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A NEW ITERATIVE NATURAL TRANSFORM METHOD FOR

SOLVING NONLINEAR CAPUTO TIME-FRACTIONAL PARTIAL

DIFFERENTIAL EQUATIONS

ALI KHALOUTA (1) AND ABDELOUAHAB KADEM (2)

Abstract. The main purpose of this paper is to present the solutions of a class of

nonlinear Caputo time-fractional partial differential equations, in particular nonlin-

ear Caputo time-fractional wave-like equations with variable coefficients in terms

of Mittag-Leffler functions by using new technique called, new iterative natural

transform method (NINTM). This method introduced an efficient tool for solving

these class of equations. Numerical examples are presented to illustrate the effi-

ciency and accuracy of the proposed method. The results obtained show that the

method described by NINTM is a very simple and easy method compared to the

other methods and gives the approximate solution in the form of infinite series, this

series in closed form gives the corresponding exact solution of the given problem.

1. Introduction

In recent years, there is a rapid development in the concept of fractional calcu-

lus and its applications [1],[3],[15],[16]. The fractional calculus which deals with

derivatives and integrals of arbitrary orders [11],[17] plays a vital role in many field

of applied science and engineering. Recently, nonlinear partial differential equations

with fractional order derivative are successfully applied to many mathematical models
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in mathematical biology, aerodynamics, rheology, diffusion, electrostatics, electrody-

namics, control theory, fluid mechanic, analytical chemistry and so on.

In all these scientific fields, it is important to obtain exact or approximate solutions

of nonlinear fractional partial differential equations (NFPDEs). But in general, there

exists no method that gives an exact solution for NFPDEs anmost of the obtained

solution are only approximations.

Various analytical and numerical methods have been proposed to solve NFPDEs.

The most commonly used ones are: Adomian decomposition method (ADM) [20]

fractional variational iteration method (FVIM) [22], fractional difference method

(FDM) [17], generalized differential transform method (GDTM) [13], homotopy anal-

ysis method (HAM) [5], homotopy perturbation method (HPM) [7].

Recently, a new option has appeared, includes the combination of Laplace trans-

form, Sumudu transform or natural transform with the previously mentioned methods

to facilitate and improve the resolution speed of nonlinear fractional partial differ-

ential equations. Among wich are: Laplace homotopy analysis method [25], Laplace

decomposition method [8], Laplace variational iteration method [23], homotopy per-

turbation Sumudu transform method [24], homotopy analysis Sumudu transform

method [12], variational iteration Sumudu transform method [2], natural transform

homotopy perturbation method [14], natural decomposition method [18], homotopy

analysis natural transform method [19].

In this paper we will suggest a new technique to the search for solutions of nonlinear

Caputo time-fractional wave-like equation with variable coefficients. This technique is

a combination of two powerful methods, natural transform method and new iterative

method, called new iterative natural transform method (NINTM).
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Consider the following nonlinear Caputo time-fractional wave-like equations

Dα
t v =

n
∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xk
i ∂x

m
j

F2ij(vxi
, vxj

)(1.1)

+

n
∑

i=1

G1i(X, t, v)
∂p

∂xp
i

G2i(vxi
) +H(X, t, v) + S(X, t),

with the initial conditions

(1.2) v(X, 0) = a0(X), vt(X, 0) = a1(X),

where Dα
t is the Caputo time-fractional derivative operator of order α, 1 < α ≤ 2, v =

v(X, t) is an unknown function where X = (x1, x2, ..., xn) ∈ Rn and t > 0, F1ij , G1i

i, j ∈ {1, 2, ..., n} are nonlinear functions of X, t and v, F2ij , G2i i, j ∈ {1, 2, ..., n} ,

are nonlinear functions of derivatives of v with respect to xi and xj i, j ∈ {1, 2, ..., n},

respectively. Also H,S are nonlinear functions and k,m, p are integers.

In the classical case, these types of equations are of considerable significance in

various fields of applied sciences, mathematical physics, nonlinear hydrodynamics,

engineering physics, biophysics, human movement sciences, astrophysics and plasma

physics. These equations describe the evolution of erratic motions of small parti-

cles that are immersed in fluids, fluctuations of the intensity of laser light, velocity

distributions of fluid particles in turbulent flows [21].

