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T−RELATIVE FUZZY MAPS AND SOME FIXED POINT RESULTS

K. E. OSAWARU(1), J. O. OLALERU(2) AND H. AKEWE(3)

Abstract. The concept of T−Relative fuzzy sets was recently introduced by Os-

awaru, Olaleru and Olaoluwa [2]. It is a fuzzy set in which the membership grade

of an element is dynamic and can change on a time scale. In this paper, we intro-

duce and develop the theory of T−Relative fuzzy maps and prove some fixed point

results on these maps. Previous related results in literature are shown as special

cases with examples.

1. Introduction and Preliminaries

Research efforts of fixed points of set-valued maps has been carried out by several

authors. In [3], Kakutani extended the Brouwer’s fixed point theorems for n−cell

to upper semi-continuous compact, nonempty, convex set-valued mappings of the

n−cell. The authors in [4] generalized [3] to acyclic absolute neighbourhood retracts

and upper semi-continuous mappings such that the function values are nonempty,

compact and acyclic. Among other research efforts on set-valued mappings are those

of W. L. Strother [5], R. L. Plunkett [6] and L. E. Ward [7]. One characteristic of

these theorems is that several conditions are imposed in order to prove the existence

of fixed points.
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In 1969, S. B. Nadler [8] combined the ideas of set-valued map and Lipschitz map and

proved some fixed point results which generalizes those of single-valued maps. His

theorem do not place several restrictions on the images of points but only requires

that the metric space be complete. The study of set-valued maps and fixed point

theorems of set-valued maps have increased thereby. Following [8] are several gener-

alizations of single-valued maps by many authors. See [17-19] for studies related to

set-valued maps in literature.

On the advent of fuzzy set theory by L. A. Zadeh [16], several authors have ex-

tended and applied fuzzy set concepts in diverse areas. Of importance in this study

is the concept of fuzzy mapping introduced by S. Heilpern [1]. In [1], Heilpern defined

fuzzy mapping and proved some fixed point results using the ideas of set-valued maps

in [8]. See [10-15, 20, 22-24] for some extensions and generalizations of [1].

Recently, the concept of T−Relative fuzzy set, a fundamental generalization of the

fuzzy set was introduced by Osawaru et al. [2]. The authors gave a characterization

of T−Relative fuzzy set which extends the concept of fuzzy set by accommodating the

dynamics of membership grades of elements of a set. Also insights into applications

of the T−Relative fuzzy sets were also shown by the authors. The T−Relative fuzzy

set has further revolutionized, improved, enriched and extended the application of

fuzzy sets and fuzzy set concepts.

In this present paper, we introduce the concept of the T−Relative fuzzy map in

the sense of [1] and prove the T−Relative fuzzy set version of some fixed point results

in literature. Our work applies the concepts of T−Relative fuzzy set of [2], defines

some fuzzy map concepts of [1] in the context of T−Relative fuzzy set of Osawaru et
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al. [2] and prove fuzzy fixed point of the map which extends fuzzy fixed point results

of (see [9-15]) and others in literature.

We restate some definitions of concepts relating to relative fuzzy sets.

Definition 1.1. [2](Measure Chains). A (strong) measure chain (M,�, µ) is any

non-empty set M equipped with a

MC1. relation ”�” which is reflexive, transitive, antisymmetric and total such that

MC2. the chain (M,�) is conditionally complete i.e every non-empty bounded subset

has a least upper bound and a greatest lower bound and

MC3. the mapping µ : M × M → R has the following properties (for all r, s, t ∈ M)

(i): µ(r, s) + µ(s, t) = µ(r, t)

(ii): if r � s, then µ(r, s) > 0

(iii): µ is continuous with respect to the product order topology (the order

topology is generated by the open intervals of M. A subset S of M

is defined to be open, if for any t ∈ S there are r, s ∈ M such that

t ∈]r, s[⊂ S)

Remark 1.1. [2]

1.1a: Time scales T are specific forms of measure chains. It is defined as a nonempty

closed subset of R ordered by the relation ”≤”. Examples of time scales are

R, Z, hZ, [0, 1], [0, 1] ∪ [2, 3], [0, 1] ∪ N, the Cantor set, e.t.c.

1.1b: By MC1, we can define

(i): an order topology

(ii): the forward and backward jump operators i.e the maps σ, ρ : T → T such

that

σ(t) = inf{s ∈ T : t ≤ s}
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and

ρ(t) = sup{s ∈ T : s ≤ t}

respectively. This equips measure chains with the property of connect-

edness.

1.1c: Property MC2 ensures the transfer of important features of the real line to

other time scales.

1.1d: Property MC3 ensures the measure of distances between elements of the

measure chains.

Definition 1.2. [2]. Let (T,≤, µ) be a time scale and σ, ρ : T → T be the forward

and backward jump operators respectively. Then

1.2a: a nonmaximal (nonminimal) element t ∈ T is said to be right (left)-scattered

if σ(t) > t(ρ(t) < t)

1.2b: a nonmaximal (nonminimal) element t ∈ T is said to be right (left)-dense if

σ(t) = t(ρ(t) = t)

1.2c: t ∈ T is said to be isolated (dense) if it is left-scattered and right-scattered

(left-dense and right-dense).

1.2d: the graininess function µ∗ : T → [0,∞) is defined by

µ∗(t) = σ(t) − t

Definition 1.3. [2](T−Relative Fuzzy Set). Let X be the universal set of dis-

course, T any time scale, R a subset of X and σ : T → T a forward difference

operator. Then a T−Relative fuzzy set R of X with respect to T is a set equipped

with the membership growth function µR : X × T → [0, 1] such that

µR(x, σ(t)) =







0 if x /∈ R

k ∈ (0, 1] if x ∈ R and t ∈ T

for all x ∈ X and all t ∈ T.
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Remark 1.2. [2]

(i) The nearer the value of µR for any x ∈ R and t ∈ T to unity the higher the

membership grade.

