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QUASI-MULTIPLICATION AND QUASI-COMULTIPLICATION

MODULES

F. FARSHADIFAR (1)AND H. ANSARI-TOROGHY (2)

Abstract. In this paper, we will introduce the notion of quasi-multiplication

(resp. quasi-comultiplication) modules over a commutative ring as a generaliza-

tion of multiplication (resp. comultiplication) modules and explore some basic

properties of these classes of modules.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and Z will

denote the ring of integers.

Multiplication rings are introduced by W. Krull in 1925 as a generalization of

Dedekind domains [9]. In 1981, Barnard [6] has given the concept of multiplication

modules. An R-module M is said to be a multiplication module if for every submodule

N of M there exists an ideal I of R such that N = IM [6]. Equivalently, M is a

multiplication module if and only if for each submodule N of M , we have N =

(N :R M)M . There is a large body of research concerning multiplication modules.

H. Ansari-Toroghy and F. Farshadifer introduced [2] the notion of comultiplication

module as a dual notion of multiplication module and investigated some properties

of this class of modules. An R-module M is said to be a comultiplication module if
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for every submodule N of M there exists an ideal I of R such that

N = (0 :M I) = {m ∈ M | Im = 0},

equivalently, for each submodule N of M , we have N = (0 :M AnnR(N)) [2].

The purpose of this paper is to introduce the notions of quasi-multiplication and

quasi-comultiplication R-modules as generalizations of multiplication and comulti-

plication R-modules, respectively and investigate some properties of these classes of

modules.

2. Quasi-multiplication modules

Definition 2.1. We say that an R-module M is a quasi-multiplication module if

whenever AnnR(rM) = AnnR(M) for each r ∈ R, then (0 :M r) = 0.

Lemma 2.2. Every multiplication R-module is a quasi-multiplication R-module.

Proof. Let M be a multiplication R-module and AnnR(rM) = AnnR(M) for some

r ∈ R. Then there exists an ideal I of R such that (0 :M r) = IM . It follows that

I ⊆ AnnR(rM). Therefore, I ⊆ AnnR(M) and so (0 :M r) = 0. �

The converse of Lemma 2.2 need not be true in general as explained in Example

2.3 below.

Example 2.3. Let M be the Z-module Z2 ⊕ Z2. Since

(Z2 ⊕ 0 :Z Z2 ⊕ Z2)(Z2 ⊕ Z2) = 0 6= Z2 ⊕ 0,

M is not a multiplication Z-module. If r is an even integer, then we have

2Z = AnnZ(M) 6= AnnZ(rM) = AnnZ(0) = Z.

If r is an odd integer, then AnnZ(rM) = AnnZ(M) = 2Z and (0 :M r) = 0. Therefore,

M is a quasi-multiplication Z-module.
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Proposition 2.4. Let M be an R-module. In either of the following cases, M is a

quasi-multiplication R-module.

(a) (0 :M r) = ((0 :M r) :R M)M for each r ∈ R.

(b) If (Rm :R M) = AnnR(M) for each m ∈ M , then Rm = 0.

Proof. First assume that part (a) holds. Let r ∈ R and AnnR(rM) = AnnR(M).

Then by part (a) we have

(0 :M r) = ((0 :M r) :R M)M = AnnR(rM)M = AnnR(M)M = 0.

Therefore, M is a quasi-multiplication R-module. Now assume that part (b) holds.

Let r ∈ R and AnnR(rM) = AnnR(M). Suppose that m ∈ (0 :M r). Then

(Rm :R M) ⊆ ((0 :M r) :R M) = AnnR(rM) = AnnR(M).

Thus (Rm :R M) = AnnR(M) because the reverse inclusion is clear. Now by part

(b), Rm = 0. It follows that M is a quasi-multiplication R-module. �

Let M be an R-module. The dual notion of ZR(M), the set of zero divisors of M ,

is denoted by WR(M) and defined by

WR(M) = {a ∈ R : aM 6= M}.

M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective)

endomorphism f of M is an isomorphism.

A submodule N of M is said to be pure submodule if IN = N ∩ IM for every

ideal I of R [1].

A submodule N of of M is said to be copure if (N :M I) = N + (0 :M I) for every

ideal I of R [5].