The paper is structured as follows. In Section 2, we present necessary definitions

and preliminary results about fractional calculus and natural transform. In Section

3, we present our results to solve the nonlinear Caputo time-fractional wave-like

equations (1.1) with the initial conditions (1.2) by the new iterative natural transform

method (NINTM). In section 4, we present three numerical examples to show the

efficiency and accuracy of this method, and we present our obtained results (Graphs

and Table), comparing them with their exact associated forms. These results were
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verified with Matlab (version R2016a). Finally, conclusions are drawn in the last

section.

2. Definitions and Preliminaries

In this section, we present necessary definitions and preliminary results about frac-

tional calculus and natural transform, which are used further in this paper.

Definition 2.1. [11] A real function f(t), t > 0, is considered to be in the space

Cµ ([0,∞[) , µ ∈ R if there exists a real number p > µ, so that f(t) = tph(t), where

h ∈ C ([0,∞[), and it is said to be in the space Cn
µ if f (n) ∈ Cµ ([0,∞[) , n ∈ N.

Definition 2.2. [11] The left sided Riemann-Liouville fractional integral operator of

order α ≥ 0 of a function f ∈ Cµ, µ ≥ −1 is defined as

(2.1) Iαf(t) =











1

Γ(α)

t
∫

0

(t− ξ)α−1 f(ξ)dξ, α > 0, t > 0,

f(t), α = 0,

where Γ(.) is the well-known Gamma function.

Definition 2.3. [11] The left sided Caputo fractional derivative of f(t) is defined as

(2.2) Dαf(t) =
1

Γ(n− α)

t
∫

0

(t− ξ)n−α−1f (n)(ξ)dξ, t > 0,

where n− 1 < α ≤ n, n ∈ N, f ∈ Cn
−1.

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we

have the following relation

(2.3) IαDαf(t) = f(t)−
n−1
∑

k=0

f (k)(0+)
tk

k!
, t > 0.
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Remark 1. In this paper, we consider the time-fractional derivative in the Caputo’s

sense. When α ∈ R+, the Caputo time-fractional derivative is defined as

(2.4) Dα
t v(x, t) =











1
Γ(n−α)

t
∫

0

(t− τ)n−α−1 ∂nv(x,τ)
∂τn

dτ, n− 1 < α < n,

∂nv(x,t)
∂tn

, α = n,

where n ∈ N∗.

Definition 2.4. [17] The Mittag-Leffler function is defined as follows

(2.5) Eα (z) =

∞
∑

n=0

zn

Γ(nα + 1)
, α ∈ C, Re(α) > 0.

A further generalization of (2.5) is given in the form

(2.6) Eα,β (z) =
∞
∑

n=0

zn

Γ(nα + β)
, α, β ∈ C, Re(α) > 0, Re(β) > 0.

For α = 1, Eα (z) reduces to ez.

Definition 2.5. [4] The natural transform is defined over the set of functions is

defined over the set of functions

A =

{

f(t)/∃M, τ1, τ2 > 0, |f(t)| < Me
|t|
τj , if t ∈ (−1)j × [0,∞) , j = 1, 2, ...

}

,

by the following integral

(2.7) N+ [f(t)] = R+(s, u) =
1

u

∫ +∞

0

e−
st
u f(t)dt, s, u ∈ (0,∞).

Theorem 2.1. [9],[10] Let n ∈ N∗ and α > 0 be such that n−1 < α ≤ n and R+(s, u)

be the natural transform of the function f(t), then the natural transform denoted by

R+
α (s, u) of the Caputo fractional derivative of the function f(t) of order α, is given

by

(2.8) N+ [Dαf(t)] = R+
α (s, u) =

sα

uα
R+(s, u)−

n−1
∑

k=0

sα−(k+1)

uα−k

[

Dkf(t)
]

t=0
.
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3. NINTM for solving nonlinear Caputo time-fractional wave-like

equations

Theorem 3.1. Consider the following nonlinear Caputo time-fractional wave-like

equations (1.1) with the initial conditions (1.2).

Then, by NINTM the solution of Eqs. (1.1) and (1.2) is given in the form of

infinite series which converges rapidly to the exact solution as follows

v(X, t) =
∞
∑

i=0

vi(X, t).

Proof. We consider the following nonlinear Caputo time-fractional wave-like equa-

tions (1.1) with the initial conditions (1.2).