(ii) If t is nonmaximal and dense (isolated) in T then µR(x, σ(t)) = µR(x, t)

(µR(x, σ(t)) 6= µR(x, t)). Similarly, if t is nonminimal and dense (isolated)

in T then µR(x, ρ(t)) = µR(x, t) (µR(x, ρ(t)) 6= µR(x, t)). Thus, if T = R

(Z) then, µR(x, σ(t)) = µR(x, t) = µR(x, ρ(t)) (µR(x, σ(t)) = µR(x, t + 1) and

µR(x, ρ(t)) = µR(x, t − 1)) for all t ∈ T.

(iii) If for each x ∈ R, we have that µR(x, σ(t)) = cx ∈ (0, 1] for all t ∈ T, then R

is a fuzzy set. Thus R is a set if µR(x, σ(t)) = 1 for all x ∈ R and t ∈ T.

(iv) Unlike the time-dependent fuzzy set, the T−Relative fuzzy subset of a set is

not determined by time but it a fuzzy subset of the Cartesian product of the

set X and T. Also while the time-dependent fuzzy set defines a fuzzy set for

each subset of X determined by time, a T−Relative fuzzy is characterized by a

single membership function defining the dynamics of the membership value(s)

of element(s) with respect to an element of a time scale (not necessarily time).

(v) Unlike the non stationary fuzzy set, the T−Relative fuzzy set is not a time-

varying fuzzy sets but evolutionary with respect to an element of a time scale.

Example 1.1. [2] The set X of R equipped with a membership function of real

numbers close to 1 relative to the interval T = [1, 4], defined as µX(x, σ(t)) =

exp(−β(x − 1)2σ(t)) where β is a positive real number, is a T−Relative fuzzy set.

Remark 1.3. (i) σ(t) = t for σ : [1, 4] → [1, 4] as each t is nonmaximal and

dense in [1, 4] so that µX(x, σ(t)) = exp(−β(x − 1)2t)

(ii) If T = 2 say, instead of [1, 4], then R is a T−Relative fuzzy set for t = 2 with

µX(x, 2) = exp(−β(x − 1)4)
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Operationally, we write t to mean σ(t) for any σ : T → T in the sequel. Some

operations on T−Relative fuzzy sets were also defined in [2] as follows:

Definition 1.4. [2] Let X be a universal set and {Ri}
n
i=1 be T−Relative fuzzy sets

of X with T−Relative fuzzy membership functions {µRi
}n

i=1 respectively, where T is

any time scales set. Then

(i) the union of {Ri}
n
i=1 at a membership growth over T (respectively for any t ∈

T) is the T−Relative fuzzy set with T−Relative fuzzy membership function

defined as

µ(∪n
i=1

Ri)(x, t)T = max
x∈X,t∈T

{µRi
(x, t)}

(respectively µ(∪n
i=1

Ri)(x, t)t = max
x∈X

{µRi
(x, t)} for any t ∈ T)

(ii) the intersection of {Ri}
n
i=1 at a membership growth over T (respectively for

any t ∈ T) is the T−Relative fuzzy set with T−Relative fuzzy membership

function defined as

µ(∩n
i=1

Ri)(x, t)T = min
x∈X,t∈T

{µRi
(x, t)}

(respectively µ(∩n
i=1

Ri)(x, t)t = min
x∈X

{µRi
(x, t)}} for any t ∈ T)

(iii) Ri is a subset of Rj over T (respectively for any t ∈ T) if

µRi
(x, t)T ≤ µRj

(x, t)T ∀x ∈ U and ∀t ∈ T

(respectively µRi
(x, t)t ≤ µRj

(x, t)t ∀x ∈ U and for any t ∈ T) for any i, j

with i 6= j.

Definition 1.5. (Level Sets of T−Relative Fuzzy Sets). Let R be a T−Relative

fuzzy set of X with respect to T and φ, α
′
, α where φ : X×T → (0, 1], α

′
: X → (0, 1]

and α ∈ (0, 1]. Then
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(i) the φT-level sets for R with respect to T (respectively over any t ∈ T) is

defined as

R(φ)T = {x ∈ X : µR(x, t) ≥ φ(x, t), for all t ∈ T}

(respectively R(φ)t = {x ∈ X : µR(x, t) ≥ φ(x, t), for any t ∈ T}).

(ii) the α
′

T
-level sets for R with respect to T (respectively over any t ∈ T) is

defined as

R(α
′

)T =
{

x ∈ X : µR(x, t) ≥ α
′

(x), for all t ∈ T

}

.

(respectively R(α
′
)t =

{

x ∈ X : µR(x, t) ≥ α
′
(x), for any t ∈ T

}

).

(iii) the αT-level sets for R with respect to T (respectively over any t ∈ T) is

defined as

R(α)T = {x ∈ X : µR(x, t) ≥ α, for all t ∈ T}

(respectively R(α)t = {x ∈ X : µR(x, t) ≥ α, for any t ∈ T}).

Remark 1.4. (i) If for all x ∈ X, we have that φ(x, t) = α for all t ∈ T then

R(φ)T = R(α)T.

(ii) If α
′
(x) = α for all x ∈ X then R(α

′
)T = R(α)T.

(iii) If for all x ∈ X, φ
′
(x, t) ≤ φ(x, t) for all t ∈ T, where φ

′
, φ : X × T → (0, 1]

then R(φ)T ⊆ R(φ
′
)T .

(iv) If β ≤ α with α, β ∈ (0, 1], then R(α)T ⊆ R(β)T for all t ∈ T and R(α)t ⊆

R(β)t for any t ∈ T.

(v) R(φ)T ⊂ R(φ)t, R(α
′
)T ⊂ R(α

′
)t and R(α)T ⊂ R(α)t for any t ∈ T

In fixed point theory on the other hand, Banach [21] published a very remarkable

result. His result has contributed to the study of many nonlinear systems. The condi-

tions required for the existence and uniqueness of solutions which can be reformulated

as a fixed point problem was proved. The theorem is as given below:
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Theorem 1.1. [21]. Let (X, d) be a complete metric space and T : X → X such

that

d(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X, where c ∈ (0, 1]. Then there exists a unique point x∗ ∈ X such

that x∗ = Tx∗.