Theorem 2.5. Let M be an R-module. Then we have the following.
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(a) If WR(M) = ZR(R/AnnR(M)) and M is a co-Hopfian R-module, then M is

a quasi-multiplication module.

(b) If M is a Hopfian quasi-multiplication module, then WR(M) = ZR(R/AnnR(M)).

(c) If N is a pure submodule of an R-module M such that AnnR(N) 6⊆ WR(M/N),

then N is a direct summand of M .

(d) If N is a copure submodule of an R-module M such that AnnR(M/N) 6⊆

ZR(N), then N is a direct summand of M .

Proof. (a) Let r ∈ R such that AnnR(rM) = AnnR(M). If rM = M , then (0 :M r) =

0 because M is co-Hopfian. So suppose that rM 6= M . Hence r ∈ WR(M). Thus

by assumption, there exists t ∈ R \ AnnR(M) such that rt ∈ AnnR(M). Therefore,

t ∈ AnnR(rM) = AnnR(M). This is a desired contradiction.

(b) Clearly, ZR(R/AnnR(M)) ⊆ WR(M). Let r ∈ WR(M). Then rM 6= M .

Now as M is co-Hopfian, (0 :M r) 6= 0. So by assumption, we can choose t ∈

AnnR(rM) \ AnnR(M). It follows that r ∈ ZR(R/AnnR(M)), as required.

(c) Let r ∈ AnnR(N) \ WR(M/N). Then rN = 0 and r(M/N) = M/N . Thus

M = rM + N and 0 = rN = rM ∩ N because N is pure.

(d) Let r ∈ AnnR(M/N) \ ZR(N). Then rM ⊆ N . Thus M ⊆ (N :M r) =

N + (0 :M r). As r 6∈ ZR(N), N ∩ (0 :M r) = 0 as needed. �

A proper submodule P of an R-module M is said to be prime if for any r ∈ R and

m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M) [7]. M is said to be a prime

module if the zero submodule of M is a prime submodule of M .

An R-module M is said to be a second module if M 6= 0 and for each a ∈ R, the

endomorphism M
a
→ M is either surjective or zero [11].

Proposition 2.6. Let M be an R-module. Then we have the following.

(a) If M is a prime module, then M is a quasi-multiplication module.



QUASI-MULTIPLICATION AND QUASI-COMULTIPLICATION MODULES 129

(b) If t ∈ R \ WR(M) and tM is a quasi-multiplication R-module, then M is a

quasi-multiplication R-module.

(c) If R is an integral domain and M is a faithful quasi-multiplication R-module,

then M is a prime module.

(d) If M is a second quasi-multiplication R-module, then M is a prime R-module.

Proof. (a) This is clear.

(b) Let r ∈ R such that AnnR(M) = AnnR(rM). Then AnnR(tM) = AnnR(rtM).

So by assumption, (0 :tM r) = 0. Now let mr = 0 for some m ∈ M . As t 6∈ WR(M),

tM = M . Thus m = ty for some y ∈ M . Hence, tyr = 0 implies that ty ∈ (0 :tM

r) = 0. Thus m = ty = 0. Therefore, (0 :M r) = 0.

(c) Let r ∈ R such that (0 :M r) 6= M . Clearly, AnnR(M) ⊆ AnnR(rM). Now

let t ∈ AnnR(rM). Then tr ∈ AnnR(M) = 0. As R is an integral domain and

(0 :M r) 6= M , we have t ∈ AnnR(M). Hence AnnR(rM) ⊆ AnnR(M). Therefore,

AnnR(rM) = AnnR(M). Thus (0 :M r) = 0 since M is a quasi-multiplication R-

module.

(d) Let r ∈ R. Then by assumption, rM = 0 or AnnR(M) = AnnR(M/(0 :M r)) =

AnnR(rM). Thus rM = 0 or (0 :M r) = 0, as required. �

Remark 2.7. The converse of part (a) of Proposition 2.6, is not true in general

because if it is true, then every multiplication module is prime by Lemma 2.2.

Theorem 2.8. Let M be a finitely generated R-module and S be a multiplicatively

closed subset of R such that S ∩ WR(M) = ∅. Then we have the following.