First, we apply the natural transform on both sides of (1.1) subject to the initial

conditions (1.2) and using the theorem 2.1, we get

N+ [v(X, t)] =
uα

sα

n−1
∑

k=0

sα−(k+1)

uα−k

[

Dkv(X, t)
]

t=0
+

uα

sα
N+ [S(X, t)]

+
uα

sα
N+

[

n
∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xk
i ∂x

m
j

F2ij(vxi
, vxj

)(3.1)

+
n
∑

i=1

G1i(X, t, v)
∂p

∂xp
i

G2i(vxi
) +H(X, t, v)

]

.

After that, let us take the inverse natural transform on both sides of (3.1), we have

v(X, t) = N−1

(

1

s
v(X, 0) +

u

s2
vt(X, 0) +

uα

sα
N+ [S(X, t)]

)

+N−1

(

uα

sα
N+

[

n
∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xk
i ∂x

m
j

F2ij(vxi
, vxj

)(3.2)

+

n
∑

i=1

G1i(X, t, v)
∂p

∂xp
i

G2i(vxi
) +H(X, t, v)

])

.

Next assume that
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g(X, t) = N−1

(

1

s
v(X, 0) +

u

s2
vt(X, 0) +

uα

sα
N+ [S(X, t)]

)

,

N(v(X, t)) = N−1

(

uα

sα
N+

[

n
∑

i,j=1

F1ij(X, t, v)
∂k+m

∂xk
i ∂x

m
j

F2ij(vxi
, vxj

)

+

n
∑

i=1

G1i(X, t, v)
∂p

∂xp
i

G2i(vxi
) +H(X, t, v)

])

.

We can obtain

(3.3) v(X, t) = g(X, t) +N(v(X, t)).

The solution of Eq. (3.3) can be written in the series form

(3.4) v(X, t) =
∞
∑

i=0

vi(X, t).

The nonlinear operator N can be decomposed as follows (see [6])

(3.5) N

(

∞
∑

i=0

vi

)

= N (v0) +

∞
∑

i=1

{

N

(

i
∑

j=0

vj

)

−N

(

i−1
∑

j=0

vj

)}

.

From Eqs. (3.4) and (3.5), Eq. (3.3) can be represented as the following form

(3.6)
∞
∑

i=0

vi = g +N (v0) +
∞
∑

i=1

{

N

(

i
∑

j=0

vj

)

−N

(

i−1
∑

j=0

vj

)}

.

We define the recurrence relation

v0 = g,

v1 = N (v0) ,(3.7)

vn+1 = N

(

n
∑

j=0

vj

)

−N

(

n−1
∑

j=0

vj

)

, n ∈ N.

Then

v1 + v2 + ...+ vn+1 = N (v0 + v1 + ... + vn) , n ∈ N.
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and

(3.8) v =
∞
∑

i=0

vi = g +N

(

∞
∑

i=0

vi

)

.

The n-term approximate solution of (3.3) is given by

(3.9) v =
n−1
∑

i=0

vi = v0 + v1 + ...+ vn−1.

4. Numerical examples and results

In this section, we apply the NINTM on three examples of nonlinear wave-like

equations with Caputo time-fractional derivative and then compare our approximate

solutions with the exact solutions.

We define En to be the absolute error between the exact solution v and the n-term

approximate solution vn, where n = 0, 1, 2, 3, ..., as follows

En(X, t) = |v(X, t)− vn(X, t)| .

Example 4.1. Consider the 2-dimensional nonlinear Caputo time-fractional wave-

like equation with variable coefficients

(4.1) Dα
t v =

∂2

∂x∂y
(vxxvyy)−

∂2

∂x∂y
(xyvxvy)− v,

with the initial conditions

(4.2) v(x, y, 0) = exy, vt(x, y, 0) = exy,

where Dα
t is the Caputo time-fractional derivative operator of order α, 1 < α ≤ 2

and v is a function of (x, y, t) ∈ R2 × R+.

By applying the steps involved in NINTM as presented in Section 3 to Eqs. (4.1)

and (4.2), we have
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g(x, y, t) = exy + texy,

N(v(x, y, t)) = N−1

(

uα

sα
N+

[

∂2

∂x∂y
(vxxvyy)−

∂2

∂x∂y
(xyvxvy)− v

])

,

and

v0(x, y, t) = (1 + t) exy,

v1(x, y, t) = −

(

tα

Γ(α + 1)
+

tα+1

Γ(α + 2)

)

exy,

v2(x, y, t) =

(

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α+ 2)

)

exy,

v3(x, y, t) = −

(

t3α

Γ(3α + 1)
+

t3α+1

Γ(3α+ 2)

)

exy,

...