In order to generalize the result of Banach and other fixed point results of single-

valued maps, Nadler among others introduced set-valued maps and proved condition

for existence of fixed points for such maps. The Banach-type fixed point results due

to Nadler is as stated below:

Theorem 1.2. [8]. Let (X, d) be a complete metric space and T : X → 2X such that

H(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X, where c ∈ (0, 1] and H(A, B) is the Hausdorf distance between

A, B ∈ 2X . Then there exists a fixed point x∗ ∈ X such that x∗ ∈ Tx∗.

Using the idea of Nadler, Heilpern introduced fuzzy mapping and investigated fixed

point results for fuzzy maps that are useful for solving problems that can be refor-

mulated as fuzzy fixed map problem. The following definitions of distance functions

for fuzzy sets were introduced in [1] by Heilpern:

Definition 1.6. [1]. Let (X, d) be a metric space and W (X) a collection of fuzzy sets

of X. A subcollection of W (X) denoted Q(X) is called a subfamily of approximate

quantities if for any A ∈ Q(X), we have that A(α) is nonempty and compact for all

α ∈ (0, 1].
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Definition 1.7. [1]. Let (X, d) be a metric space and Q(X) the approximate quan-

tities of X. Then for all A, B ∈ Q(X) and any α ∈ (01]

Pα(a, B) = inf
b∈B

d(a, b),

Pα(A, B) = inf
a∈A,b∈B

d(a, b),

Dα(A, B) = max{sup
a∈A

Pα(a, B), sup
b∈B

Pα(A, b)},

D(A, B) = sup
α

Dα(A, B)

The fuzzy version of the Nadler fixed point result is as stated below:

Theorem 1.3. [1]. Let (X, d) be a complete metric space and T : X → Q(X) such

that

D(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X, where c ∈ (0, 1]. Then there exists a fuzzy point x∗ ∈ X such that

{x∗} ⊂ Tx∗, where {x} denotes the characteristic function of x, that is a function on

X into [0, 1] such that {x} = 1 and {y} = 0 for any x, y ∈ X with y 6= x.

Identifying fuzzy fixed point results to at least a certain α ∈ (0, 1], a generalization

of the fixed point for fuzzy map in the Heilpern sense was studied by Estruch and

Vidal. Their result is given below:

Theorem 1.4. [20]. Let α ∈ (0, 1] and (X, d) be a complete metric space. Let T be

a fuzzy map from X into Q(X) satisfying the condition that

Dα(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X, where c ∈ (0, 1]. Then there exists fixed fuzzy point x∗ ∈ X for

α ∈ [0, 1] such that x∗
α ⊂ Tx∗

α.
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Although the study of fuzzy fixed point results of fuzzy maps is progressing rapidly,

fixed point results of fuzzy maps defined on a fuzzy set endowed with dynamic mem-

bership grades has not being studied.

Our interest in this article is to introduce T−Relative fuzzy maps and investigate

T−Relative fuzzy fixed points of the map. Examples are given to explain the con-

cepts introduced and results obtained. It is also shown that the results of Nadler,

Heilpern and Estruch and Vidal and others in literature can be derived from our

results.

2. Main Result

2.1. Preliminary Definitions. In this section, we define the concepts of approx-

imate quantities based on the concepts of T−Relative fuzzy sets and level sets of

T−Relative fuzzy sets of Osawaru et al.[2]. Also for such approximate quantities of

T−Relative fuzzy sets of a metric space, we define some metric of T−Relative fuzzy

sets of a metric space. Some results of the metrics are established.

We also define the concept of T−Relative fuzzy map as a map on any set X into a

collection of approximate quantities of the T−Relative fuzzy sets of Y .

Definition 2.1. (Approximate Quantities of T−Relative Fuzzy Sets). Let

(X, d) be a metric space and W (X)T (respectively W (X)t) a collection of T−Relative

fuzzy sets of X with respect to T (respectively any t ∈ T). Then a subcollection of

W (X)T denoted π(X)T (respectively π(X)t) is called a subfamily of approximate

quantities if for any R ∈ π(X)T (respectively R ∈ π(X)t), we have that each R(φ)T

(respectively R(φ)t) is nonempty and compact, where φ : X × T → (0, 1].

Definition 2.2. (φ − Space of T−Relative Fuzzy Sets). Let (X, d) be a metric

space, φ : X × T → (0, 1] and π(X)t (respectively π(X)T) approximate quantities of
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T−Relative fuzzy sets R and R
′
of X. Then the φ − Space of the T−Relative fuzzy

sets R, R
′
with respect to t ∈ T (respectively all t ∈ T) is defined as

pφ(R, R
′

)t = inf
x∈R(φ)t,y∈R

′ (φ)t

d(x, y) and p(R, R
′

)t = sup
φ

pφ(R, R
′

)t.

(respectively, pφ(R, R
′
)T = infx∈R(φ)T,y∈R

′
(φ)T

d(x, y) and p(R, R
′
)T = supφ pφ(R, R

′
)T).

Definition 2.3. (φ−diameter of T−Relative Fuzzy Sets). Let (X, d) be a metric

space, φ : X × T → (0, 1] and π(X)t (respectively π(X)T) approximate quantities

of T−Relative fuzzy sets R and R
′
of X. Then the φ − distance of the T−Relative

fuzzy sets R, R
′
with respect to t ∈ T (respectively all t ∈ T) is defined as

δφ(R, R
′

)t = sup
x∈R(φ)t,y∈R

′ (φ)t

d(x, y) and δ(R, R
′

)t = inf
φ

δφ(R, R
′

)t.

(respectively, δφ(R, R
′
)T = supx∈R(φ)T,y∈R

′
(φ)T

d(x, y) and δ(R, R
′
)T = infφ δφ(R, R

′
)T).

Definition 2.4. (φ-Hausdorff metric of T−Relative Fuzzy Sets). Let (X, d) be

a metric space and φ : X × T → (0, 1]. The φ-Hausdorff metric on Wcb(X) induced

by d is defined as

Hφ(R, R
′

)T = max{ sup
x∈R(φ)T

pφ(x, R
′

)T, sup
y∈R′(φ)T

pφ(y, R)T}

for all R, R
′
∈ Wcb(X), where Wcb(X) denotes the family of T−Relative fuzzy sets

with nonempty closed bounded φT-level sets of X and

pφ(x, R
′

)T = inf{d(x, b) : b ∈ R
′

(φ)T}

for all x ∈ X.

