4-TOTAL PRIME CORDIAL LABELING OF SOME SPECIAL GRAPHS R. PONRAJ $^{(1)}$, J. MARUTHAMANI $^{(2)}$ AND R. KALA $^{(3)}$ ABSTRACT. Let G be a (p,q) graph. Let $f:V(G)\to\{1,2,\ldots,k\}$ be a map where $k\in\mathbb{N}$ is a variable and k>1. For each edge uv, assign the label $\gcd(f(u),f(v))$. f is called k-total prime cordial labeling of G if $|t_f(i)-t_f(j)|\leq 1, i,j\in\{1,2,\cdots,k\}$ where $t_f(x)$ denotes the total number of vertices and the edges labeled with x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph. In this paper we investigate the 4-total prime cordial labeling of some special graphs. 1. Introduction All graphs in this paper are finite, simple and undirected. The notion of prime cordial labeling was introduced in [8]. Ponraj et al. [4], have been introduced the concept of k-total prime cordial labeling and investigate the k-total cordial labeling of certain graphs. Also in [4, 5, 6, 7], we investigate the 4-total prime cordial labeling for path, cycle, star, bistar, ladder, triangular snake, friendship graph, comb, double comb, double triangular snake, some complete graphs, subdivision of some graphs, gear graph and flower graph. In this paper we investigate the 4-total prime cordiality of some special graphs like jelly fish, book, irregular triangular snake. ²⁰⁰⁰ Mathematics Subject Classification. 05C78. Key words and phrases. Jelly fish, book, irregular triangular snake, corona. Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. ## 2. k-total prime cordial labeling **Definition 2.1.** Let G be a (p,q) graph. Let $f:V(G) \to \{1,2,\ldots,k\}$ be a function where $k \in \mathbb{N}$ is a variable and k > 1. For each edge uv, assign the label $\gcd(f(u), f(v))$. f is called k-total prime cordial labeling of G if $|t_f(i) - t_f(j)| \leq 1$, $i, j \in \{1,2,\cdots,k\}$ where $t_f(x)$ denotes the total number of vertices and the edges labeled with x. A graph with a k-total prime cordial labeling is called k-total prime cordial graph. #### 3. Preliminaries **Definition 3.1.** Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The *corona* of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 where $1 \le i \le p_1$. **Definition 3.2.** The cartesian product of two graphs G_1 and G_2 is the graph $G_1 \times G_2$ with vertex set $V_1 \times V_2$ and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent whenever $[u_1 = v_1 \text{ and } u_2 \text{ adj } v_2]$ or $[u_2 = v_2 \text{ and } u_1 \text{ adj } v_1]$. **Definition 3.3.** The book B_n is the graph $S_n \times P_2$ where S_n is the star with n+1 vertices. **Definition 3.4.** Jelly fish graph J(m, n) is obtained from a cycle C_4 : uxvwu by joining x and w with an edge and appending m pendent edges to u and n pendent edges to v. **Definition 3.5.** The triangular snake T_n is obtained from the path $P_n: u_1u_2...u_n$ with $V(T_n) = V(P_n) \cup \{v_i: 1 \le i \le n-1\}$ and edge set $E(IT_n) = E(P_n) \cup \{u_iv_i, u_{i+1}v_i: 1 \le i \le n-1\}$. **Definition 3.6.** The graph *irregular triangular snake* IT_n $n \ge 4$ is obtained by the path $P_n : u_1u_2 \dots u_n$ with vertex set $V(IT_n) = V(P_n) \cup \{v_i : 1 \le i \le n-2\}$ and edge set $E(IT_n) = E(P_n) \cup \{u_iv_i, u_{i+2}v_i : 1 \le i \le n-2\}$. ## 4. Main Results **Theorem 4.1.