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ON THE HOSOYA POLYNOMIAL AND WIENER INDEX OF
JUMP GRAPH

KEERTHI G. MIRAJKAR (1) AND POOJA B. (2)

Abstract. In this paper, we obtain the expressions for Wiener index and Hosoya

polynomial of a graph with diameter ≤ 3. Further, we obtain Wiener index and

Hosoya polynomial of jump graph of certain graph families. In addition, we give

bounds for Wiener index of jump graph.

1. Introduction

All graphs considered in this paper are connected, finite, undirected with no loops

and multiple edges. Let G be a graph with vertex set V = V (G) = {v1, v2, ..., vn} and

an edge set E = E(G) = {e1, e2, ..., em}. Thus, |V | = n and |E| = m. As usual n is

said to be the order and m the size of G. The distance dG(vi, vj) (or simply d(vi, vj))

between two vertices vi and vj is the length of the shortest path between the vertices

vi and vj in G. The shortest vi − vj path is often called geodesic. The diameter of a

connected graph G, denoted by diam(G), is the length of any longest geodesic. The

degree dG(vi) of a vertex vi in G is the number of edges incident to vi. The degree

dG(e) of an edge e = uv of G in L(G) is given by dG(e) = dG(u) + dG(v) − 2. The

eccentricity e(v) of a vertex v in G is defined to be e(v) = max{d(u, v)|u ∈ V }. A

unicyclic graph [15] is a connected graph and have just one cycle.
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In practice, G corresponds to what is known as the molecular graph of an organic

compound. The molecular graph is a graph where vertices corresponds to atoms and

edges corresponds to bonds. The Wiener index is a graph invariant that belongs to

the molecular structure-descriptors called topological indices, which are used for the

design of molecules with desired properties. In 1947, Harold Wiener [21] used the

following formula to calculate the boiling point tB of alkanes:

tB = aW (G) + bWp(G) + c.

In this formula a, b, c are constants for a given isomeric group and Wp(G), the Wiener

polarity index of G [5, 10] which is defined as follows:

Wp(G) = |{(u, v) : dG(u, v) = 3;u, v ∈ V }|.

The Wiener index (or Wiener number) [21] W (G) of a graph G is the sum of distances

between all (unordered) pairs of vertices of G, i.e.,

W (G) =
∑
i<j

dG(vi, vj).

The Wiener index W (G) of the graph G is also defined by

W (G) = 1
2

∑
vi,vjεV (G)

dG(vi, vj),

where the summation is over all possible pairs vi, vj ∈ V (G). For complete review on

Wiener index, refer [6, 14]. The distance number of a vertex u of a graph G denoted

by d(u | G) and is defined as [13]

d(u | G) =
∑

v∈V (G)

dG(u, v).

Then

W (G) = 1
2

∑
u∈V (G)

d(u | G).

The Wiener polynomial was initially defined by Haruo Hosoya [16] and termed in

honour of Harold Wiener who coined the Wiener index. The Hosoya polynomial [18]
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of a connected graph G is denoted by W (G; q) and is defined by

W (G; q) =
∑
i<j

qdG(vi,vj),

where q is a parameter.The relation between Hosoya polynomial and Wiener index is

(1.1) W (G) =
d

dq
(W (G; q))

∣∣∣
q=1.

Hence, we can derive the expression for the Wiener index of G from that of the

Hosoya polynomial of G.

Let G = (V (G), E(G)) be a graph. The complement G of G is the graph with

the same vertex set as G, in which two vertices are adjacent if and only if they are

not adjacent in G. The line graph [15] L(G) of G is the graph whose vertex set

V (L(G)) = E(G) in which two vertices are adjacent if and only if they correspond to

adjacent edges in G. If G is a (n,m) graph whose vertices have degrees dG(vi), then

the line graph L(G) has nL = m vertices and mL = −m + 1
2

n∑
i=1

d2G(vi) edges.