(a) AnnS−1R((r/1)S−1M) = AnnS−1R(S−1M) implies that AnnR(rM) = AnnR(M).

(b) M is a quasi-multiplication R-module if and only if S−1M is a quasi-multiplication

S−1R-module.
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Proof. (a) Let t ∈ AnnR(rM). As M is finitely generated,

S−1AnnR(rM) = AnnS−1R((r/1)S−1M) =

AnnS−1R(S−1M) = S−1AnnR(M).

Thus t/1 ∈ S−1AnnR(M). Hence ths = as for some h, s ∈ S and a ∈ AnnR(M).

Since S ∩ WR(M) = ∅, hsM = M . Therefore, t ∈ AnnR(M). Thus AnnR(rM) =

AnnR(M) because the reverse inclusion is clear.

(b) First assume that M is a quasi-multiplication R-module and

AnnS−1R((r/1)S−1M) = AnnS−1R(S−1M)

for some r ∈ R. Then AnnR(rM) = AnnR(M) by part (a). Thus (0 :M r) = 0.

Therefore, (0 :S−1M r/1) = 0. Conversely, suppose that AnnR(rM) = AnnR(M).

Then as M is finitely generated,

S−1AnnR(rM) = AnnS−1R((r/1)S−1M) =

AnnS−1R(S−1M) = S−1AnnR(M).

Thus (0 :S−1M r/1) = 0. Now let m ∈ (0 :M r). Then rm = 0. Thus (m/1)(r/1) = 0.

It follows that m/1 ∈ (0 :S−1M r/1) = 0. Hence, sm = 0 for some s ∈ S. As

S ∩ WR(M) = ∅, and ZR(M) ⊆ WR(M), we have m = 0, as desired. �

3. Quasi-comultiplication modules

Definition 3.1. We say that an R-module M is a quasi-comultiplication module if

whenever AnnR(rM) = AnnR(M) for each r ∈ R, then rM = M . This can be

regarded as a dual notion of quasi-multiplication module.

Remark 3.2. Every comultiplication R-module is a quasi-comultiplication module

by [3, 3.2]. But we see in the Example 3.3 that the converse is not true in general.
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Example 3.3. Let M be the Z-module Z2 ⊕ Z2. Since

(0 :Z2⊕Z2
AnnZ(Z2 ⊕ 0)) = Z2 ⊕ Z2 6= Z2 ⊕ 0,

M is not a comultiplication Z-module. If r is an even integer, then we have

2Z = AnnZ(M) 6= AnnZ(rM) = AnnZ(0) = Z.

If r is an odd integer, then AnnZ(rM) = AnnZ(M) = 2Z and rM = M . Therefore,

M is a quasi-comultiplication Z-module.

The following example shows that not every quasi-multiplication R-module is a

quasi-comultiplication R-module.

Example 3.4. Let M be the Z-module Z⊕Z. Then for each integer r, AnnZ(rM) =

AnnZ(M) = 0. Since for each integer r, (0 :M r) = 0, we have M is a quasi-

multiplication Z-module. But 2M 6= M , implies that M is not a quasi-comultiplication

Z-module.

The following example shows that not every quasi-comultiplication R-module is a

quasi-multiplication R-module.

Example 3.5. Let M be the Z-module Zp∞ ⊕ Zp∞ . Then for each integer r,

AnnZ(rM) = AnnZ(M) = 0. As (0 :M p) = (1/p + Z)Z ⊕ (1/p + Z)Z 6= 0, we have

M is not a quasi-multiplication Z-module. But since for each integer r, rM = M , M

is a quasi-comultiplication Z-module.

Let M be an R-module. A proper submodule N of M is said to be completely

irreducible if N =
⋂

i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies

that N = Ni for some i ∈ I. It is easy to see that every submodule of M is an

intersection of completely irreducible submodules of M [8].
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Remark 3.6. [4] Let N and K be two submodules of an R-module M . To prove

N ⊆ K, it is enough to show that if L is a completely irreducible submodule of M

such that K ⊆ L, then N ⊆ L.

Proposition 3.7. Let M be an R-module. In either of the following cases, M is a

quasi-comultiplication R-module.

(a) rM = (0 :M AnnR(rM)) for each r ∈ R.