(respectively, Hφ(R, R
′
)t = max{supx∈R(φ)t

pφ(x, R
′
)t, supy∈R′(φ)t

pφ(y, R)t} for all R, R
′
∈

Wcb(X), where Wcb(X) denotes the family of T−Relative fuzzy sets with nonempty

closed bounded φt-level sets of X and

pφ(x, R
′

)t = inf{d(x, b) : b ∈ R
′

(φ)t}
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for all x ∈ X).

Definition 2.5. (φ−Distance of T−Relative Fuzzy Sets). Let (X, d) be a metric

space, φ : X × T → (0, 1] and π(X)t (respectively π(X)T) approximate quantities

of T−Relative fuzzy sets R and R
′
of X. Then the φ − distance of the T−Relative

fuzzy sets R, R
′
with respect to t ∈ T (respectively all t ∈ T) is defined as

Dφ(R, R
′

)t = H(R(φ)t, R
′

(φ)t) and D(R, R
′

)t = sup
φ

Dφ(R, R
′

)t.

(respectively Dφ(R, R
′
)T = H(R(φ)T, R

′
(φ)T) and D(R, R

′
)T = supφ Dφ(R, R

′
)T).

Remark 2.1. For α
′
: X → (0, 1] and α ∈ (0, 1], if

(i) for all x ∈ X, we have that φ(x, t) = α
′
(x) for all t ∈ T then pφ(R, R

′
)T =

pα
′ (R, R

′
)T, δφ(R, R

′
)T = δα

′ (R, R
′
)T, Hφ(R, R

′
)T = Hα

′ (R, R
′
)T (respec-

tively for any t ∈ T then pφ(R, R
′
)t = pα

′ (R, R
′
)t, δφ(R, R

′
)t = δα

′ (R, R
′
)t,

Hφ(R, R
′
)t = Hα

′ (R, R
′
)t).

(ii) for all x ∈ X, we have that φ(x, t) = α for all t ∈ T then pφ(R, R
′
)T =

pα(R, R
′
)T, δφ(R, R

′
)T = δα(R, R

′
)T, Hφ(R, R

′
)T = Hα(R, R

′
)T (respectively

for any t ∈ T then pφ(R, R
′
)t = pα(R, R

′
)t, δφ(R, R

′
)t = δα(R, R

′
)t, Hφ(R, R

′
)t =

Hα(R, R
′
)t).

(iii) Since R(φ)T ⊂ R(φ)t for any t ∈ T then p(R, R
′
)T ≤ p(R, R

′
)t, δ(R, R

′
)T ≤

δ(R, R
′
)t, D(R, R

′
)T ≤ D(R, R

′
)t for any t ∈ T.

Definition 2.6. (T−Relative Fuzzy Point). Let X be any set. Then the φ −

T−Relative fuzzy point with respect to T denoted xφT
is a T−Relative fuzzy set with

respect to T with membership function defined as xφT
(x, t) = φ(x, t) and xφT

(w, t) = 0

if x 6= w ∈ X for all t ∈ T, where φ : X × T → (0, 1].

Remark 2.2. (i) If for all x ∈ X we have that φ(x, t) = α
′
(x) for all t ∈ T and

xφT
(x, t) = α

′
(x) ∈ (0, 1] for all t ∈ T then the φ − T−Relative fuzzy point is

the α
′
− fuzzy point.
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(ii) If for all x ∈ X we have that φ(x, t) = α for all t ∈ T and xφT
(x, t) = α ∈ (0, 1]

for all t ∈ T then the φ − T−Relative fuzzy point is the α− fuzzy point of

Estruch and Vidal [20].

(iii) If for all x ∈ X we have that φ(x, t) = 1 for all t ∈ T and xφT
(x, t) = 1 for all

t ∈ T then the φ − T−Relative fuzzy point is the fuzzy point of Heilpern [1].

The following lemmas are significant in the proof of the results in the next section

of this article.

Lemma 2.1. Let (X, d) be a metric space, π(X)T a subfamily of approximate quan-

tities and xφT
, a T−Relative fuzzy point for all t ∈ T. Let R ∈ π(X)T. Then xφT

⊂ R,

iff pφ(x, R)T = 0 for each φ(x, t) ∈ (0, 1] and all t ∈ T.

Proof. Suppose xφT
⊂ R, then we have that x ∈ R(φ)T for each φ ∈ [0, 1] and all

t ∈ T. Recall that pφ(R, R
′
)T = infx∈R(φ)T ,y∈R

′
(φ)T

d(x, y) where R, R
′
are T−Relative

fuzzy set of approximate quantities with respect to T and R(φ)T, R
′
(φ)T the φ-level

sets with respect to T of R and R
′
respectively. So pφ(x, R)T = infy∈R(φ)T

d(x, y) = 0

as x ∈ R(φ)T.

Conversely, suppose pφ(x, R)T = 0. So by Definition 3.2, pφ(x, R)T = infy∈R(φ)T
d(x, y) =

0. Thus x = y and since y ∈ R(φ) then x ∈ R(φ)T. So xφT
⊂ R. The proof is com-

plete. �

Lemma 2.2. Let (X, d) be a metric space, π(X)T a subfamily of approximate quan-

tities. Then for x, y ∈ X and R ∈ π(X)T, we have pφ(x, R)T ≤ d(x, y) + pφ(y, R)T

where φ : X × T → (0, 1].

Proof. By Definition 3.2 and the triangle inequality we have that

pφ(x, R)T = inf
x∗∈R(φ)T

d(x, x∗) ≤ inf
x∗∈R(φ)T

(d(x, y) + d(y, x∗)) = d(x, y) + pφ(y, R)T

Therefore pφ(x, R)T ≤ d(x, y) + pφ(y, R)T and the proof is complete. �
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Lemma 2.3. Let (X, d) be a metric space,π(X)T a subfamily of approximate quan-

tities. Then for each R, R
′
∈ π(X)T, we have pφ(x, R

′
)T ≤ Dφ(R, R

′
)T if xφT

⊂ R

where φ : X × T → (0, 1].