Chartrand [2] introduced the concept of jump graph J(G) of a graph and deter-

mined all the graphs G for which sequence {Jk(G)} of iterated jump graphs converges,

diverges or terminates. Jump graph J(G) of a graph G is a graph whose vertices are

the edges of G and two vertices of J(G) are adjacent if and only if they are nonad-

jacent edges of G. Evidently, the jump graph J(G) of G is complement of the line

graph L(G) of G. If G is a (n,m) graph whose vertices have degrees dG(vi), then the

jump graph J(G) has nJ = m vertices and mJ = m(m+1)
2
− 1

2

n∑
i=1

d2G(vi) edges.

In [22], B. Wu and X. Guo characterized the connected jump graphs with diameter

r for which 1 ≤ r ≤ 4. Moreover, they determined all the self-complementary jump

graphs. In [23], B. Wu and J. Meng characterized the hamiltonian jump graphs. Let

G be a graph of size m ≥ 1. Then, J(G) is connected [2] if and only if G contains no

edge that is adjacent to every other edge of G, unless G = K4 or C4.
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Figure 1. self-explanatory examples of a graph G, its line graph L(G)

and jump graph J(G).

In chemical literature, there have been a few earlier attempts to shift from ordi-

nary molecular graph to their transformations. The line graph is used in [7, 8, 9].

Attempts to use graph complements were recently reported in [19]. In the present

work, we obtain the expressions for Wiener index and Hosoya polynomial of graphs

with diameter ≤ 3. Further, we obtain Wiener index and Hosoya polynomial of jump

graph of certain graph families. In addition, we give bounds for Wiener index of jump

graph. The star Sn is a complete bipartite graph K1,n−1 and the vertex of degree n−1

in Sn is called the central vertex of Sn. The graph G obtained from Sp and Sq by

joining their central vertices by an edge is called a double star [1] and is denoted by

Sp,q.

The first Zagreb index [12] is defined as

M1(G) =
∑
vi∈V

d2G(vi) =
n∑
i=1

d2G(vi),

is one among the widely studied degree-based indices, which was introduced by Gut-

man et al. in 1972. For graph-theoretical terminology and notation we follow [13, 15].

The following Theorems are useful for proving our main results.

Theorem 1.1. [18] The Wiener polynomial satisfies the following conditions:

(i): deg(W (G; q)) equals the diameter of G.
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(ii): [qo]W (G; q) =0.

(iii): [q1]W (G; q) = |E(G)|, where E(G) is an edge set of G.

(iv): W (G; 1) =
(|V (G)|

2

)
, where V (G) is the vertex set of G.

(v): W ′(G; 1) = W (G).

In Wiener polynomial W (G; q), the coefficients of q0 is always zero and the coeffi-

cients of q1 is equal to the number of edges of graph G. Wiener polynomial at q = 1

gives
(|V (G)|

2

)
and differentiating the Wiener polynomial at q = 1 gives the Wiener

index of graph G.

Theorem 1.2. [20] If G is a (n,m) graph with diam(G) 6 2, then

W (G) = n(n− 1)−m.

Theorem 1.3. [4] If G is a simple graph with n vertices and m edges, then

2m(2p + 1)− pn(1 + p) ≤
n∑
i=1

d2G(vi), where p = b2m
n
c,

and equality holds if and only if the difference of the degrees of any two vertices of

graph G is at most one. Here bxc denotes the greatest positive integer less than or

equal to x.

Theorem 1.4. [3] If G is a simple graph with n vertices and m edges, then
n∑
i=1

d2G(vi) ≤ m[ 2m
n−1 + n− 2].

Theorem 1.5. [4] Let G be a connected graph with n vertices and m edges. Then
n∑
i=1

d2G(vi) = m[ 2m
n−1 + n− 2]

if and only if G is a star graph or a complete graph.

Theorem 1.6. [17] If G is a connected graph with vertex set V = {v1, v2, ..., vn} and

edge set E = {e1, e2, ..., em}, then

W (L(G)) ≥
n∑
i=1

dG(vi)(dG(vi)−1)
2

+ m(m− 1)−
m∑
i=1

dG(ei).

Theorem 1.7. [11] For any nontrivial tree Tn of order n, M1(Pn) ≤M1(Tn).
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2. Results on the Wiener index of jump graph of a graph

In literature, till today we have direct expression to calculate Wiener index of the

graphs whose diameter ≤ 2. But there is no analogous expression for graphs with

diameter ≥ 3. We now establish an expression to find Wiener index of graphs with

diameter ≤ 3. We use this theorem to find the Wiener index of jump graphs.

