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CONFORMAL RICCI SOLITONS ON 3-DIMENSIONAL
TRANS-SASAKIAN MANIFOLD

SOUMENDU ROY, ARINDAM BHATTACHARYYA

ABSTRACT. In this paper we have studied and obtained results on Conformal
Ricci solitons in 3-dimensional trans-Sasakian manifold M satisfying R(£, X).B =
0,B(¢,X).85=0,8(,X).R=0,R(¢ X).P=0and P(¢,X).S =0, where B and P

are C-Bochner and Pseudo-projective curvature tensor respectively.

1. INTRODUCTION

The concept of Ricci flow and the proof of its existence was introduced by Hamil-
ton [9] in 1982. This concept was developed to answer Thurston’s geometric conjec-
ture which says that each closed three manifold admits a geometric decomposition.
Hamilton also [9] classified all compact manifolds with positive curvature operator in

dimension four. The Ricci flow equation is given by

99 _

Tl -25

(1.1)

on a compact Riemannian manifold M with Riemannian metric g.

A self-similar solution to the Ricci flow [9], [15] is called a Ricci soliton [10] if it

moves only by a one parameter family of diffeomorphism and scaling. The Ricci
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soliton equation is given by
(1.2) Lyvg+2S =2\g,

where £y is the Lie derivative, S is Ricci tensor, g is Riemannian metric, V is a
vector field and A is a scalar. The Ricci soliton is said to be shrinking as A is positive,
steady as A is zero and expanding as A is negative.

In [14] and [16] authors have studied various types of Ricci Soliton in their papers.

The concept of conformal Ricci flow [7]was developed by A.E. Fischer during 2003-
2004 which is a variation of the classical Ricci flow equation that modifies the unit
volume constraint of that equation to a scalar curvature constraint. The conformal

Ricci flow on M is defined by the equation [7]

9g N
(1.3) E+2(S+n)_ g

and r(g) = —1,
where M is considered as a smooth closed connected oriented n-manifold, p is a scalar
non-dynamical field(time dependent scalar field), r(g) is the scalar curvature of the

manifold and n is the dimension of manifold.

The notion of conformal Ricci soliton equation was introduced by N. Basu and A.

Bhattacharyya [2] in 2015 and the equation is given by

(1.4 £vg+25= [0~ (p+ g

where )\ is constant.
The equation is the generalization of the Ricci soliton equation and it also satisfies

the conformal Ricci flow equation.
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In the paper [6],the authors studied a 3-dimensional trans-Sasakian manifold M ,which
admits Conformal Ricci soliton with the vector field V is pointwise collinear with the
vector field € and then they also proved under the same condition almost Conformal
Ricci soliton reduces to Conformal Ricci soliton. They showed if it admits Conformal
gradient shrinking Ricci soliton then the manifold becomes Einstein.

In paper [1] authors studied various curvature properties on Kenmotsu manifold.

So motivated from these two papers we have established some interesting results on 3-
dimensional trans-Sasakian manifold admitting Conformal Ricci soliton.Here we have
studied 3-dimensional trans-Sasakian manifold admitting Conformal Ricci soliton and
satisfying the conditions R(¢, X).B = 0,B(¢,X).S =0, S(£, X).R=0,R(¢(, X).P=0
and P(£,X).S =0, where B and P are C-Bochner and Pseudo-projective curvature

tensor respectively.

2. PRELIMINARIES

Let M be a connected almost contact metric manifold with an almost contact
metric structure (¢, &, 7, g) where ¢ is a (1,1) tensor field, £ is a vector field, 7 is a

1-form and g is the compatible Riemannian metric such that

(2.1) ¢*(X) = =X +n(X)&§n(§) = Linod =065 =0,
(2.2) 9(6X, 0Y) = g(X,Y) = n(X)n(Y),

(2.3) 9(X,9Y) = —g(¢X,Y),

(2.4) 9(X, &) = n(X),

for all vector fields X,Y € x(M).



