

)2

.

We have used a combination of golden section search and successive parabolic inter-

polation to minimize the generalized asymptotic variance.

4. Numerical examples

In this section, we present a Monte Carlo simulation study using R software

to clarify theoretical results discussed in the previous sections. We have consid-

ered different sample sizes; n = 20, 30, 50, 100, and different effective sample sizes;

m = 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 using progressively Type-II censoring under bi-

nomial removal scheme. With no loss of generality, k = 2.1, β = 0.1, α = 2.5, τ = 4.5

and p = 0.2, 0.5, 0.75 are taken. Using binomial removal technique, for a given n and

m different samples were generated. The MLEs estimates of the unknown parameters

were obtained by the methods proposed in section 2 and 3. A comparison between

the performance of estimates was done based on the root mean square error (RMSE)

of the estimates under 10000 replications. In addition, the 95% confidence intervals

(CIs) based on the same 10000 replications was computed. Table 1, table 2 and table

3 show the summarized results of simulation study. From the tables, it is concluded
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that with increasing sample size, the RMSE decreases, as well as the width of confi-

dence intervals. It is observed that at fixed sample size, RMSE is decreased by the

increasing of the failure units number.

The optimal test plans are obtained for different values of m, n and p. Table 4 shows

the numerical results of stress change time optimal (τ ∗) under different situations

and the optimal GAV of the MLEs of the model parameters. It indicates that the

stress change time optimal and the optimal GAV decrease with the increase of m,

for constant n and p. This result is also valid for increasing n. Another conclusion is

that the stress change time optimal and the optimal GAV increase with the increase

of p, for constant n and m.

To examine the proposed method in real-life data, we recall the example mentioned in

section 4 of Wang and Fei ([23]). This example is to achieve all the reliability indices of

an electronic device. They randomly selected 100 units of a batch of devices. The fail-

ure times are: 32, 54, 59, 86, 117, 123, 213,267, 268, 273, 299, 311, 321, 333,339, 386,

408, 422, 435, 437, 476, 518, 570, 632, 666, 697, 796, 854, 858, 910. The stress, temper-

ature variation, is applied to the remaining units at τ = 911 and the obtained failure

times are as follows: 926, 929, 931, 946, 947, 973, 980, 985, 993, 1005, 1010,1016, 1020,

1023, 1026, 1045, 1046, 1059, 1082, 1096. With the assumption of Lomax distribution

with k=2.5 and β = 0.001, the result of Kolmogorov-Smirnov test is D=0.24 with p-

value=0.1124. The proposed method with m = 50, p = 0.2 and progressive censoring

scheme R = c(14, 6, 9, 5, 4, 2, 4, 0, 0, 2, 0, 0, 1, 0, 1, 1, 0, 0, 1, 310) results in β̂ = 0.00086,

α̂ = 3.0359, τ ∗ = 743 and OptimalGAV = 0.00264 for the stated data-set. Also,

for m = 50, p = 0.5 and progressive censoring scheme R = c(21, 16, 9, 3, 1, 450), β̂ is

0.00089 and α̂ is 3.3128 and τ ∗ = 917, OptimalGAV = 0.00938.
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Table 1. Estimation of α and β, α = 2.5, β = 0.1, k = 2.1, p = 0.2,

τ = 4.5

n m α̂ RMSE(α̂) CI(α) β̂ RMSE(β̂) CI(β)

20 10 1.1029 0.3550 (0.0068,2.2014) 0.0635 0.0307 (0.0164,0.1107)

20 15 1.6875 0.3403 (0.6019,2.7731) 0.0710 0.0223 (0.0262,0.1157)

30 15 1.2823 0.3586 (0.4058,2.1589) 0.0815 0.0281 (0.0292,0.1338)

30 20 1.6911 0.3222 (0.3162,3.0658) 0.0806 0.0183 (0.0159,0.1452)

50 20 1.3316 0.2574 (0.4452,2.2211) 0.1059 0.0285 (0.0288,0.1830)

50 30 1.8590 0.2641 (0.9165,2.8015) 0.0969 0.0231 (0.0443,0.1495)

50 40 2.1541 0.2223 (1.0162,3.2920) 0.0822 0.0089 (0.0121,0.1522)

100 30 1.5533 0.2831 (0.7036,2.4030) 0.1538 0.0398 (0.0808,0.2269)

100 40 1.8915 0.3397 (0.9850,2.7980) 0.1387 0.0177 (0.0462,0.2313)

100 50 2.0879 0.2692 (1.1573,3.0185) 0.1218 0.0126 (0.0346,0.2090)

100 60 2.1936 0.1587 (1.2648,3.1224) 0.1068 0.0099 (0.0228,0.1908)

100 70 2.2463 0.1990 (1.4809,3.0117) 0.0943 0.0098 (0.0553,0.1333)

100 80 2.2710 0.1139 (1.5385,3.0035) 0.0842 0.0036 (0.0502,0.1182)

100 90 2.2808 0.1042 (1.6137,2.9479) 0.0757 0.0055 (0.0443,0.1072)
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Table 2. Estimation of α and β, α = 2.5, β = 0.1, k = 2.1, p = 0.5,

τ = 4.5

n m α̂ RMSE(α̂) CI(α) β̂ RMSE(β̂) CI(β)

20 10 1.8381 0.5184 (0.0167,3.6596) 0.1086 0.0388 (0.0004,0.2178)

20 15 2.1226 0.4564 (0.6493,3.5959) 0.0846 0.0135 (0.0098,0.1594)