Theorem 2.1. For any graph G of order n, size m with diam(G) ≤ 3,

W (G) = n(n− 1)−m + Wp(G).

Proof. Suppose G is a graph of order n and size m with diam(G) ≤ 3. Define the

sets A = {vi ∈ V : e(vi) = 2} and B = {vi ∈ V : e(vi) = 3}, where |A| + |B| = n.

If vi ∈ A, then define two sets A1 and A2 as A1 = {v ∈ V : dG(vi, v) = 1} and

A2 = {v ∈ V : dG(vi, v) = 2}. Obviously |A1|+ |A2| = n− 1. Then

d(vi | G) = |A1|+ 2|A2|

= (n− 1) + |A2|

= (n− 1) + (n− 1− |A1|)

= 2n− 2− dG(vi)(2.1)

If vi ∈ B, then define three sets B1, B2 and B3 as B1 = {v ∈ V : dG(vi, v) =

1}, B2 = {v ∈ V : dG(vi, v) = 2} and B3 = {v ∈ V : dG(vi, v) = 3}. Clearly

|B1|+ |B2|+ |B3| = n− 1. Then

d(vi | G) = |B1|+ 2|B2|+ 3|B3|

= (n− 1) + |B2|+ 2|B3|

= (n− 1) + (n− 1− |B1|) + |B3|

= 2n− 2− dG(vi) + Pvi(2.2)
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where Pvi is the number of vertices which are at a distance 3 from vertex vi.

Now,

W (G) =
1

2

n∑
i=1

d(vi | G)

=
1

2

(∑
vi∈A

d(vi | G) +
∑
vi∈B

d(vi | G)

)
.

From Eqs. (2.1) and (2.2), we have

W (G) =
1

2

{∑
vi∈A

(2n− 2− dG(vi)) +
∑
vi∈B

(2n− 2− dG(vi) + Pvi)

}

=
1

2

{
(2n− 2)(|A|+ |B|)−

∑
vi∈A

dG(vi)−
∑
vi∈B

dG(vi) +
∑
v∈B

Pvi

}

= n(n− 1)− 1

2

n∑
i=1

dG(vi) +
1

2
(2Wp(G))

= n(n− 1)−m + Wp(G).

�

Lemma 2.1. For any nontrivial tree Tn 6∈ {Sn, Sp,q}, diam(J(Tn)) ≤ 3.

Proof. If Tn ∈ {Sn, Sp,q}, then J(Tn) is disconnected and one cannot determine its

Wiener index. Thus, consider the nontrivial tree Tn 6∈ {Sn, Sp,q}. If ei and ej are

vertices in J(Tn) corresponding to nonadjacent edges of G, then ei and ej are ad-

jacent in J(Tn) and obviously dJ(Tn)(ei, ej) = 1. If ei and ej are vertices in J(Tn)

corresponding to adjacent edges of G, then we have following two cases:

Case 1. If there exist a common edge ek which is not adjacent to both ei and ej in

G, then

dJ(Tn)(ei, ej) = dJ(Tn)(ei, ek) + dJ(Tn)(ek, ej) = 2.
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Case 2. If the above case does not hold, then there exist two nonadjacent edges es

and et in G such that es is not adjacent to ei and et is not adjacent to ej in G.

Therefore,

dJ(Tn)(ei, ej) = dJ(Tn)(ei, es) + dJ(Tn)(es, et) + dJ(Tn)(et, ej) = 3.

�

Theorem 2.2. For any nontrivial tree Tn 6∈ {Sn, Sp,q} of order n,

W (J(Tn)) = 1
2

[
(n− 1)(n− 4) +

n∑
i=1

d2G(vi)

]
+ K,

where K is the number of pairs of adjacent edges (a ∼ b) such that all other edges

are adjacent either to an edge a or to an edge b in G.

Proof. Let Tn 6∈ {Sn, Sp,q} be nontrivial tree of order n. Then by Lemma 2.1,

diam(J(Tn)) ≤ 3. Therefore, from Theorem 2.1,

we have

W (J(Tn)) = nJ(nJ − 1)−mJ + Wp(J(Tn)).