92 SOUMENDU ROY, ARINDAM BHATTACHARYYA

An almost contact metric structure (¢,£,7n,9) on M is called a trans-Sasakian
structure [13], if (M x R, J,G) belongs to the class Wy [8], where J is the almost
complex structure on M x R defined by J(X, f4) = (¢X — f&,n(X)4) for all vector

fields X on M and smooth functions f on M x R. It can be expressed by the condition
[4],

(2.5) (Vx9)Y = a(g9(X,Y)§ —n(Y)X) + B(g(¢X,Y)§ —n(Y)pX),

for some smooth functions «, f on M and we say that the trans-Sasakian structure

is of type («, ). From the above expression we can write

(2.6) Vi€ =—apX + (X —n(X)E),

For a 3-dimensional trans-Sasakian manifold the following relations hold [6]:

(2.8) 208 + o = 0,
(2.9) S(X,8) = (2(a® = ) = €8)n(X) — XB — (¢X)a,

S(LY) = (5+E8—(?=F)g(X.Y) = (5 + €8 —3(a” = B)n(X)n(Y)
(2100 = (YB+(6Y)a)n(X) — (XB+ (6X)a)(Y).

where S denotes the Ricci tensor of type (0,2), r is the scalar curvature of

the manifold M and «, # are smooth functions on M.

For «, f = constant the following relations hold [6]:

211 S(XLY) = (5= (@ = P)g(X,Y) = (5 = 3(a” = F)n(X)n(Y),

(2.12) S(X,€) =2(a” — f")n(X),
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(2.13) R(X,Y)¢ = (a® = %) [n(Y)X — n(X)Y],

(2.14) R, X)Y = (a® = %)[g(X,Y)§ — n(Y)X],
(2.15) R(&, X)¢ = (a® = %) [n(X)¢ — X],

(2.16) N(R(X,Y)Z) = (a® = 39)[g(Y, Z)n(X) — g(X, Z)n(Y)],

where R is the Riemannian curvature tensor.

(2.17) QX = (5 — (o = )X = (5 = 3(a” = A)n(X )&,

where @ is the Ricci operator given by S(X,Y) = g(QX,Y).
Again,
(£eg)(X,Y) = (Veg)(X,Y) —ag(¢X,Y) +289(X,Y) — 20n(X)n(Y)
- ag(X7 ¢Y)
= 20g(X,Y) = 26n(X)n(Y).

(2.18)

Putting the above value in the conformal Ricci soliton equation (1.4) and

taking n = 3 we get,

S(XY) = 523~ 0+ Dla(X,Y) — 5[269(X,Y) — 26n(X)n(Y)
(219) = Dy )~ Blg(X,Y) + Ba(X)n(Y).

From the above equation, we have,

1 2

(220) QX = A= 5(p+3) = BIX + Bn(X)E,

(221) S(6) =~ o+ )In(X),
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1 2
(2.22) r=3R-5p+3)-0+5
Thus we can state the following proposition.
Proposition 2.1 : If a 3-dimensional trans-Sasakian manifold admits

conformal Ricci soliton, then the manifold becomes an n-Einstein manifold.

3. CONFORMAL RICCI SOLITON IN A 3-DIMENSIONAL TRANS-SASAKIAN

MANIFOLD SATISFYING R(£,X).B=0

Bochner introduced a Kahler analogue of the Weyl conformal curvature tensor
by purely formal considerations, which is now well known as the Bochner curvature
tensor [5]. A geometric meaning of the Bochner curvature tensor is given by Blair
in [3] by using the Boothby-Wangs fibration. In 1969, Matsumoto and Chuman [12]
constructed the notion of C-Bochner curvature tensor in a Sasakian manifold and
studied its several properties.