** The Jelly fish J(n,n) is 4-total prime cordial for all values of n. Proof. Let u, w, v, x be the vertices such that u, v are adjacent to x and w, w is adjacent to x. Let u_1, u_2, \ldots, u_n be the pendent vertices adjacent to u and v_1, v_2, \ldots, v_n be the pendent vertices adjacent to v. Clearly |V(J(n,n))| + |E(J(n,n))| = 4n + 9. We consider the following cases according as the nature of n. Case 1. $n \equiv 0 \pmod{4}$. Let n = 4t, $t \in \mathbb{N}$ and t > 1. Assign the labels 4, 2, 3, 3 respectively to the vertices u, w, x and v. Assign the label 4 to the vertices u_1, u_2, \ldots, u_{2t} and assign the label 2 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{4t}$. Next we consider the vertices v_i $(1 \le i \le n)$. Assign the label 3 to the vertices v_1, v_2, \ldots, v_{2t} . Next we assign the label 4 to the vertex v_{2t+1} . Finally we assign the label 1 to the vertices $v_{2t+2}, v_{2t+3}, \ldots, v_{4t}$. Clearly $t_f(1) = t_f(2) = t_f(4) = 4t + 2$ and $t_f(3) = 4t + 3$. Case 2. $n \equiv 1 \pmod{4}$. Let n = 4t + 1, $t \in \mathbb{N}$ and t > 1. In this case, assign the same label as in case 1 to the vertices u, w, x, v, u_i $(1 \le i \le n - 1)$ and v_i $(1 \le i \le n - 1)$. Next assign the labels 2, 4 to the vertices u_n and v_n respectively. Here $t_f(1) = t_f(3) = t_f(4) = 4t + 3$ and $t_f(2) = 4t + 4$. Case 3. $n \equiv 2 \pmod{4}$. Let n = 4t + 2, $t \in \mathbb{N}$ and t > 1. Assign the same label as in case 2 to the vertices u, w, x, v, u_i $(1 \le i \le n - 1)$ and v_i $(1 \le i \le n - 1)$. Finally we assign the labels 3, 4 to the vertices u_n and v_n respectively. It is easy to verify that $t_f(1) = 4t + 5$ and $t_f(2) = t_f(3) = t_f(4) = 4t + 4$. Case 4. $n \equiv 3 \pmod{4}$. Let n = 4t + 3, $t \in \mathbb{N}$ and t > 1. Assign the same label as in case 3 to the vertices $u, w, x, v, u_i \ (1 \le i \le n-1)$ and $v_i \ (1 \le i \le n-1)$. Now we relabel the vertices v_{2t+2} and v_{2t+3} by 4, 2 respectively. Finally we assign the labels 3, 2 respectively to the vertices u_n and v_n . Here $t_f(1) = t_f(3) = t_f(4) = 4t + 5$ and $t_f(2) = 4t + 6$. Case 5. $n \in \{1, 2, 3, 4, 5, 6, 7\}.$ A 4-total prime cordial labeling follows from Table 1. **Example 4.1.** A 4-total prime cordial labeling of J(5,5) is given in Figure 1. Figure 1 Corollary 4.1. The Jelly fish J(m,n) is 4-total prime cordial if $m,n \geq 8$. *Proof.* Let u, w, v, x be the vertices such that u, v are adjacent to x and w, w is adjacent to x. Let u_1, u_2, \ldots, u_m be the pendent vertices adjacent to u and v_1, v_2, \ldots, v_n be the pendent vertices adjacent to v. Clearly |V(J(m,n))| + |E(J(m,n))| = 2m + 2n + 9. We consider the following cases according as the nature of m and n. Case 1. m = n. It follows from the Theorem 4.1 | n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---------|---|---|---|---|---|---|---| | u | 4 | 4 | 4 | 4 | 4 | 4 | 4 | | w | 3 | 2 | 2 | 2 | 2 | 2 | 2 | | x | 4 | 2 | 2 | 3 | 3 | 3 | 3 | | v | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | u_1 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | | u_2 | | 3 | 3 | 4 | 4 | 4 | 4 | | u_3 | | | 3 | 2 | 2 | 2 | 2 | | u_4 | | | | 2 | 2 | 2 | 2 | | u_5 | | | | | 2 | 2 | 3 | | u_6 | | | | | | 3 | 3 | | u_7 | | | | | | | 4 | | v_1 | 2 | 4 | 4 | 3 | 3 | 3 | 3 | | v_2 | | 3 | 3 | 3 | 3 | 3 | 3 | | v_3 | | | 4 | 4 | 4 | 4 | 4 | | v_4 | | | | 1 | 1 | 1 | 2 | | v_5 | | | | | 4 | 4 | 4 | | v_6 | | | | | | 4 | 2 | | v_7 | | | | | | | 2 | | Table 1 | | | | | | | | Case 2. m > n. Subcase 1. $m \equiv 1 \pmod{4}$ and $n \equiv 0 \pmod{4}$. Assign the same label as in case 1 of Theorem 4.1 to the vertices u, w, x, v, u_i $(1 \le i \le m-1)$ and v_i $(1 \le i \le n)$. Next we relabel the vertex v_{2t+2} by 4. Finally we assign the label 1 to the vertex u_m . Here $t_f(1) = t_f(3) = t_f(4) = 4t + 3$ and $t_f(2) = 4t + 2$. Subcase 2. $m \equiv 2 \pmod{4}$ and $n \equiv 0 \pmod{4}$. Assign the same label as in subcase 1 to the vertices u, w, x, v, u_i $(1 \le i \le m - 1)$ and v_i $(1 \le i \le n)$. Finally we assign the label 2 to the vertex u_m . Clearly $t_f(1) = t_f(3) = t_f(4) = 4t + 3$ and $t_f(2) = 4t + 4$. **Subcase 3.** $m \equiv 3 \pmod{4}$ and $n \equiv 0 \pmod{4}$. Assign the same label as in subcase 2 to the vertices u, w, x, v, u_i $(1 \le i \le m-1)$ and v_i $(1 \le i \le n)$. Finally we assign the label 3 to the vertex u_m . Here $t_f(1) = t_f(2) = t_f(3) = 4t + 4$ and $t_f(4) = 4t + 3$. Case 3. m < n. The proof is symmetry to case 2. **Example 4.2.** A 4-total prime cordial labeling of J(4,3) is given in Figure 2. Figure 2 **Theorem 4.2.** The irregular triangular snake IT_n is 4-total prime cordial for $n \geq 4$. Proof. Let P_n be the path $u_1u_2...u_n$. Let v_i be the vertex which is adjacent to both u_i and u_{i+2} $(1 \le i \le n-2)$. It is easy to verify that $|V(IT_n)| + |E(IT_n)| = 5n-7$. We consider the following cases according as the nature of n. Case 1. $n \equiv 0 \pmod{4}$. Let n = 4t, t > 1 $t \in \mathbb{N}$. Assign the label 4 to the vertices u_1, u_2, \dots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \dots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{4t-2}$. Finally we assign the labels 4, 3 to the vertices u_{4t-1} and u_{4t} respectively. Next we consider the vertices v_i $(1 \le i \le n-2)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t-1}$ and we assign the label 3 to the vertices $v_{2t}, v_{2t+1}, \ldots, v_{3t-1}$. Finally we assign the label 1 to the vertices $v_{3t}, v_{3t+1}, \ldots, v_{4t-2}$. Here $t_f(1) = 5t - 1$ and $t_f(2) = t_f(3) = t_f(4) = 5t - 2$. Case 2. $n \equiv 1 \pmod{4}$. Let n = 4t + 1, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 1 to the vertices u_i $(1 \le i \le 4t - 3)$ and v_i $(1 \le i \le 4t - 4)$. Next we assign the labels 4, 4, 3, 3, 2 to the vertices u_{4t-2} , u_{4t-1} , u_{4t} , v_{4t-3} and v_{4t-2} respectively. Clearly $t_f(1) = t_f(3) = 5t - 1$ and $t_f(2) = t_f(4) = 5t$. Case 3. $n \equiv 2 \pmod{4}$. Let n = 4t + 2, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 1 to the vertices u_i $(1 \le i \le 4t - 2)$ and v_i $(1 \le i \le 4t - 5)$. Finally we assign 2, 3, 3, 4, 4 to the vertices u_{4t-1} , u_{4t} , v_{4t-4} , v_{4t-3} and v_{4t-2} respectively. It is easy to verify that $t_f(1) = t_f(3) = t_f(4) = 5t + 1$ and $t_f(2) = 5t$. Case 4. $n \equiv 3 \pmod{4}$. Let n = 4t + 3, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 