By definition of Wiener polarity index, Wp(J(Tn)) is number of pair of vertices which

are at distance 3 = K, i.e., obviously the number of pairs of adjacent edges (a ∼ b)

which are adjacent either to an edge a or to an edge b in G.

Hence

W (J(Tn)) = m(m− 1)− 1

2

[
m(m + 1)−

n∑
i=1

d2G(vi)

]
+ K

=
1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
+ K.

For a tree, we have m = n− 1 and W (J(Tn)) = 1
2

[
(n− 1)(n− 4) +

n∑
i=1

d2G(vi)

]
+ K.

�

Theorem 2.2 can also be written as, W (J(Tn)) = 1
2

[(n− 1)(n− 4) + M1(Tn)] + K.
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Corollary 2.1. For any nontrivial tree Tn of order n,

W (J(Pn)) ≤ W (J(Tn)).

Proof. From Theorem 1.7,

M1(Pn) ≤M1(Tn) =⇒ 2(2n− 3) ≤M1(Tn)

=⇒ 1

2
[(n− 1)(n− 4) + 2(2n− 3)] + K ≤ 1

2
[(n− 1)(n− 4) + M1(Tn)] + K.

Therefore, by Theorem 2.2, W (J(Pn)) ≤ W (J(Tn)). �

Corollary 2.2. For any path Pn of order n ≥ 6,

W (J(Pn)) = n2−n−2
2

.

Proof. For any path Pn of order n ≥ 6, the distance between the adjacent vertices of

J(Pn) which corresponds to edges of Pn is one where the edges in Pn are nonadjacent

and the distance between nonadjacent vertices in J(Pn) is two which corresponds to

adjacent edges in Pn. Therefore, K = 0. From Theorem 2.2,

W (J(Pn)) =
1

2

[
(n− 1)(n− 4) +

n∑
i=1

d2G(vi)

]
+ K

=
1

2
[(n− 1)(n− 4) + 2(2n− 3)]

=
n2 − n− 2

2
.

�

Theorem 2.3. If Ka,b is the complete bipartite graph, then

W (J(Ka,b)) =

 ab
2

[ab + a + b− 3] if a, b > 2,

ab
2

[ab + a + b− 3] + b if a = 2, b > 2.

Proof. If a = 1, then Ka,b is star and J(Ka,b) is totally disconnected. If a = b = 2,

then J(Ka,b) is disconnected.
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For a, b > 2 : In J(Ka,b), the distance between adjacent vertices is one which corre-

sponds to nonadjacent edges of Ka,b and the distance between nonadjacent vertices

in J(Ka,b) is two when the edges of K(a, b) are adjacent.

Thus, diam(J(Ka,b)) = 2.

From Theorem 1.2,

W (J(Ka,b)) = nJ(nJ − 1)−mJ .

For Ka,b , nJ = ab, mJ = ab(ab+1)
2

and
n∑
i=1

d2G(vi) = ab(a + b).

Therefore,

W (J(Ka,b)) = ab(ab− 1)−
[
ab(ab + 1)

2
− 1

2
ab(a + b)

]
=

ab

2
(ab + a + b− 3).

For a = 2, b > 2 :

diam(J(Ka,b)) = 3.

From Theorem 2.1, we have W (J(Ka,b)) = nJ(nJ − 1)−mJ + Wp(J(Ka,b))

Note that, Wp(J(Ka,b)) = b.

Hence

W (J(Ka,b)) =
ab

2
(ab + a + b− 3) + b.

�

Theorem 2.4. Let G be a graph of order n and size m with no edge adjacent to all

other edges. Then

W (J(G)) ≥ 1
2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

Equality holds for diam(J(G)) ≤ 2.

Proof. For each vertex vi, there are dG(vi) edges incident to vi. These dG(vi) edges

form a complete graph KdG(vi) in L(G), and they form a totally disconnected graph

KdG(vi) in J(G). Hence contributes the value

(
dG(vi)

2

)
to the W (L(G)) and atleast
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the value 2

(
dG(vi)

2

)
to the W (J(G)).