The C-Bochner curvature tensor [11] B in M is defined by,

B(X,Y)Z = R(X,Y)Z + é[g(X, 2)QY — S(Y, 2)X — g(Y, Z2)QX
+ S(¢X, Z)pY +2S(¢X,Y)oZ

+29(0X,Y)QoZ +n(Y)n(Z2)QX —n(Y)S(X, 2)¢

(3.1)
Fn(X)S(Y, 26~ n(X)n(2)QY]
— 22 10(6X, 2)6Y — g(6, 2)6X

+29(¢X,Y)pZ]

+ %[n(y)g(X, Z2)§ = n(Y)n(Z)X
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+n(X)n(Z2)Y —n(X)g(Y, Z)¢]

- 22X, 2)Y — g(¥, 2)X),

where D = %2. Taking Z = &, we get,

BIXY)E = ROGY)E+ (lg(X,6)QY — S(Y,0X — g(¥,)QX
b S(LOY +9(QX.Q0Y — S8, 00X — g(6Y.0)QoX
56X, 0V +25(5X,Y)6¢

+ 29(¢ X, Y)QdE + (Y )n(€)QX —n(Y)S(X,€)E
+ n(X)S(Y, )& —n(X)n(€)QY]

D
P2 10X.€)6 — g(oY.£)0X

+ 290X, Yo
0 a(X. 8 (¥ (€)X

+ (X)€Y —n(X)g(Y, )]
D—4

- T[Q(X, §Y —g(Y,6)X].

Now using (2.13),(2.19),(2.20) in the above equation, we get,

(32 BOCY)E=[(5— )+ cO— 2o+ )+ n(X)Y — (V)X

From (3.1) we have,

WBXY)Z = n(ROX,Y)Z) + Slg(X, 2)0(@QY) - SV, Z)n(X)

—g(Y, Z)n(QX) + S(X, Z)n(Y) + g(¢X, Z)n(QeY)

95
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= S(0Y, 2)n(¢X) — g(6Y, 2)n(QeX) + S(¢X, Z)n(¢Y)
F25(0X, V)(62) + 29(6X., VIn(Q0Z) + n(¥ In(Z)n(QX)
— (V)S(X, Z)n(€) +n(X)S(Y: Z)u(€) ~ n(X)n(Z)n(QY )
~PE21006X, (oY) — (6Y, Zn(6X)
+ 290X, Y)n(67)

D
G

+ —[n(Y)g(X, Z)n(&) —n(Y)n(Z)n(X)

+n(XOn(Z)n(Y) —n(X)g(Y, Z)n(§)]

D -1

- 5 (X, 2m(Y) = g(V, Z)n(X)].

Using (2.16),(2.19),(2.20),(2.21) in above equation and taking n(§)=1, we get,

n(B(X,Y)Z = (6% = o®)[g(X, Z)n(Y) — g(Y, Z)n(X))]

Simplifying,we get,

(34) n(B(X.Y)Z) = (5~ )+ (A= 50+ )+ S][o(X, ZIn(Y) — g(¥: Zpn(X)].

We assume that the condition R(§, X).B = 0, then we have,

(3.5) R(& X)B(Y, Z)W — B(R(¢, X)Y, Z)W — B(Y, R(¢, X)Z)W

— B(Y, Z)R(£, X)W = 0.
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Using (2.14) in (3.5), we get,

(3.6) n(B(Y, Z)W)X —g(B(Y, Z)W, X)§ + g(X,Y)B(¢, 2)W
—n(Y)B(X, 2)W + g(X, Z)B(Y, )W — n(Z)B(Y, X)W

+9(X,W)B(Y, Z)§ —n(W)B(Y, Z)X = 0.

By taking an inner product with ¢ and using (2.1), we get,

(3.7) n(B(Y, Z)W)n(X) = g(B(Y, Z)W, X) + g(X, Y)n(B(&, 2)W)
—n(Y)n(B(X, Z)W) +g(X, Z)n(B(Y, )W) = n(Z)n(B(Y, X)W)

+ (X, Win(B(Y, 2)§) = n(W)n(B(Y, 2)X) = 0.

By using (3.2) and (3.4) in (3.7), we get,

(3:8) (62— + cO— 5+ 2) + ¥, W)g(Z, X) — o(Z,W)g(¥, X))

— g(B(Y, Z)W, X) = 0.