3 to the vertices u_i $(1 \le i \le 4t - 2)$ and v_i $(1 \le i \le 4t - 4)$. Finally we assign the labels 4, 1, 3, 4 respectively to the vertices u_{4t-1} , u_{4t} , v_{4t-3} and v_{4t-2} . Clearly $t_f(1) = t_f(2) = t_f(3) = t_f(4) = 5t + 2$. Case 5. n = 4, 5, 6, 7. A 4-total prime cordial labeling follows from Table 2. | n | 4 | 5 | 6 | 7 | | |---------|---|---|---|---|--| | u_1 | 4 | 4 | 4 | 4 | | | u_2 | 2 | 2 | 2 | 4 | | | u_3 | 3 | 3 | 3 | 2 | | | u_4 | 3 | 3 | 3 | 4 | | | u_5 | | 4 | 4 | 3 | | | u_6 | | | 4 | 3 | | | u_7 | | | | 1 | | | v_1 | 4 | 4 | 4 | 4 | | | v_2 | 2 | 2 | 2 | 2 | | | v_3 | | 3 | 3 | 3 | | | v_4 | | | 2 | 3 | | | v_5 | | | | 4 | | | Table 2 | | | | | | **Example 4.3.** A 4-total prime cordial labeling of IT_7 is given in Figure 3. FIGURE 3 **Theorem 4.3.** The corona of triangular snake T_n with K_1 , $T_n \odot K_1$ is 4-total prime cordial for all n. *Proof.* Let P_n be the path $u_1u_2...u_n$. Let $v_1, v_2, ..., v_{n-1}$ be the vertices such that v_i is adjacent to both u_i and u_{i+1} $(1 \le i \le n-1)$. Let x_i be the pendent vertices adjacent to v_i $(1 \le i \le n-1)$. Let y_i be the pendent vertices adjacent to u_i $(1 \le i \le n)$. It is easy to verify that $|V(T_n \odot K_1)| + |E(T_n \odot K_1)| = 9n - 6$. We consider the following cases according as the nature of n. Case 1. $n \equiv 0 \pmod{4}$. Let n = 4t, t > 1 $t \in \mathbb{N}$. First we assign the labels to the vertices u_i $(1 \le i \le n)$. Assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 1 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{4t-1}$. Finally we assign the label 3 to the vertex u_{4t} . Next we consider the vertices v_i $(1 \le i \le n-1)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t-1}$ and we assign the label 3 to the vertices $v_{2t}, v_{2t+1}, \ldots, v_{3t-1}$. Now we assign the label 1 to the vertices $v_{3t}, v_{3t+1}, \ldots, v_{4t-3}$. Finally we assign the labels 2, 4 respectively to the vertices v_{4t-2} and v_{4t-1} . Next we move to the pendent vertices x_i $(1 \le i \le n-1)$. Assign the label 4 to the vertices x_1, x_2, \ldots, x_t and assign the label 2 to the vertices $x_{t+1}, x_{t+2}, \ldots, x_{2t-1}$ and we assign the label 3 to the vertices $x_{2t}, x_{2t+1}, \ldots, x_{3t-1}$. Finally we assign the label 1 to the vertices $x_{3t}, x_{3t+1}, \ldots, x_{4t}$. Now we consider the pendent vertices y_i ($1 \le i \le n-1$). Assign the label 4 to the vertices y_1, y_2, \ldots, y_t and assign the label 2 to the vertices $y_{t+1}, y_{t+2}, \dots, y_{2t}$. Next we assign the label 3 to the vertices $y_{2t+1}, y_{2t+2}, \ldots, y_{3t}$ then we assign 1 to the vertices $y_{3t+1}, y_{3t+2}, \ldots, y_{4t-1}$. Finally we assign the label 2 to the vertex y_{4t} . Here $t_f(1) = t_f(2) = 9t - 2$ and $t_f(3) = t_f(4) = 9t - 1$. For t = 1, a 4-total prime cordial labeling of $T_4 \odot K_1$ is shown in Figure 4. Figure 4 Case 2. $n \equiv 1 \pmod{4}$. Let n=4t+1, t>1 $t\in\mathbb{N}$. Assign the same label as in case 1 to the vertices u_i $(1\leq i\leq n-1)$, v_i $(1\leq i\leq n-2)$, x_i $(1\leq i\leq n-2)$ and y_i $(1\leq i\leq n-1)$. Finally we assign the labels 3, 4, 2, 4 respectively to the vertices u_{4t} , v_{4t-1} , x_{4t-1} and