Consider an edge e = uv which is adjacent to dG(e) = dG(u)+dG(v)−2 edges at u

and v taken together. Hence the edge e is not adjacent to the remaining (m−1−dG(e))

edges of G. Therefore, the vertex e is adjacent to these (m − 1 − dG(e)) vertices in

J(G). Hence each such edge e contributes the value (m − 1 − dG(e)) to W (J(G)).

Thus,

W (J(G)) ≥
n∑
i=1

[dG(vi)(dG(vi)− 1)] +
1

2

m∑
i=1

[m− 1− dG(ei)]

=
n∑
i=1

(d2G(vi)− dG(vi)) +
1

2

[
m(m− 1)−

m∑
i=1

dG(ei)

]

=
n∑
i=1

d2G(vi)− 2m +
1

2

[
m(m− 1)− 2

(
−m +

1

2

n∑
i=1

d2G(vi)

)]

=
1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

Hence, W (J(G)) ≥ 1
2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

For the equality:

If diam(J(G)) ≤ 2, then distance between nonadjacent vertices in J(G) contributes

exactly the value 2

(
dG(vi)

2

)
to W (J(G)).

Therefore,

W (J(G)) =
n∑
i=1

[dG(vi)(dG(vi)− 1)] +
1

2

m∑
i=1

[m− 1− dG(ei)]

=
1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

�

Corollary 2.3. If G is a r−regular graph with n vertices, then

W (J(G)) ≥ nr

2

(
nr + 4r − 6

4

)
.
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Proof. If G is a r−regular graph, then dG(vi) = r for all vi ∈ V (G), and m = nr
2

.

Therefore, from Theorem 2.4,

we have

W (J(G)) ≥
(nr

2
)(nr

2
− 3)

2
+

1

2

n∑
i=1

r2

=
nr

2

[
nr − 6

4
+ r

]
=

nr

2

(
nr + 4r − 6

4

)
.

Hence, W (J(G)) ≥ nr
2

(
nr+4r−6

4

)
. �

Corollary 2.4. For any cycle Cn of order n ≥ 5,

W (J(Cn)) =
n(n + 1)

2
.

Proof. For any cycle Cn of order n ≥ 5, the distance between the adjacent vertices

of J(Cn) which corresponds to the nonadjacent edges of Cn is one and the distance

between the nonadjacent vertices in J(Cn) is two which corresponds to the adjacent

edges in Cn.

Therefore, diam(J(Cn)) ≤ 2.

Thus from Theorem 2.4, we have

W (J(G)) =
1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

Since cycle Cn of order n has m = n edges and degree of each vertex is two.

Therefore,
n∑
i=1

d2G(vi) = 4n.

Thus,

W (J(Cn)) =
n(n + 1)

2
.

�
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Next, we determine the Wiener index of jump graph of a wheel. For n ≥ 4, a wheel

Wn is defined to be the graph K1 + Cn−1 having m = 2(n− 1) edges.

Corollary 2.5. If Wn is a wheel of order n ≥ 6, then

W (J(Wn)) = 5n2−7n+2
2

.

Proof. For any wheel graph Wn of order n ≥ 6, the distance between adjacent vertices

of J(Wn) is one which corresponds to nonadjacent edges of Wn and the distance

between nonadjacent vertices in J(Wn) is two when the edges in Wn are adjacent.

Therefore, diam(J(Wn)) ≤ 2.

Thus from Theorem 2.4, we have

W (J(G)) =
1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

Since Wn has one vertex of degree (n−1) and remaining (n−1) vertices are of degree

three. Then
n∑
i=1

d2G(vi) = (n− 1)(n + 8).

Thus,

W (J(Wn)) =
5n2 − 7n + 2

2
.

�

Corollary 2.6. For any complete graph Kn of order n ≥ 5,

W (J(Kn)) = n(n−1)(n−2)(n+5)
8

.

Proof. For any complete graph Kn of order n ≥ 5, the distance between the adjacent

vertices of J(Kn) is one which corresponds to nonadjacent edges of Kn and the

distance between the nonadjacent vertices in J(Kn) is two which corresponds to

adjacent edges in Kn.