Therefore, the solution of Eqs. (4.1) and (4.2) is given as follows

v(x, y, t) =

(

1 + t−
tα

Γ(α + 1)
−

tα+1

Γ(α + 2)
+

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α + 2)
− ...

)

exy

= (Eα(−tα) + tEα,2(−tα)) exy,(4.3)

where Eα(−tα) and Eα,2(−tα) are the Mittag-Leffler functions defined by Eqs. (2.5)

and (2.6).

Taking α = 2 in Eq. (4.3), we obtained the following result

v(x, y, t) =

(

1 + t−
t2

2!
−

t3

3!
+

t4

4!
+

t5

5!
+ ...

)

exy

= (cos t+ sin t) exy,

which is the same result as those obtained by the FNDM [9], and NVIM [10] for the

same test problem.
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Figure 1. The surface graph of the 3−term approximate solution by

NINTM and the exact solution for different values of α for Example 4.1

when y = 0.5.
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Figure 2. The behavior of the exact solution and the 3−term approximate

solution by NINTM of v for different values of α for Example 4.1 when

x = y = 0.5.

Table 1. Comparison of the absolute errors for the exact solution

and 3−term approximate solution obtained by NINTM for Example

4.1, when α = 2.

t/x, y 0.1 0.3 0.5 0.7

0.1 1.4226× 10−9 1.5411× 10−9 1.8085× 10−9 2.2991× 10−9

0.3 1.0648× 10−6 1.1535× 10−6 1.3536× 10−6 1.7208× 10−6

0.5 2.3382× 10−5 2.5330× 10−5 2.9725× 10−5 3.7787× 10−5

0.7 1.8000× 10−4 1.9499× 10−4 2.2882× 10−4 2.9089× 10−4

0.9 8.2963× 10−4 8.9872× 10−4 1.0547× 10−3 1.3407× 10−3
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Example 4.2. Consider the following nonlinear Caputo time-fractional wave-like

equation with variable coefficients

(4.4) Dα
t v = v2

∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v,

with the initial conditions

(4.5) v(x, 0) = ex, vt(x, 0) = ex,

where Dα
t is the Caputo time-fractional derivative operator of order α, 1 < α ≤ 2,

and v is a function of (x, t) ∈ ]0, 1[× R+.

By applying the steps involved in NINTM as presented in Section 3 to Eqs. (4.4)

and (4.5), we have

g(x, t) = ex + tex,

N(v(x, t)) = N−1

(

uα

sα
N+

[

v2
∂2

∂x2
(vxvxxvxxx) + v2x

∂2

∂x2
(v3xx)− 18v5 + v

])

,

and

v0(x, t) = (1 + t) ex,

v1(x, t) =

(

tα

Γ(α+ 1)
+

tα+1

Γ(α + 2)

)

ex,

v2(x, t) =

(

t2α

Γ(2α+ 1)
+

t2α+1

Γ(2α+ 2)

)

ex,

...

Therefore, the solution of Eqs. (4.4) and (4.5) is given as follows

v(x, t) =

(

1 + t+
tα

Γ(α + 1)
+

tα+1

Γ(α + 2)
+

t2α

Γ(2α + 1)
+

t2α+1

Γ(2α+ 2)
+ ...

)

ex

= (Eα(t
α) + tEα,2(t

α)) ex,(4.6)

where Eα(t
α) and Eα,2(t

α) are the Mittag-Leffler functions, defined by Eqs. (2.5) and

(2.6).
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Taking α = 2 in Eq. (4.6), we obtained the following result

v(x, t) =

(

1 + t+
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ...