y_{4t} . Clearly $t_f(1)=t_f(3)=t_f(4)=9t+1$ and $t_f(2)=9t$. For t=1, a 4-total prime cordial labeling of $T_5\odot K_1$ is shown in Figure 5. Figure 5 Case 3. $n \equiv 2 \pmod{4}$. Let n=4t+2, t>1 $t\in\mathbb{N}$. Assign the same label as in case 2 to the vertices u_i $(1\leq i\leq n-1), v_i$ $(1\leq i\leq n-2), x_i$ $(1\leq i\leq n-2)$ and y_i $(1\leq i\leq n-4)$. Finally we assign the labels 4, 2, 4, 4, 3, 2, 1 respectively to the vertices $u_{4t}, v_{4t-1}, x_{4t-1}, y_{4t-3}, y_{4t-2}, y_{4t-1}$ and y_{4t} . It is easy to verify that $t_f(1)=t_f(2)=t_f(3)=t_f(4)=9t+3$. For t=1, a 4-total prime cordial labeling of $T_6\odot K_1$ is shown in Figure 6. FIGURE 6 Case 4. $n \equiv 3 \pmod{4}$. Let n = 4t + 3, t > 1 $t \in \mathbb{N}$. For t = 1, a 4-total prime cordial labeling of $T_7 \odot K_1$ is shown in Figure 7. FIGURE 7 Assign the same label as in case 3 to the vertices u_i $(1 \le i \le n-1)$, v_i $(1 \le i \le n-2)$, x_i $(1 \le i \le n-1)$ and y_i $(1 \le i \le n-2)$. Finally we assign the labels 4, 3, 3, 1, 2 respectively to the vertices u_{4t} , v_{4t-1} , v_{4t-2} , v_{4t-1} and v_{4t} . Here $t_f(1) = t_f(2) = t_f(3) = 9t + 5$ and $t_f(4) = 9t + 6$. Case 5. n = 2, 3. A 4-total prime cordial labeling follows from Table 3. | n | 2 | 3 | |-------|---|---| | u_1 | 4 | 4 | | u_2 | 4 | 4 | | u_3 | | 3 | | v_1 | 2 | 4 | | v_2 | | 3 | | x_1 | 3 | 1 | | x_2 | | 3 | | y_1 | 3 | 2 | | y_2 | 3 | 2 | |-------|---|---| | y_3 | | 2 | Table 3: **Example 4.4.** A 4-total prime cordial labeling of $T_{12} \odot K_1$ is given in Figure 8. Figure 8 **Theorem 4.4.** The book B_n is 4-total prime cordial if $n \notin \{1, 4, 5\}$. Proof. Let u, v, u_i, v_i $(1 \le i \le n)$ be the vertices of the book B_n and uv, uu_i, vv_i, u_iv_i $(1 \le i \le n)$ be the edge of the book. Clearly $|V(B_n)| + |E(B_n)| = 5n + 3$. We consider the following cases according as the nature of n. Case 1. $n \equiv 0 \pmod{4}$. Let $n = 4t, t > 1 \ t \in \mathbb{N}$. Subcase 1. t is even. Assign the label 4 to the vertex u and 3 to the vertex v. Next we assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 4 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{\frac{7t}{2}}$. Finally we assign the label 2 to the vertices $u_{\frac{7t}{2}+1}, \ldots, u_{4t}$. Next we move to the vertices v_i $(1 \le i \le n)$. Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t}$. Next we assign the label 3 to the vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{3t}, \ldots, v_{\frac{7t}{2}}$. Finally we assign the label 1 to the vertices $v_{\frac{7t}{2}+1}, \ldots, v_{4t}$. Here $t_f(1) = t_f(3) = t_f(4) = 5t + 1$ and $t_f(2) = 5t$. ## Subcase 2. t is odd. Assign the label 4 to the vertex u and 3 to the vertex v. Next we assign the label 4 to the vertices u_1, u_2, \ldots, u_t and assign the label 2 to the vertices $u_{t+1}, u_{t+2}, \ldots, u_{2t}$. Next we assign the label 3 to the vertices $u_{2t+1}, u_{2t+2}, \ldots, u_{3t}$ then we assign 4 to the vertices $u_{3t+1}, u_{3t+2}, \ldots, u_{\frac{7t-1}{2}}$. Next we assign the label 2 to the vertices $u_{\frac{7t-1}{2}+1}, \ldots, u_{4t-1}$. Finally we assign the label 3 to the vertex u_{4t} . Next we move to the vertices v_i ($1 \le i \le n$). Assign the label 4 to the