Therefore, diam(J(Kn)) ≤ 2.
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Thus from Theorem 2.4, we have

W (J(Kn)) =
1

2
[m(m− 3) +

n∑
i=1

d2G(vi)].

For a complete graph, m = n(n−1)
2

and degree of each vertex is (n− 1).

Therefore,
n∑
i=1

d2G(vi) = n(n− 1)2.

Thus,

W (J(Kn)) =
n(n− 1)(n− 2)(n + 5)

8
.

�

Corollary 2.7. Let G be any graph with n vertices such that diam(J(G)) ≤ 2. Then

n2−n−2
2
≤ W (J(G)) ≤ n(n−1)(n−2)(n+5)

8
.

Lower bound holds if G is a path and upper bound holds if G is a complete graph.

Proof. From Theorem 1.3, 2m(2p+ 1)− pn(1 + p) ≤
n∑
i=1

d2G(vi) and equality holds for

a path. For a path of order n, p = b2m
n
c = 1.

Therefore,

2(2n− 3) ≤
n∑
i=1

d2G(vi)

(2n− 3) +
m(m− 3)

2
≤ m(m− 3)

2
+

1

2

n∑
i=1

d2G(vi)

From Theorem 2.4, we have

n2 − n− 2

2
≤ W (J(G)).

Again from Theorems 1.4 and 1.5, we have

n∑
i=1

d2G(vi) ≤ m

[
2m

n− 1
+ (n− 2)

]
and equality holds if and only if G is a star graph or a complete graph. If G is a star

graph, then J(G) is disconnected. Therefore, we consider only complete graph. For
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a complete graph, m =

(
n

2

)
and

n∑
i=1

d2G(vi) = n(n− 1)2.

Thus,

m(m− 3)

2
+

1

2

n∑
i=1

d2G(vi) ≤
m(m− 3)

2
+

1

2
n(n− 1)2.

Now from Theorem 2.4, we have

W (J(G)) ≤ n(n− 1)

2

[(
n2 − n− 6

4

)
+ (n− 1)

]
=

n(n− 1)

8
(n2 + 3n− 10)

=
n(n− 1)(n− 2)(n + 5)

8
.

Hence,W (J(G)) ≤ n(n− 1)(n− 2)(n + 5)

8
.

�

Now, the simple reduced form of Theorem 1.6 is as follows:

Lemma 2.2. Let G be a connected graph with vertex set V = {v1, v2, ..., vn}. Then

W (L(G)) ≥ m2 − 1
2

n∑
i=1

d2G(vi).

Proof. Let G be a connected graph with vertex set V = {v1, v2, ..., vn} and edge set

E = {e1, e2, ..., em}.
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Then

W (L(G)) ≥
n∑
i=1

dG(vi)(dG(vi)− 1)

2
+ m(m− 1)−

m∑
i=1

dG(ei)

=
1

2

n∑
i=1

d2G(vi)−
1

2

n∑
i=1

dG(vi) + m2 −m−
m∑
i=1

dG(ei)

=
1

2

n∑
i=1

d2G(vi)−
1

2
(2m) + m2 −m− 2

(
−m +

1

2

n∑
i=1

d2G(vi)

)

=
1

2

n∑
i=1

d2G(vi) + m2 −
n∑
i=1

d2G(vi)

= m2 − 1

2

n∑
i=1

d2G(vi).

Hence, W (L(G)) ≥ m2 − 1
2

n∑
i=1

d2G(vi). �

Theorem 2.5. Let G be a connected graph of order n and size m with no edge

adjacent to all other edges of G. Then

W (L(G)) + W (J(G)) ≥ 3
2
m(m− 1).

Proof. Let G be a connected graph with vertex set V = {v1, v2, ..., vn}.

Then from Lemma 2.2, we have

(2.3) W (L(G)) ≥ m2 − 1

2

n∑
i=1

d2G(vi).

Now from Theorem 2.4, we have

(2.4) W (J(G)) ≥ 1

2

[
m(m− 3) +

n∑
i=1

d2G(vi)

]
.

By adding Eqs. (2.3) and (2.4), we obtain

W (L(G)) + W (J(G)) ≥ 3

2
m(m− 1).