Now using (3.1) in (3.8), we get,

(5% = %) + g (A= 50+ 2) + Sllol¥ W)g(Z, X) - g(Z,W)g(¥, X)]
—g(RY, Z)W, X) = =[g(Y, W)S(Z, X) = S(Z,W)g(Y, X)
~g(ZW)S(Y, X) + (V. W)g(Z, X) + g(oY. W)S(67. X)

—S(¢Z,W)g(oY,X) — g(¢Z,W)S5(¢Y, X) + S(¢Y, W)g(6Z, X)
+25(Y, 2)9(X, oW) + 29(9Y, Z)S(X, oW)

+n(W)n(2)S(Y, X) = n(X)n(2)S(Y, W) +n(Y)n(X)S(Z, W)
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W n(¥)S(2, X)) + L2 (g(0Y. W)g(62, X) — 962, W)g(0¥, X)

g HHONZOWX) - SOV, W)~ (W )n(Z)g(Y, X)
+n(W)n(Y)g(Z, X) = n(Y)n(X)g(Z, W]
D—4

+T[9(Y> W)Q(Z7X) - g(Z, W)9<X7 Y)] =0.

Taking X =Y = ¢; and summing over i = 1,2, 3,w here {¢;} is an orthonormal basis

of T,(M) and by using (2.19), (2.20), (2.21) and on simplification, we get,

(3.10) S(Z,W)

=[5+ (= 5+ 2) = ) = 2A(F @) + 5 - 5+ 2) + )
-2z, W)
PP L S+ = ) s 5+ S (Z)n(W)

Putting Z = W = ¢ and the value of D in (3.10) and by using (2.19) and (2.22),

we get,

(3.11) D= 5o+ = 2a>— ) =5

As for Conformal Ricci soliton A is constant,so if we use equation (3.5) of [6] in

(3.11), we get,
(3.12) B =0.
Then from (3.11) we get,

1 2
(3.13) A:2a2+§(p+§).

So we can state the following theorem:

Theorem 3.1. If a 3-dimensional trans-Sasakian manifold satisfies R(&, X).B = 0

and admits Conformal Ricci soliton, then the nature of the soliton behaves as:
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(a)If p=—2 — 402, then X =0 and the Ricci soliton is steady.
(b)If p > —% — 4a?, then X\ > 0 and the Ricci soliton is shrinking.
(c)If p < —% — 402, then X\ < 0 and the Ricci soliton is expanding.

Also the manifold reduces to a 3-dimensional a-Sasakian manifold.

4. CONFORMAL RICCI SOLITON IN A 3-DIMENSIONAL TRANS-SASAKIAN

MANIFOLD SATISFYING B(§,X).S =0

The condition B(&, X).S = 0 implies that,
(4.1) S(B(¢, X)Y, Z) + S(Y, B¢, X)Z) = 0.

By using the expression of S(X,Y) from (2.19) in (4.1), we get,

(12) =5+ 2) ~ Ala(BE XY, 2) + Sn(Z)n(BE, X))
1 2

+ =5+ 3) = By, B, X)2) + Bn(Y)n(B(€, X)Z) = 0.

The above equation can be written after taking [\ — %(p + %) — (] common from first

and third components and [ from second and fourth components as,

(13) P~ 30+ )~ Bllo(B(E X)Y, 2) + o(Y, BE, X)2)

= =BI(Z)n(B(E, X)Y) +n(Y)n(B(&, X)Z)].
By using (3.1) and (3.4) in (4.3), we get,

(4.4)
1 2 4 1 1

BUF — @) + cO = 3+ 3) + 5} — A= s+ HA = 5+ 3) — )

X 2n(X)n(Y)n(Z) = (9(X, Z)n(Y) + (X, Y)n(Z))] = 0.
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Now if we put X =Y = ¢ in (4.4),then the equation is identically satisfied and we
can not get the value for .
So taking X =Y = e; and summing over i = 1,2, 3, where {e;} is an orthonormal

basis of T,,(M) and also taking the condition n(Z) # 0, we get,

(15) U~ 0% + 5= S+ ) + 5} === 5o+ 2 HA- 5 (p+3) 5} =0.

Now if we use equation (3.5) of [6] in (4.5), where A is constant for Conformal Ricci

soliton, then we get,

1 2 I} JoR

So we can state the following theorem:

Theorem 4.1. If a 3-dimensional trans-Sasakian manifold satisfies B(£, X).S = 0

and admits Conformal Ricci soliton, then the nature of the soliton behaves as:

(a)lf p= —% + B8 F 24/40 + %2, then A = 0 and the Ricci soliton is steady.