30 15 2.0291 0.4503 (0.4016,3.6567) 0.1162 0.0224 (-0.0353,0.2678)

30 20 2.1591 0.3090 (0.6263,3.6916) 0.0946 0.0113 (0.0115,0.1777)

50 20 2.1078 0.2830 (0.3326,3.8716) 0.1402 0.0144 (-0.3301,0.6107)

50 30 2.1985 0.1926 (1.0235,3.3735) 0.1033 0.0086 (0.0227,0.1839)

50 40 2.2138 0.1507 (1.2129,3.2147) 0.0811 0.0054 (0.0363,0.1260)

100 40 2.2104 0.2117 (0.5996,3.8212) 0.1390 0.0074 (-0.0810,0.3591)

100 50 2.2133 0.1978 (1.1162,3.3104) 0.1176 0.0066 (0.0087,0.2264)

100 60 2.2120 0.1447 (1.3697,3.3411) 0.1018 0.0059 (0.0400,0.1637)

100 70 2.2117 0.1266 (1.4536,3.1697) 0.0899 0.0058 (0.0252,0.1446)

100 80 2.2149 0.1064 (1.5304,2.8993) 0.0806 0.0039 (0.0499,0.1112)

100 90 2.2107 0.1032 (1.5530,2.8618) 0.0729 0.0026 (0.0463,0.1061)
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Table 3. Estimation of α and β, α = 2.5, β = 0.1, k = 2.1, p = 0.75,

τ = 4.5

n m α̂ RMSE(α̂) CI(α) β̂ RMSE(β̂) CI(β)

20 10 1.0168 0.1276 (0.3533,3.7293) 0.0790 0.0142 (0.0281,0.2002)

20 15 1.0230 0.1219 (0.4178,3.4288) 0.0557 0.0092 (0.0212,0.1365)

30 15 1.0210 0.1230 (0.4123,3.3961) 0.0559 0.0090 (0.0215,0.1338)

30 20 1.0329 0.0952 (0.3878,2.5434) 0.0629 0.0072 (0.0244,0.1513)

50 20 1.0325 0.0975 (0.3351,3.8107) 0.0967 0.0112 (0.0339,0.3406)

50 30 1.0366 0.0702 (0.3594,2.8165) 0.0691 0.0049 (0.0261,0.1793)

50 40 1.0395 0.0599 (0.4301,2.6350) 0.0535 0.0032 (0.0218,0.1228)

100 40 1.0393 0.0598 (0.2341,3.4358) 0.0961 0.0051 (0.0367,0.2603)

100 50 1.0378 0.0534 (0.3477,3.1659) 0.0799 0.0031 (0.0300,0.2176)

100 60 1.0380 0.0490 (0.3541,2.5891) 0.0685 0.0031 (0.0254,0.1577)

100 70 1.0371 0.0449 (0.3842,2.5787) 0.0598 0.0026 (0.0229,0.1329)

100 80 1.0378 0.0418 (0.4366,2.5715) 0.0531 0.0022 (0.0223,0.1100)

100 90 1.0372 0.0393 (0.4940,2.5618) 0.0497 0.0019 (0.0222,0.1009)
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Table 4. Average values of optimal τ and optimal GAV ; with differ-

ent p

n m p = 0.2 p = 0.5 p = 0.75

τ ∗ OptimalGAV τ ∗ OptimalGAV τ ∗ OptimalGAV

20 10 8.7918 0.01424 10.4346 0.04187 11.0129 0.0586

20 15 4.9012 0.01116 7.2920 0.02216 9.9916 0.0262

30 15 6.1494 0.01025 7.3329 0.03008 9.9999 0.03931

30 20 4.8822 0.01003 6.6085 0.02699 7.8340 0.03124

50 20 8.8543 0.01076 8.9067 0.03072 10.0597 0.04057

50 30 5.9604 0.01021 7.0395 0.02016 9.4612 0.02630

50 40 3.0412 0.01003 3.5451 0.01411 4.1320 0.01843

100 30 6.0878 0.01548 10.5484 0.02883 12.6231 0.03980

100 40 5.2721 0.01298 8.6823 0.02558 12.0025 0.03656

100 50 4.1312 0.00991 7.4992 0.01216 11.1462 0.03105

100 60 2.9586 0.00658 6.9229 0.01173 9.8433 0.02984

100 70 2.8346 0.00630 4.9228 0.01158 6.0249 0.02922

100 80 2.3779 0.00353 4.2004 0.01013 5.5026 0.02750

100 90 2.0506 0.00134 3.3247 0.00394 4.7351 0.00531

5. Conclusions

In step-stress partially accelerated life test, the units are run at both normal and

accelerated conditions. In progressive type-II censoring, first, the test units are run

at normal use condition and if they do not fail for a determined time τ , then they

are run at accelerated condition unit number of failures (m) is reached. During the
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experiment with the occurrence of each failure, numbers of test units are removed

randomly. In this article, MLEs of the model parameters of the Lomax distribution

for step-stress partially accelerated life test were studied under progressive type-II

censored data with binomial removals. The expectation maximization (EM) algo-

rithm was used in estimating the scale parameter and acceleration factor because the

normal equations were non-linear. In addition, the asymptotic confidence intervals

of them are obtained. From the simulation results, it is clear that the performance

of the MLE is good in terms of the RMSE and CI.

The optimum test plans were developed under the presumption of Lomax lifetimes

of test units and progressive type-II censoring with binomial removals. The mini-

mization of the GAV of the MLE of model parameters was selected as an optimality

criterion. Finally, the decrease of the stress change time optimal with the increase of

n and m
n
is confirmed.
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