�
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Theorem 2.6. Let G 6= K2 ·K3 be a unicyclic graph. Then W (J(G)) ≥ W (G) with

equality only if G is the cycle graph Cn.

Proof. It is evident from the fact that, L(Cn) and Cn are isomorphic. Hence L(Cn)

and Cn are isomorphic. Obviously J(Cn) and Cn are isomorphic. Therefore, W (J(Cn)) =

W (Cn).

Assume that, G is different from Cn. Suppose G = K2·K3. Then J(G) is diconnected.

As unicyclic graph have an equal number of vertices and edges, one can construct

bijective mapping between edge and vertex sets of G. We choose following mapping

g of the edges onto vertices.

Let the vertices belonging to the (unique) cycle of G be {v1, v2, ..., vp} such that vi

is adjacent to vi+1, i = 1, 2, ..., p, assuming that vp+1 = v1. If ei = vivi+1 is an edge of

G, belonging to its cycle, then for i = 1, 2, ..., p, g(ei) = vi. Let e
′′

= uv be an edge

of G not belonging to the cycle. Let vi be any vertex of G, belonging to the cycle.

If the distance between u and vi is smaller than the distance between v and vi, then

g(e
′′
) = v.

The bijection g has the following property:

If the edges ei and ej are not adjacent in G, then the vertices g(ei) = vi and

g(ej) = vj are not adjacent in G. i.e., if vertices ei and ej are adjacent in J(G),

then the vertices vi and vj are adjacent in G. This implies J(G) is isomorphic to a

spanning subgraph of G.

This result follows from the fact that Wiener index of a graph cannot exceed the

Wiener index of its connected spanning subgraph. If G is different from Cn, then G

possess more edges than J(G) and the inequality in this result must be strict. �

3. Results on the Hosoya Polynomial of jump graph of a graph

In literature, till today we have direct expression to calculate Hosoya polynomial

of the graphs whose diameter ≤ 2. But there is no analogous expression for graphs
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with diameter ≥ 3. We now establish an expression to find Hosoya polynomial of

graphs with diameter ≤ 3. We use this theorem to find the Hosoya polynomial of

jump graphs.

Theorem 3.1. Let G be a graph of order n and size m with diam(G) ≤ 3. Then

W (G; q) = Wp(G)q3 +

((
n

2

)
−Wp(G)−m

)
q2 + mq

and

W (G) = Wp(G) + n(n− 1)−m.

Proof. Let G be a graph of order n and size m with diam(G) ≤ 3. Then by definition

of Hosoya polynomial,

we have

W (G; q) =
∑

u,v∈V (G)

qdG(u,v)

and by Theorem 1.1, the highest power of polynomial is equal to the diameter of G.

Let Ai(G) = |{(u, v) : dG(u, v) = i}| for i = 1, 2, 3. Therefore, the expected Hosoya

polynomial for G is

W (G; q) =
3∑
i=1

Ai(G)qi.

By definition of Ai(G),

we have

A1(G) = m, A3(G) = Wp(G) and A2(G) =
(
n
2

)
−m−Wp(G).

Therefore,

(3.1) W (G; q) = Wp(G)q3 +

((
n

2

)
−Wp(G)−m

)
q2 + mq.
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From Eq. (1.1), the Wiener index of G is

W (G) =
d

dq
(W (G; q))

∣∣∣
q=1

= 3Wp(G) + 2

((
n

2

)
−Wp(G)−m

)
+ m

= Wp(G) + n(n− 1)−m.(3.2)

�

Corollary 3.1. For a nontrivial tree Tn /∈ {Sn, Sa,b} of order n, the Hosoya polyno-

mial is given by

W (J(Tn); q) = Kq3 +

((
n− 1

2

)
−K − m(m + 1)

2
+

1

2

n∑
i=1

d2G(vi)

)
q2

+

(
m(m + 1)

2
− 1

2

n∑
i=1

d2G(vi)

)
q.

and W (J(Tn)) = 1
2

[
(n− 1)(n− 4) +

n∑
i=1

d2G(vi)

]
+ K , where K is the number of

pairs of adjacent edges (a ∼ b) such that all other edges are either adjacent to an edge

a or adjacent to an edge b in G.