Proof. From Definition 3.2 and 3.5,

pφ(x, R
′

)T = inf
x∗∈R

′ (φ)T

d(x, x∗) ≤ sup
x∈R(φ)T

inf
x∗∈R

′ (φ)T

d(x, x∗) ≤ Dφ(R, R
′

)T

The proof is complete. �

We now define the concepts of T−Relative fuzzy mapping as a generalization of

the fuzzy mapping and the set-valued map of Nadler, Level sets of T−Relative fuzzy

maps, Fixed Points of T−Relative Fuzzy Maps, T−Relative Fuzzy Contraction Map

and φ − T−Relative fuzzy Picard iterative scheme.

Definition 2.7. (T−Relative Fuzzy Mapping). The map TT : X → π(Y )T

(respectively Tt : X → π(Y )t) such that TT(x) ∈ π(Y )T (respectively Tt(x) ∈ π(Y )t)

for all t ∈ T (respectively for any t ∈ T) and x ∈ X, where X is any set and (Y, d) a

metric space, is called the T−Relative fuzzy map with respect to T (respectively for

any t ∈ T).

Remark 2.3. (i) The T−Relative fuzzy map Tt for any t ∈ T is the subset of

the product X × Y such that Tt(x, y) ⊂ [0, 1] is membership growth grade of

y in Tt(x) for any t ∈ T.

(ii) The T−Relative fuzzy map TT is a T−Relative fuzzy subset on X ×Y with a

T−Relative membership function TTx(y, t) for all t ∈ T. The function value

of TTx(y, t) is the T−Relative membership grade of y in TTx for all t ∈ T.

Definition 2.8. (Level Sets of T−Relative Fuzzy Maps). Let (X, d) be a metric

space, and TT : X → W (X)T a T−Relative fuzzy self map of X and φ : X×T → (0, 1].
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Then the φT-level sets for the T−Relative fuzzy map TT at any x ∈ X is defined as

TTx(φ) = {y ∈ X : µTTx(y, t) ≥ φ(y, t), for all t ∈ T} .

Definition 2.9. (Fixed Points of T−Relative Fuzzy Maps). Let (X, d) be a

metric space and TT : X → W (X)T a T−Relative fuzzy self map of X, where W (X)T

is a collection of T−Relative fuzzy sets of (X, d) for all t ∈ T. Then the φ−T−Relative

fuzzy point with respect to T denoted xφT
is called a φ−T−Relative fuzzy fixed point

of TT if xφT
⊂ TTx (alternatively x ∈ TTx(φ)) for all t ∈ T, where φ : X × T → (0, 1].

Definition 2.10. (T−Relative Fuzzy Contraction Map). Let (X, d) be a metric

space, π(X)T be a family of approximate quantities and φ : X × T → (0, 1]. Then

the T−Relative fuzzy map TT : X → π(X)T with respect to T is said to be a

φ − T−Relative fuzzy contraction map if for any x, y ∈ X,

Dφ(TTx, TTy)T ≤ ad(x, y)

where for all x ∈ X, φ(x, t) ∈ [0, 1] for all t ∈ T and a ∈ [0, 1).

Definition 2.11. Let (X, d) be a metric space, π(X)T be a family of approximate

quantities of T−Relative fuzzy sets of X, φ : X × T → (0, 1] and TT : X → π(X)T a

T−Relative fuzzy map with respect to T. Then

(i) FT (φ) = {x∗ ∈ X : x∗ ∈ TTx∗(φ)} is the set of φ − T−Relative fuzzy fixed

points of TT for all t ∈ T.

(ii) for any x0 ∈ X, the sequence {xn}
∞
n=0 defined by xn+1 ∈ TTxn(φ) where n ≥ 0,

is called the φ − T−Relative fuzzy Picard iterative scheme if and only if for

each x ∈ X and any y ∈ TTx the sequence {xn}
∞
n=0 converges to a fixed point

of TT with x0 = x and x1 = y.
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Thus the sequence {xn}
∞
n=0 is called sequence of successive approximations of a

φ − T−Relative fuzzy defined by the T−Relative fuzzy operator TT with starting

values (x, y).

2.2. Fixed Point Results. We now state and prove the Banach contraction prin-

ciple in the context of T−Relative fuzzy set. The results are shown to generalize

existing fixed point results of fuzzy maps in literature.

Theorem 2.1. Let X be a complete metric space and TT : X → π(X)T a φ −

T−Relative fuzzy contraction map. Then

(i) there exists φ−T−Relative fuzzy fixed point x∗ ∈ X such that x∗ ∈ TTx∗(φ).

(ii) TT has a unique φ−T−Relative fuzzy fixed point x∗
φT

if d(x∗, y∗) ≤ pφ(TTx∗, TTy∗)T

for any two points x∗, y∗ ∈ FT (φ).

(ii) the T−Relative fuzzy Picard iterative scheme, xn+1 ∈ TTxn(φ) converges

strongly to x∗
φT

of TT

Proof. To show (i), suppose x0 ∈ X such that TTx0 ∈ π(X)T and x1 ∈ TTx0(φ) for

all x ∈ X and t ∈ T. Then there is x2 ∈ X such that x2 ∈ TTx1(φ) for all x ∈ X and

t ∈ T. Then

d(x1, x2) ≤ pφ(Tx0, Tx1)T ≤ Dφ(Tx0, Tx1)T ≤ ad(x0, x1).

Also there is x3 ∈ X such that x3 ∈ TTx2(φ) for all x ∈ X and t ∈ T so that

d(x2, x3) ≤ pφ(Tx1, Tx2)T ≤ Dφ(Tx1, Tx2)T ≤ ad(x2, x1)

giving

(2.1) d(x2, x3) ≤ ad(x1, x2).
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By substitution, we have

d(x2, x3) ≤ a2d(x0, x1).

Continuing in this manner we have that for any natural number n

(2.2) d(xn, xn+1) ≤ and(x0, x1).