)

ex = ex+t,

which is the same result as those obtained by the FNDM [9], and NVIM [10] for the

same test problem.
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Figure 3. The surface graph of the 3−term approximate solution by

NINTM and the exact solution for different values of α for Example 4.2.
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Figure 4. The behavior of the exact solution and the 3−term approximate

solution by NINTM of v for different values of α for Example 4.2 when

x = 0.5.
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Table 2. Comparison of the absolute errors for the exact solution

and 3−term approximate solution obtained by NINTM for Example

4.2, when α = 2.

t/x 0.1 0.3 0.5 0.7

0.1 1.5572× 10−9 1.9019× 10−9 2.3230× 10−9 2.8373× 10−9

0.3 1.1688× 10−6 1.4276× 10−6 1.7436× 10−6 2.1297× 10−6

0.5 2.5810× 10−5 3.1525× 10−5 3.8504× 10−5 4.7029× 10−5

0.7 2.0036× 10−4 2.4472× 10−4 2.9890× 10−4 3.6507× 10−4

0.9 9.3372× 10−4 1.1404× 10−3 1.3929× 10−3 1.7013× 10−3

Example 4.3. Consider the following one dimensional nonlinear Caputo time-fractional

wave-like equation with variable coefficients

(4.7) Dα
t v = x2 ∂

∂x
(vxvxx)− x2(vxx)

2 − v,

with the initial conditions

(4.8) v(x, 0) = 0, vt(x, 0) = x2,

where Dα
t is the Caputo time-fractional derivative operator of order α, 1 < α ≤ 2,

and v is a function of (x, t) ∈ ]0, 1[× R+.

By applying the steps involved in NINTM as presented in Section 3 to Eqs. (4.7)

and (4.8), we have

g(x, t) = tx2,

N(v(x, t)) = N−1

(

uα

sα
N+

[

x2 ∂

∂x
(vxvxx)− x2(vxx)

2 − v

])

,
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and

v0(x, t) = tx2,

v1(x, t) = −
tα+1

Γ(α + 2)
x2,

v2(x, t) =
t2α+1

Γ(2α+ 2)
x2,

v3(x, t) = −
t3α+1

Γ(3α + 2)
x2,

...

Therefore, the solution of Eqs. (4.7) and (4.8) is given as follows

v(x, t) =

(

t−
tα+1

Γ(α + 2)
+

t2α+1

Γ(2α+ 2)
−

t3α+1

Γ(3α+ 2)
+ ...

)

x2(4.9)

= x2 (tEα,2(−tα)) ,

where Eα,2(−tα) is the Mittag-Leffler function, defined by Eq. (2.6).

Taking α = 2 in Eq. (4.9) we obtained the following result

v(x, t) = x2

(

t−
t3

3!
+

t5

5!
−

t7

7!
+ ...

)

= x2 sin t,

which is the same result as those obtained by the FNDM [9], and NVIM [10] for the

same test problem.
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Figure 5. The surface graph of the 3−term approximate solution by

NINTM and the exact solution for different values of α for Example 4.3.
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Figure 6. The behavior of the exact solution and the 3−term approximate

solution by NINTM of v for different values of α for Example 4.3 when

x = 0.5.

Table 3. Comparison of the absolute errors for the exact solution

and 3−term approximate solution obtained by NINTM for Example

4.3, when α = 2.

t/x 0.1 0.3 0.5 0.7

0.1 1.9839× 10−13 1.7855× 10−12 4.9596× 10−12 9.7209× 10−12

0.3 4.3339× 10−10 3.9005× 10−9 1.0835× 10−8 2.1236× 10−8

0.5 1.5447× 10−8 1.3903× 10−7 3.8618× 10−7 7.5692× 10−7

0.7 1.6229× 10−7 1.4606× 10−6 4.0574× 10−6 7.9524× 10−6

0.9 9.3840× 10−7 8.4456× 10−6 2.3460× 10−5 4.5982× 10−5

Remark 2. The numerical results, affirm that when α approaches 2, our results ob-

tained by NINTM approach the exact solutions.

Remark 3. In this paper, we only apply three terms to approximate the solutions, if

we apply more terms of the approximate solutions, the accuracy of the approximate

solutions will be greatly improved.
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In general, the results obtained show that the method described by NINTM is a

very simple and easy method compared to the other methods and gives the approxi-

mate solution in the form of series, this series in closed form gives the corresponding

exact solution of the given problem.

5. Conclution

In this paper, a new technique is presented for solving a class of nonlinear Catputo

time- fractional partial differential equations, in particular nonlinear Caputo time-

fractional wave-like equations with variable coefficients. This technique is a combina-

tion of two powerful methods, natural transform method and new iterative method,

called new iterative natural transform method (NINTM). The proposed method pro-

vides the solution in a series form that converges rapidly to the exact solution if it

exists. The obtained solutions are compared to the exact solutions and show the

high accuracy of the proposed method. The results show that the NINTM is an

appropriate and efficient method for solving nonlinear fractional partial differential

equation.
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