(b) If AnnR(L) = AnnR(M) for each completely irreducible submodule L of M ,

then L = M .

Proof. First assume that part (a) holds. Let r ∈ R and AnnR(rM) = AnnR(M).

Then by part (a) and the fact that (0 :M AnnR(M)) = M we have

rM = (0 :M AnnR(rM)) = (0 :M AnnR(M) = M.

Now assume that part (b) holds. Let r ∈ R and AnnR(rM) = AnnR(M).

Let L be a completely irreducible submodule of M such that rM ⊆ L. Then

AnnR(L) ⊆ AnnR(rM) = AnnR(M). It follows that AnnR(L) = AnnR(M). Thus

by assumption, L = M . Hence, rM = M by Remark 3.6. �

Theorem 3.8. Let M be an R-module. Then we have the following.

(a) If ZR(M) = ZR(R/AnnR(M)) and M is a Hopfian R-module, then M is a

quasi-comultiplication module.

(b) If M is a co-Hopfian quasi-comultiplication module, then

ZR(M) = ZR(R/AnnR(M)).

Proof. (a) Let r ∈ R such that AnnR(rM) = AnnR(M). If (0 :M r) = 0, then

rM = M because M is Hopfian. So suppose that there exists 0 6= m ∈ M such that

rm = 0. Hence r ∈ ZR(M). Thus by assumption, there exists t ∈ R \ AnnR(M)
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such that rt ∈ AnnR(M). Therefore, t ∈ AnnR(rM) = AnnR(M). This is a desired

contradiction.

(b) Clearly, ZR(R/AnnR(M)) ⊆ ZR(M). Let r ∈ ZR(M). Then there exists

0 6= m ∈ M such that rm = 0. This implies that (0 :M r) 6= 0. Now as M is

co-Hopfian, rM 6= M . So by assumption, we can choose t ∈ AnnR(rM) \AnnR(M).

It follows that r ∈ ZR(R/AnnR(M)), as required. �

A non-zero submodule N of an R-module M is said to be secondal if WR(N) =

{a ∈ R : aN 6= N} is an ideal of R [4].

Theorem 3.9. Let M be an R-module and S be a multiplicatively closed subset of R

such that S ∩ WR(M) = ∅. Then we have the following.

(a) If M is an Artinian quasi-comultiplication R-module, then

WS−1R(HomR(S−1R, AnnR(M))) = S−1(WR(M)).

(b) If M is an Artinian quasi-comultiplication secondal R-module, then

HomR(S−1R, AnnR(M)) is a secondal S−1R-module.

(c) If ZR(M) ⊆ WR(M), then S−1(WR(M)) = WS−1R(S−1M).

Proof. (a) Let r/s ∈ WS−1R(HomR(S−1R, AnnR(M))). If r/s 6∈ S−1(WR(M)), then

r 6∈ WR(M). Thus rM = M and so AnnR(rM) = AnnR(M). Hence

HomR(S−1R, AnnR(rM)) = HomR(S−1R, AnnR(M)).

This implies that

(r/s)HomR(S−1R, AnnR(M)) = (r/1)HomR(S−1R, AnnR(M)) =

HomR(S−1R, AnnR(M)).

This is a contradiction. Conversely, suppose that r/s ∈ S−1(WR(M)). Then rM 6=

M . Now since M is a quasi-comultiplication secondal module, AnnR(rM) 6= AnnR(M).
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If r/s 6∈ WS−1R(HomR(S−1R, AnnR(M))), then

(r/s)HomR(S−1R, AnnR(M)) = HomR(S−1R, AnnR(M)).

Thus

HomR(S−1R, AnnR(rM)) = HomR(S−1R, AnnR(M)).

It follows that

φ(HomR(S−1R, AnnR(rM))) = φ(HomR(S−1R, AnnR(M))),

where φ : HomR(S−1R, AnnR(rM))) → AnnR(rM)) is the natural homomorphism

defined by f 7→ f(1R). Thus by [10], tAnnR(rM) = hAnnR(M) for some t, h ∈

S. Hence, tMAnnR(rM) = 0. Since S ∩ WR(M) = ∅, tM = M . Therefore,

MAnnR(rM) = 0. Thus AnnR(M) = AnnR(rM), a contradiction.