To show that any sequence {xn ∈ X} is Cauchy in X, let n, m ∈ N with m > n, then

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ and(x0, x1) + an+1d(x0, x1) + · · · + am−1d(x0, x1)

= an+n+1+···+m−1d(x0, x1) → 0 as n → ∞

Thus {xn} is a Cauchy sequence.

As a complete metric space there is a limit x∗ ∈ X for any sequence in X. By Lemmas

3.2 and 3.3

pφ(x
∗, TTx∗)T ≤ d(x∗, xn) + pφ(xn, TTx∗)T ≤ d(x∗, xn) + Dφ(TTxn−1, TTx∗)T

≤ d(xn, x∗) + ad(xn−1, x
∗)

→ 0 as n → ∞

Therefore x∗
φT

⊂ TTx∗ by Lemma 3.2.

To show (ii), we assume it is not unique i.e there is y∗
φT

, with x∗ 6= y∗ such that

y∗
φT

⊂ T
′
y∗ also. Then

d(x∗, y∗) ≤ pφ(TTx∗, TTy∗)T

≤ Dα(TTx∗, TTy∗)

≤ ad(x∗, y∗)
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So (1 − a)d(x∗, y∗) ≤ 0 implying that d(x∗, y∗) ≤ 0. Therefore x∗ = y∗.

To show (iii),

d(xn+1, x
∗) ≤ pφ(TTxn, TTx∗)

≤ Dφ(TTxn, TTx∗)

≤ ad(xn, x∗)

Thus limn→∞ d(xn, x∗) = 0. Therefore {x∗
n}

∞
n=0 converges strongly to a φ−T−Relative

fuzzy fixed point x∗ as (1 − a)d(xn, x∗) → 0 as n → ∞. The proof is complete. �

Theorem 2.1 above generalize, among others, the following results:

Corollary 2.1. Let X be a complete metric space and Tt : X → π(X)t a φT−Relative

fuzzy contraction map. Then there exist φ-T−Relative fuzzy fixed point x∗ ∈ X such

that x∗ ∈ Ttx
∗(φ)t.

Proof. The proof follows from the proof of Theorem 2.1 above if T = t. �

Remark 2.4. The existence of φ-fixed T−Relative fuzzy point of TT implies existence

of φ-fixed T−Relative fuzzy point of Tt for any t ∈ T but the converse is not true.

Corollary 2.2. (Theorem 3.2 of Estruch and Vidal, 2001). Let α ∈ (0, 1] and

X be a complete metric space and T be a fuzzy map from X into Q(X) satisfying

the condition that

Dα(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X and c ∈ (0, 1]. Then there exists fixed fuzzy point x∗ ∈ X for any

α ∈ [0, 1] such that x∗
α ⊂ Tx∗.

Proof. The proof follows from Theorem 2.1 above if for all x ∈ X, we have that

φ(x, t) = α for all t ∈ T, π(X)T = Q(X) and the T−Relative fuzzy sets are fuzzy

sets. �
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Corollary 2.3. (Theorem 2.1 of Heilpern, 1981). Let X be a complete metric

space and T : X → Q(X) such that

D(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X and c ∈ (0, 1]. Then there exists a fuzzy point x∗ ∈ X such that

{x∗} ⊂ Tx∗.

Proof. The proof follows from Theorem 2.1 if for all x ∈ X, we have that φ(x, t) = 1

for all t ∈ T, π(X)T = Q(X) and the T−Relative fuzzy sets are fuzzy sets. �

Corollary 2.4. (Nadler, 1969). Let X be a complete metric space. Let T : X → 2X

such that

H(Tx, Ty) ≤ cd(x, y)

for each x, y ∈ X and c ∈ (0, 1]. Then there exists a fixed point x∗ ∈ X such that

x∗ ∈ Tx∗.

Proof. The proof follows from Theorem 2.1 if for all x ∈ X, we have that φ(x, t) = 1

for all t ∈ T and π(X)T = 2X . �

The next results shows the relationship that exists between fixed points of Tt for

each t ∈ T and the fixed point of TT.

Theorem 2.2. Let X be a complete metric space and x∗
αti

the α − T−Relative

fuzzy fixed points of the T−Relative fuzzy maps Tti : X → π(X)ti for each ti ∈ T,

i = 1, 2, . . . , n, n ∈ N. Suppose x∗
αT

is the α − T−Relative fuzzy fixed point of

TT : X → π(X)T. Then ∩n
i=1x

∗
αti

= x∗
αT

.

Proof. Let p∗α ∈ ∩n
i=1x

∗
αti

for any α ∈ (0, 1]. Then p∗α ⊂ Tti for all ti ∈ T. This implies

that p∗ ∈ Tti(α) for all ti ∈ T. So p∗ ∈ ∩n
i=1Tti(α). But ∩n

i=1Tti(α) = TT(α). Thus

p∗α ⊂ TT. We have that ∩n
i=1x

∗
αti

⊂ x∗
αT

.

Similarly, we can prove that x∗
αT

⊂ ∩n
i=1x

∗
αti

and the proof is complete. �
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Next, we prove that a sequence of fixed points of a T−Relative fuzzy map converge

for a sequence of αn with n ≥ 1 converging to an α > 0.

Theorem 2.3. Let X be a complete metric space and x∗
αnT

the αn − T−Relative

fuzzy fixed points of the T−Relative fuzzy map TT : X → π(X)T for each n ≥ 1 with

n ∈ N. If αn is a nondecreasing sequence converging to α > 0, then

x∗
αT

= ∩n≥1x
∗
αnT

.

Proof. Since each x∗
αnT

is the αn − T−Relative fuzzy fixed points of TT for each

n ∈ N, then x∗ ∈ TTx∗(αn) for each n ∈ N. Now TTx∗(α) = ∩n≥1TTx∗(αn) as each

TTx∗(αn) ∈ π(X)T and αn is a nondecreasing sequence converging to α > 0. So

x∗
αT

= ∩n≥1x
∗
αnT

as x∗ ∈ TTx∗(αn) for each n ∈ N. The proof is complete. �

The following result is immediate from Theorem 2.3 above.