(b)If p > —% + 08 F 24/408 + %2, then X\ > 0 and the Ricci soliton is shrinking.
\/7

(c)If p < —% + 6 F 24/48 + %2, then A < 0 and the Ricci soliton is expanding.

5. CONFORMAL RICCI SOLITON IN A 3-DIMENSIONAL TRANS-SASAKIAN

MANIFOLD SATISFYING S(§, X).R =0
Using the following equation,
S((X,O)-R)(UVIW = (X As&).R)(U, V)W
= (X AsERU V)W + R((X Ag U, V)W
+ R(U, (X As V)W + R(U,V)(X As )W,
(5.1)
where the endomorphism X Ag Y is defined by,

(5.2) (X AsY)Z = S(Y,Z2)X — S(X, 2)Y,



CONFORMAL RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLD 101

we have ,

S((X,€).R)U V)W = S(¢ R(U,V)W)X — S(X, R(U,V)W)E
+ S(EU)RX, V)W — S(X,U)R(E, V)W
+ S(EV)RU, X)W — S(X,V)R(U, )W
+ S(EW)R(U, V)X — S(X,W)R(U, V).

(5.3)

Now by using the condition S(§, X).R = 0 and the equations (2.19), (2.21), we get,

1 2 1 2

64) [\ 5+ DR VINX = (A= 5+ 3) = Blg(X, RO, V)IV)

+Bn(X(RUVIWNE+ A= g o+ 20 RX VI — (A 5 (o) —Bla(X, )
+BnCO(U)IRIE VIW 4+ =5 (0 2V R, X)W — (A= 5 (p+3) ~ Blg(X, V)
+BnCOMV)IRUOW + =5 (o V)R, V)X ~ (A= 50+ )~ Bla(X, )

+ Bn(X)n(W)R(U, V)E = 0.

By taking inner product with ¢ and using (2.13), (2.14), (2.15) and (2.16), we get,

(5:3) [\ 50+ 3) = Bl(a? = B gV, W)n(U) = g(U, W (V)]

~ 2t 2) — Bl B VI + [\~ Lo+ (e — gV Wn(U)n(X)

—g(UW)n(V)n(X) + g(V, X)n(W)n(U) — g(U, X)n(W)n(V)]
= 5o+ )81 = Pg(X, U)g(V. W)~ g(X, U)W )n(V)
g4V IN(U) — g(X, V)g(U, W] = B(0? ~ B)n(X)n(U)g(V. V)

—n(X)n(V)g(U,W)] = 0.
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Taking X =Y = ¢; and summing over ¢ = 1,2, 3,where {¢;} is an orthonormal basis

of T,(M), we get,

(5:6) =5+ 20 = PV Inr) = gV, W) = A= S+ 2) = ASV, W)
F = G+ 207 — )V, W) — 39(V)n(W)] = 0.

Putting V =W = ¢, we get,

6.7 A= 5+ 2O 5+ 2) = 8) +2(a? — )] =0.

Now as for Conformal Ricci soliton A is constant, so if we use equation (3.5) of [6] in
(5.7), then we get,

1 2 1 2

(5.8) (A — §(p+§)”2(/\— §(p+§)) —p]=0.

B+p+3
.

This implies that, either A = (p + 2) or A =

So we can state the following theorem:

Theorem 5.1. If a 3-dimensional trans-Sasakian manifold satisfies S(&, X).R = 0
and admits Conformal Ricci soliton, then the nature of the soliton behaves as:
Case-1: When X\ depends only on p.

(a)If p= —2,then A = 0 and the Ricci soliton is steady.

(b)If p > —%,then A > 0 and the Ricci soliton is shrinking.

(c)If p < —%,then A < 0 and the Ricci soliton is expanding.

Case-11: When \ depends on both p and (3.

(If B+p= —%,then A = 0 and the Ricci soliton is steady.

(e)If B+p > —%,then A > 0 and the Ricci soliton is shrinking.