Proof. From Lemma 2.1, the diam(J(Tn)) ≤ 3. Therefore, by definition of Wiener

polarity index, Wp(J(Tn)) is number of pair of vertices which are at distance 3 = K.

Therefore, K is obviously the number of pairs of adjacent edges (a ∼ b) which are

either adjacent to an edge a or adjacent to an edge b in G.

Thus, the proof follows by substituting the Wiener polarity index Wp(J(Tn)) and

order of the tree Tn in Eqs. (3.1) and (3.2). �

Corollary 3.2. For a complete bipartite graph Ka,b the Hosoya polynomial is given

by

W (J(Ka,b); q) =

 1
2
ab(a + b− 2)q2 + ab(ab+1)

2
q if a, b > 2,

bq3 − 3bq2 + 2b(2b+1)
2

q if a = 2, b > 2,
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and

W (J(Tn)) =

 ab
2

[ab + a + b− 3] if a, b > 2,

b[3b− 1] + b if a = 2, b > 2.

Proof. For a, b > 2 : In J(Ka,b), the distance between the adjacent vertices of J(Ka,b)

is one which corresponds to nonadjacent edges of Ka,b and the distance between the

nonadjacent vertices in J(Ka,b) is two which corresponds to adjacent edges in Ka,b,

therefore diam(J(Ka,b)) = 2.

For a = 2 , b > 2 : diam(J(Ka,b) = 3 and Wp(J(Ka,b)) = b.

Thus, the proof follows by substituting the above values and the order of Ka,b in Eqs.

(3.1) and (3.2). �

Corollary 3.3. For a cycle Cn of order n ≥ 5, the Hosoya polynomial is given by

W (J(Cn); q) = nq2 +
n(n− 3)

2
q

and

W (J(Cn)) =
n(n + 1)

2
.

Proof. For any cycle Cn of order n ≥ 5, the distance between the adjacent vertices of

J(Cn) is one which corresponds to nonadjacent edges of Cn and the distance between

the nonadjacent vertices in J(Cn) is two which corresponds to adjacent edges in Cn,

i.e., diam(J(Cn)) ≤ 2. Therefore, Wp(J(Cn)) = 0.

Thus, the proof follows by substituting the Wiener polarity index Wp(J(Cn)) and

order of the cycle Cn in Eqs. (3.1) and (3.2). �

Corollary 3.4. For a wheel Wn of order n ≥ 6, the Hosoya polynomial is given by

W (J(Wn); q) =
1

2
(n2 + 3n− 4)q2 +

1

2
(3n2 − 13n + 10)q and

W (J(Wn)) =
5n2 − 7n + 2

2
.
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Proof. For any wheel Wn of order n ≥ 6, the distance between the adjacent vertices of

J(Wn) is one which corresponds to nonadjacent edges of Wn and the distance between

the nonadjacent vertices in J(Wn) is two which corresponds to adjacent edges in Wn.

Therefore, diam(J(Wn)) ≤ 2. Thus, Wp(J(Wn)) = 0.

Hence, the proof follows by substituting the Wiener polarity index Wp(J(Wn)) and

order of Wn in Eqs. (3.1) and (3.2). �

Corollary 3.5. For a complete graph Kn of order n ≥ 5, the Hosoya polynomial is

given by

W (J(Kn); q) =
1

2
(n3 − 3n2 + 2n)q2 +

1

4
n(n− 1)(n2 − 3n + 4)q and

W (J(Kn)) =
n(n− 1)(n− 2)(n + 5)

8
.

Proof. For any complete graph Kn of order n ≥ 5, the distance between the adjacent

vertices of J(Kn) is one which corresponds to nonadjacent edges of Kn and the

distance between the nonadjacent vertices in J(Kn) is two which corresponds to

adjacent edges in Kn. Therefore, diam(J(Kn)) ≤ 2. Thus, Wp(J(Kn)) = 0.

Hence, the proof follows by substituting the Wiener polarity index Wp(J(Kn)) and

order of Kn in Eqs. (3.1) and (3.2). �
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