(b) This follows from part (a).

(c) Let r/s ∈ S−1(WR(M)). Then r/s = a/t for some a ∈ WR(M) and s ∈ S.

Thus aM 6= M . Hence there exist m ∈ M \ aM . If a/tS−1M = S−1M , then

m/1 = (a/t)(m1/h) for some m1 ∈ M and h ∈ S. Thus kthm = kam1 for some

k ∈ S. Since S ∩WR(M) = ∅, kthM = M . Hence m1 = kthm2 for some m2 ∈ M . It

follows that kth(m − kam2) = 0. If (m − kam2) 6= 0, then kth ∈ ZR(M) ⊆ WR(M),

a contradiction. Thus m ∈ aM , which is a required contradiction. Therefore,

S−1(WR(M) ⊆ WS−1R(S−1M). To see the reverse inclusion, let r/s ∈ WS−1R(S−1M).

If r 6∈ WR(M), then rM = M . This implies that (r/s)S−1M = S−1M , a contradic-

tion. �

Theorem 3.10. Let M be a finitely generated R-module and S be a multiplicatively

closed subset of R such that S ∩ WR(M) = ∅. Then M is a quasi-comultiplication

R-module if and only if S−1M is a quasi-comultiplication S−1R-module.
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Proof. First assume that M is a quasi-comultiplication R-module and

AnnS−1R((r/1)S−1M) = AnnS−1R(S−1M)

for some r ∈ R. Then AnnR(rM) = AnnR(M) by part (a) of Theorem 2.8. Thus

rM = M . Therefore, (r/1)S−1M = S−1M . Conversely, suppose that AnnR(rM) =

AnnR(M). Then as M is finitely generated,

S−1AnnR(rM) = AnnS−1R((r/1)S−1M) =

AnnS−1R(S−1M) = S−1AnnR(M).

hus (r/1)S−1M = S−1M . Now let 0 6= m ∈ M . Then m/1 ∈ S−1M = (r/1)S−1M .

Thus shm = srm1 for some s, h ∈ S and m1 ∈ M . As S ∩ WR(M) = ∅, we have

hM = M . Therefore, m1 = hm2. Thus m = rm2 because sh 6∈ ZR(M) ⊆ WR(M),

as required. �

Proposition 3.11. Let M be an R-module. Then we have the following.

(a) If M is a second module, then M is a quasi-comultiplication module.

(b) If t ∈ R \ ZR(M) and tM is a quasi-comultiplication R-module, then M is a

quasi-comultiplication R-module.

(c) If M is a quasi-comultiplication Hopfian R-module, then M is a quasi multi-

plication module.

(d) If M is a quasi-multiplication co-Hopfian R-module, then M is a quasi-

comultiplication module.

(e) If R is an integral domain and M is a faithful quasi-comultiplication R-module,

then M is a second module.

(f) If M is a prime quasi-comultiplication R-module, then M is a second R-

module.

Proof. (a), (c), and (d) These are clear.
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(b) Let r ∈ R such that AnnR(M) = AnnR(rM). Then AnnR(tM) = AnnR(rtM).

So by assumption, tM = trM . Now let m ∈ M . Then tm = rtḿ for some ḿ ∈ M .

Thus t(m − rḿ) = 0. As t 6∈ ZR(M), m = rḿ and so M ⊆ rM , as needed.

(e) Let r ∈ R such that rM 6= 0. As R is an integral domain and M is a faithful

R-module, Ann(rM) = Ann(Rr) = AnnR(M) = 0. Thus rM = M since M is a

quasi-comultiplication R-module.

(f) Let r ∈ R. Then by assumption, rM = 0 or AnnR(M) = AnnR(rM). Thus

rM = 0 or M = rM , as required. �

Remark 3.12. The converse of part (a) of Proposition 3.11, is not true in general

because if it is true, then every comultiplication module is second by Remark 3.2.

Proposition 3.13. Let M be a finitely generated non-zero quasi-comultiplication R-

module. Then AnnR(rM) 6= AnnR(M) for each r ∈ Jac(R), where Jac(R) denotes

the Jacobson radical of R.

Proof. This follows from Nakayama Lemma. �
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