(FIf B+p< —%,then A < 0 and the Ricci soliton is expanding.
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6. CONFORMAL RICCI SOLITON IN A 3-DIMENSIONAL TRANS-SASAKIAN

MANIFOLD SATISFYING R(£, X).P =0
The Pseudo-projective curvature tensor P in M is defined by,

P(X,Y))Z = aR(X,Y)Z+b[S(Y,Z)X — S(X,Z)Y]

_ ;(; +b)[g(Y, 2)X — g(X, 2)Y],

(6.1)

where a,b # 0 are constants.
Taking Z = ¢ in (6.1) and using (2.13), (2.19), (2.21), we get,

(62) PX,Y)E= [al0® ) +b{A— Lo+ )} — (5

)} = 25 + Dl X = n(X)Y)

Now using (2.16), (2.19), (2.20) and (2.21) in (6.1), we get,
WP(X,Y)Z) = [ala®~ 8+ A= 50+ 2) — B} — (5 + D)

x [g(Y, Z)n(X) — g(X, Z)n(Y)].

(6.3)
We assume that the condition R(¢, X).P = 0, then we have,
(6.4) R(¢, X)P(U, V)W — P(R(&, X)U, V)W — P(U,R(&, X)V)W

— P(U,V)R(&, X)W = 0.
Now using (2.14) in (6.4) and taking the condition o # 32, we get,
(6.5) g(X, P(UV)W)§ —n(P(UV)W)X — g(X,U)P(§, V)W +n(U)P(X,V)W

— g(X, V)PU, )W +n(V)P(U, X)W — g(X,W)P(U,V)§ +n(W)P(U,V)X

= 0.
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By taking inner product with &, we get,

(6.6) g(X, P(U V)W) —n(P(UV)W)n(X) — g(X,U)n(P(&, V)W)
+n(U)n(P(X, V)W) = g(X, V)n(P(U, )W) + n(V)n(P(U, X)W)

— g(X, W)n(P(U,V)§) +n(W)n(P(U,V)X) = 0.
Now by using (6.2) and (6.3) in (6.6), we get,

(67) 9(X, PU,VIW) ~[al0® — 5%) + A~ 5(p-+ 2) — 5} — =(5 +b)

X [g(V, W>9<X7 U) - g(U7 W)g(Xv V)] = 0.
Using (6.1)in (6.7), we get,

(6.8)

ag(X, R(U, V)W) 4 b{A — 5 (p+ =) — BHo(V,W)g(X, U) — g(U, W)g(X, V)}

+ B{n(V)n(W)g(X,U) = n(U)n(W)g(X,V)}] — [a(e? —ﬁ2)+b{k—l(p+ ) B}]

x [g(V, W>9<X7 U) - g(U7 W)g(Xv V)] = 0.

Taking X = U = ¢; and summing over ¢ = 1,2, 3,where {¢;} is an orthonormal basis

of T,(M) and on simplification, we get,

(69) aS(V,IV) + 620\~ 3 (p+ 3) — F}o(V. W) + 26n(Vn(')
~2la(a ~ %)+ A~ 5(p+ 2) ~ BY]g(V, W) =0,

Putting V =W = ¢ in (6.9) and using (2.21),(2.22), we get,

(6.10) AN~ 5o+ )~ 2o — )] + 205 =0
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Now if we use equation (3.5) of [6] in (6.10), where A is constant for Conformal Ricci

soliton, then we get,

(6.11) B=0Fb#0].
Then from (6.10) we get,

(6.12) )\:2042+%(p+§)['.'a7é0].

So we can state the following theorem:

Theorem 6.1. If a 3-dimensional trans-Sasakian manifold satisfies R(¢,X).P = 0
and admits Conformal Ricci soliton, then the nature of the soliton behaves as:
(a)If p=—2 — 402, then A = 0 and the Ricci soliton is steady.

(b)If p > —2 — 4a?, then X > 0 and the Ricci soliton is shrinking.

(c)If p < —% — 402, then X\ < 0 and the Ricci soliton is expanding.