Corollary 2.5. Let X be a complete metric space and x∗
αnt

the αn − T−Relative

fuzzy fixed points of the T−Relative fuzzy map Tt : X → π(X)t for each n ≥ 1 with

n ∈ N. If αn is a nondecreasing sequence converging to α > 0, then

x∗
αt

= ∩n≥1x
∗
αnt

.

Proof. The proof follows from the proof of Theorem 2.3 above for T = t. The proof

is complete. �

Lastly, we prove the convergence of a sequence of fixed points for a sequence of

T−Relative fuzzy maps. The property of uniform convergence of a sequence of func-

tions is a requirement.

Theorem 2.4. Let X be a complete metric space and x∗
αti

the α−T−Relative fuzzy

fixed points of a sequence of T−Relative fuzzy maps Tti : X → π(X)ti for each ti ∈ T,

with ti ≤ ti+1, i ∈ N. Then x∗
αti

→ x∗
α as ti → sup{T} if Tti converges uniformly to a

c-contraction T : X → π(X) with FT (α) = {x∗
α} where α ∈ (0, 1].
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Proof. Let ε > 0 and choose a natural number I such that ti ≥ tI then by the uniform

convergence of Tti to T we have

sup
x∈X

Dα(Ttix, Tx) < ε(1 − c) < ε

where c is the constant coefficient. Then for all ti ≥ tI we have

d(x∗
αti

, x∗
α) ≤ sup

x∈X

Dα(Ttix
∗
αti

, Tx∗
α)

≤ sup
x∈X

Dα(Ttix
∗
αti

, Tx∗
αti

) + sup
x∈X

Dα(Tx∗
αti

, Tx∗
α)

< ε(1 − c) + c sup
x∈X

d(x∗
αti

, x∗
α)

< ε + c sup
x∈X

d(x∗
αti

, x∗
α)

which gives

d(x∗
αti

, x∗
α) < ε for all ti ≥ tI

Thus x∗
αti

→ x∗
α as ti → sup{T}. The proof is complete. �

2.3. Examples. In this section some examples are given to illustrate some of our

introduced concepts and results.

The example below shows the computation of the metrics on a collection of approxi-

mate quantities using the Definitions 2.2-2.5. It verifies Remark 2.1(iii) also.

Example 2.1. Suppose on X = {x : 0.5 ≤ x ≤ 10}, we define T−Relative fuzzy sets

R and R
′
of the real numbers close to 1 relative to the interval [1, 4] as µX(x, t) =

exp(−1.2(x − 1)2σ(t)) and µ
′

Y (y, t) = 1
|σ(t)+y|

for all x, y ∈ R respectively where R is

equipped with the usual metric. Let W (X) = {R, R
′
}. If α = 0.4, then R(0.4) =

[0.4, 1.2] and R
′[(0.4) = [0.8, 5.2]. So

(i)

p0.4(R, R
′

) = inf
y∈R

′ (0.4),x∈R(0.4)
d(x, y) = inf

y∈[0.8,5.2],x∈[0.4,1.2]
| x − y |=| 1.2 − 0.8 |= 0.4
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(ii)

δ0.4(R, R
′

) = sup
y∈R

′
(0.4),x∈R(0.4)

d(x, y) = sup
y∈[0.8,5.2],x∈[0.4,1.2]

| x − y |=| 5.2 − 0.4 |= 4.8

(iii)

D0.4(Tx, Ty) = D0.4(R
′

, R) = H0.4((R
′

, R)

= max{ sup
x∈R(0.4)

p0.4(x, R
′

), sup
y∈R

′ (0.4)

p0.4(y, R)}

= max{ sup
x∈R(0.4)

inf
y∈R

′ (0.4)
d(x, R

′

(0.4), sup
y∈R

′ (0.4)

inf
x∈R(0.4)

d(y, R(0.4)}

= max{ sup
x∈R(0.4)

inf
y∈[0.8,5.2]

| x − [0.8, 5.2] |, sup
y∈R

′(0.4)

inf
x∈[0.4,1.2]

| y − [0.4, 1.2] |}

= max{0.4, 4} = 4

The example below shows that as we vary α and t, we have varying T−Relative

fuzzy fixed point for a T−Relative fuzzy map.

Example 2.2. Suppose X = {x : 0 ≤ x ≤ 1} with d(x, y) =| x− y | for all x, y ∈ X,

then (X, d) is a metric space.

Suppose also that Wα(X) is a sub-collection of approximate quantities of T−Relative

fuzzy sets R and R
′
of the real numbers close to 1 relative to the interval [1, 4] with

membership functions

µX(x, t) = exp(−1.2(x − 0.05)2σ(t))

and

µ
′

X(x, t) =
1

2 | σ(t) + x |

for all x ∈ R and t ∈ [1, 4] respectively.

Define T : X → Wα(X) such that Ty = R and Tz = R
′
for any y, z ∈ X , where
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y ∈ [0, 1
2
) and z ∈ [1

2
, 1].

Thus the α − T−Relative fuzzy fixed point of T is any x∗ ∈ X such that x∗
α ⊂ Tx∗.

This is equivalent to finding x∗ ∈ X such that x∗ ∈ Tx∗(α).

(i) Suppose α = 0.82, then R(0.82) = [0, 0.36] and R
′
(0.82) = ∅ for all t ∈ [1, 4].

Clearly the set of points of [0, 1
2
) ∩ Ty(0.82) = [0, 1

2
) ∩ R(0.82) = [0, 1

2
) ∩

[0, 0.36] = [0, 0.36]

Also the set of points of [ 1
2
, 1] ∩ Tz(0.82) = [ 1

2
, 1] ∩ R

′
(0.82) = [1

2
, 1] ∩ ∅ =

[1
2
, 1] ∩ ∅ is empty. So the 0.82 − T−Relative fuzzy fixed point is the set of

points of [0, 0.36].

(ii) Suppose α = 0.85 and t = 2, then R(0.82) = [0, 0.73] and R
′
(0.82) = [0.76, 1].