Also the manifold reduces to a 3-dimensional a-Sasakian manifold.
7. CONFORMAL RICCI SOLITON IN A 3-DIMENSIONAL TRANS-SASAKIAN
MANIFOLD SATISFYING P(¢, X).S =0

The condition P(£, X).S = 0 implies that,
(7.1) S(P(E, X)Y, 2) + S(Y, (£, X)7) = 0.

Now using (2.19) in (7.1), we get,
(12) 50+ 2) ~ Allg(P(E&, X)Y, 2) + (¥, P(E, X))
+BI(Z)n(P(E, X)Y) +n(¥)(P(E, X)2)] = 0.

Using (6.1),(6.2) in (7.2) and taking the condition 3 # 0, we get,

r. a

(7.3) [a(a® = 5%) - 35+ X [20(X)n(¥)n(Z) = g(X, Z)n(Y) = (X, Y)n(Z)] = 0.
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Now if we put X =Y = ¢ in (7.3),then the equation is identically satisfied and we
can not get the value for .
So taking X =Y = e; and summing over ¢ = 1,2, 3,where {e;} is an orthonormal

basis of T,,(M) and using (2.22) and also taking the condition n(Z) # 0, we get,

(14) al(0® ~ )~ 50— 50+ ) = B~ A~ 2o+ ) g+ D+ Dm0

As for Conformal Ricci soliton A is constant, so if we use equation (3.5) of [6] in (7.4),

we get,

2 1 2
(7.5) A:S—g(a+2b)+§(p+§).

So we can state the following theorem:

Theorem 7.1. If a 3-dimensional trans-Sasakian manifold satisfies P(£,X).S = 0
and admits Conformal Ricci soliton, then the nature of the soliton behaves as:
(a)If p=—3— é—g(a +2b), then A = 0 and the Ricci soliton is steady.

(b)Ifp>—2— é—f(a +2b), then A > 0 and the Ricci soliton is shrinking.

(c)Ifp<—2— é—f(a + 2b), then A < 0 and the Ricci soliton is expanding.

8. EXAMPLE OF A 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLD

In this section we construct an example of a 3-dimensional trans-Sasakian mani-
fold as given in [6]. To construct this, we consider the three dimensional manifold
M = {(z,y,2) € R®: 2 # 0} where (z,y, z) are the standard coordinates in R®. The

vector fields

e —e’z(g— 2)e —efge _g
e oz Y8z~ oy’ P 0z

are linearly independent at each point of M. Let g be the Riemannian metric defined
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9(61761) = 9(62, 62) = 9(63, 63) =1,

9(61, 62) = 9(62, 63) = 9(63, 61) =0.
Let n be the 1-form which satisfies the relation
n(es) = 1.

Let ¢ be the (1, 1) tensor field defined by ¢(e;) = ea, p(e2) = —eq, p(e3) = 0. Then

we have,

¢*(Z) = ~Z +1(Z)es,
9(02,0W) = g(Z, W) = n(Z)n(W),
for any Z,W € x(M?). Thus for e3 = £, (¢, €, 7, g) defines an almost contact metric
structure on M. Now, after calculating we have,
[e1, 3] = e1, [e1, e2] = ye “eq + e *es, [ea, 3] = 3.
The Riemannian connection V of the metric is given by the Koszul’s formula,
29(VxY,Z) = Xg(Y.Z2)+Yg(Z, X) - Zg(X,Y)
- 9(X,[Y, Z]) = g(V,[X, Z]) + g(Z,[X, Y]).
(8.1)
By Koszul’s formula we get,

1
—z —2z —2z
Ve e1 = —es,Ve,e1 = —ye “eg — 56 €3, Ves€1 = —56 €s,

1 1
—2z —z —2z
Ve1€2 = 56 63,Ve2€2 =ye €1 — 63,Ve3€2 = 56 €1,

1
—2z —2z
Ve €3 =€ — 56 €2, Ve, €3 = 56 e1 + e, Vees =0.

From the above we have found that o = %e_QZ, £ =1 and it can be easily shown that

M3(4,€,m,g) is a trans-Sasakian manifold.
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On this trans-Sasakian manifold we can easily verify our results.
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