Clearly the set of points of [0, 1
2
) ∩ Ty(0.82) = [0, 1

2
) ∩ R(0.82) = [0, 1

2
) ∩

[0, 0.73] = [0, 1
2
]

Also, the set of points of [ 1
2
, 1]∩Tz(0.82) = [ 1

2
, 1]∩R

′
(0.82) = [1

2
, 1]∩[0.76, 1] =

[0.76, 1]

Therefore all points [0, 1
2
] and [0.76, 1] are the 0.82 − T−Relative fuzzy fixed

points of X for t = 2.

(iii) Let α = 0.7, then R(0.7) = [0, 0.51] and R
′
(0.7) = ∅.

Clearly the set of points of [0, 1
2
) ∩ Ty(0.45) = [0, 1

2
) ∩ R(0.45) = [0, 1

2
) ∩

[0, 0.51] = [0, 1
2
).

Also the set of points of [ 1
2
, 1] ∩ Tz(0.7) = [ 1

2
, 1] ∩ R

′
(0.7) = [1

2
, 1] ∩ ∅.

Therefore all points x∗ ∈ [0, 0.5] are the 0.7 − T−Relative fuzzy fixed points

of X.
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(iv) Let α = 0.7 and t = 2, then R(0.7) = [0, 0.82] and R
′
(0.7) = [0, 1].

Clearly the set of points of [0, 1
2
)∩Ty(0.7) = [0, 1

2
)∩R(0.7) = [0, 1

2
)∩[0, 0.82] =

[0, 1
2
).

Also, the set of points of [ 1
2
, 1]∩Tz(0.7) = [ 1

2
, 1]∩R

′
(0.7) = [1

2
, 1]∩[0, 1] = [1

2
, 1].

Therefore all points x∗ ∈ [0, 1] are the 0.7 − T−Relative fuzzy fixed points of

T at t = 2.

The next example shows a T−Relative fuzzy map that satisfies the contraction

condition of Theorem 2.1 and Corollary 3.1 above for some α ∈ (0, 1] and t ∈ T.

Example 2.3. Suppose X = [0, 1], then (X, d) is a metric space with d(x, y) =|

x − y | for all x, y ∈ X. Let Wα(X) be a sub-collection of approximate quantities of

T−Relative fuzzy set relative to the interval [1, 4].

Define the T−Relative fuzzy map T : X → Wα(X) such that

Tx(z, t) =



















0 0 ≤ z < 1
7

0.2
t

1
7
≤ z ≤ x+1

7

0.8
t

x+1
7

< z ≤ 1.

(i) Suppose α = 0.2, then Tx(0.2) = [ 1
7
, x+1

7
] for all t ∈ [1, 4]. Then

Dα(Tx, Ty) = H(Tx(α), T y(α)) =
1

7
| x − y |

Thus the contraction condition holds and so T has 0.2 − T−Relative fuzzy

fixed point.

(ii) Suppose α = 0.26, then Tx(0.26) = [x+1
7

, 1] for all t ∈ [1, 4]. Then

Dα(Tx, Ty) = H(Tx(α), T y(α)) =
1

7
| x − y |
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Thus the contraction condition holds and so T has 0.26 − T−Relative fuzzy

fixed point.

(iii) Suppose α = 0.1, then Tx(0.1) = [ 1
7
, 1] for all t ∈ [1, 4]. Then

Dα(Tx, Ty) = H(Tx(α), T y(α)) =
1

7
| x − y | .

Thus the contraction condition holds and so T has 0.1 − T−Relative fuzzy

fixed point.

(iv) Suppose α = 0.1, then Tx(0.1) = [x+2
14

, x+8
14

] for t = 2. Then

Dα(Tx, Ty) = H(Tx(α), T y(α)) =|
x + 2

14
−

y + 8

14
| .

≤ |
x − y − 6

14
|<|

x − y

14
|=

1

14
d(x, y).

Thus the contraction condition holds and so T has 0.1−fuzzy fixed point at

t = 2.

The following example illustrates Remark 2.4 above.

Example 2.4. Let X = [a, b] with the metric d(x, y) =| x − y | for all x, y ∈ X. Let

α ∈ 1
4

and T = {3, 5}. Define T : X → Wα(X) by

Tx(z, t) =



















1
t

z = a

α
2t

z ∈ (a, b)

α
t

z = b.

So Tx(0.2){3,5} = {a}, Tx(0.3){3,5} = ∅, Tx( 1
40

){3,5} = [a, b], Tx( 1
24

){3,5} = {a, b},

Tx(0.3)3 = {a}, Tx(0.3)5 = ∅, Tx( 1
24

)3 = [a, b]. Clearly, aα{3,5}
is α − T−Relative

fuzzy fixed point, aα3
and aα5

are also α − T−Relative fuzzy fixed point .

Now Tx(0.3){3,5} = ∅ even though Tx(0.3)3 = {a}. Thus Remark 2.4 holds.

The following example illustrates Theorem 2.1 above.
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Example 2.5. Let T = {1, 3
4
, 1

2
, 1

4
}, a, b, c ∈ X, α ∈ (0, 1] and TT : X → π(X)T such

that

TTa(x, t) =



















t x = a

tα
2

x = b

tα x = c.

Thus for each ti ∈ T we have Tti : X → π(X)ti such that

Ttia(x, t) =



















ti x = a

tiα
2

x = b

tiα x = c.

Suppose α = 1
2

then TTa(1) = ∅ but T1a(1) = {a} even though T 3

4

a(1) = T 1

2

a(1) =

T 1

4

a(1) = ∅.

TTa(3
4
) = ∅ but T1a(3

4
) = T 3

4

a(3
4
) = {a} even though T 1

2

a(3
4
) = T 1

4

a(3
4
) = ∅.

Also TTa(3
4
) = ∅ but T1a(1

2
) = {a, c}, T 3

4

a(1
2
) = T 1

2

a(1
2
){a} even though T 1

4

a(1
2
) = ∅.

But TTa(1
4
) = {a}, T1a(1

4
) = {a, b, c}, T 3

4

a(1
4
) = T 1

2

a(1
4
) = {a, c} and T 1

4

a(1
4
) = {a}.

Thus TTa(1
2
) = {a} = ∩4

i=1Ttia(1
4
). Therefore Theorem 3.3 above holds.
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