vertices v_1, v_2, \ldots, v_t and assign the label 2 to the vertices $v_{t+1}, v_{t+2}, \ldots, v_{2t}$. Next we assign the label 3 to the vertices $v_{2t+1}, v_{2t+2}, \ldots, v_{3t}, \ldots, v_{\frac{7t-1}{2}}$. Now we assign the label 2 to the vertices $v_{\frac{7t-1}{2}+1}, \ldots, v_{4t-1}$. Finally we assign the label 4 to the vertex v_{4t} . Here v_{t+1} and v_{t+1} is the vertices $v_{t+1}, v_{t+2}, \ldots, v_{t+1}$. Finally we assign the label 4 to the vertex v_{4t} . Here v_{t+1} and v_{t+1} is the vertex is the vertex v_{t+1} and v_{t+1} is the vertex v_{t+1} is the ver ## Case 2. $n \equiv 1 \pmod{4}$. Let n = 4t + 1, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 1 to the vertices u, v, u_i $(1 \le i \le 4t - 1)$ and v_i $(1 \le i \le 4t - 1)$. Next we relabel the vertex u_{4t-1} by 4 and v_{4t-1} by 3. Finally we assign the labels 1, 2 respectively to the vertices u_{4t} and v_{4t} . Clearly $t_f(1) = t_f(2) = t_f(3) = t_f(4) = 5t + 2$. ## Case 3. $n \equiv 2 \pmod{4}$. Let n = 4t + 2, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 1 to the vertices u, v, u_i $(1 \le i \le 4t - 2)$ and v_i $(1 \le i \le 4t - 2)$. Finally we assign the labels 4, 2, 3, 1 to the vertices u_{4t-1} , u_{4t} , v_{4t-1} and v_{4t} respectively. It is easy to verify that $t_f(1) = 5t + 4$ and $t_f(2) = t_f(3) = t_f(4) = 5t + 3$. Case 4. $n \equiv 3 \pmod{4}$. Let n = 4t + 3, t > 1 $t \in \mathbb{N}$. Assign the same label as in case 3 to the vertices u, v, u_i $(1 \le i \le 4t - 2)$ and v_i $(1 \le i \le 4t - 2)$. Finally we assign the labels 2, 3, 2, 4 respectively to the vertices u_{4t-1} , u_{4t} , v_{4t-1} and v_{4t} . Here $t_f(1) = t_f(2) = 5t + 5$ and $t_f(3) = t_f(4) = 5t + 4$. Case 5. n = 2, 3, 6, 7. A 4-total prime cordial labeling follows from Table 4. | n | 2 | 3 | 6 | 7 | |-------|---|---|---|---| | u | 4 | 4 | 4 | 4 | | v | 3 | 3 | 3 | 3 | | u_1 | 4 | 4 | 4 | 4 | | u_2 | 2 | 4 | 4 | 4 | | u_3 | | 2 | 4 | 3 | | u_4 | | | 3 | 3 | | u_5 | | | 2 | 2 | | u_6 | | | 2 | 2 | | u_7 | | | | 2 | | v_1 | 3 | 3 | 3 | 4 | | v_2 | 2 | 3 | 3 | 4 | | v_3 | | 2 | 3 | 3 | | v_4 | | | 4 | 3 | | v_5 | | | 2 | 2 | | v_6 | | | 2 | 2 | | v_7 | | | | 1 | | | | | | | Table 4: **Example 4.5.** A 4-total prime cordial labeling of B_6 is given in Figure 9. Figure 9 # Acknowledgement Authors thanks to the reviewers for their commands and suggestions for refining the article. #### References - [1] I.Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combinatoria*, **23**(1987), 201-207. - [2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2017) #Ds6. - [3] F.Harary, Graph theory, Addision wesley, New Delhi (1969). - [4] R.Ponraj, J.Maruthamani and R.Kala, k-Total prime cordial labeling of graphs, Journal of Algorithms and Computation, 50(1), 143-149. - [5] R.Ponraj, J.Maruthamani and R.Kala, Some 4-total prime cordial labeling of graphs, *Journal* of Applied Mathematics and Informatics, (Accepted for Publication). - [6] R.Ponraj, J.Maruthamani and R.Kala, 4-Total prime cordiality of certain subdivided graphs. (communicated) - [7] R.Ponraj, J.Maruthamani and R.Kala, Some classes of 4-Total prime cordial labeling of graphs, Global Journal of Engineering science and Researches, 5(11), 319-327. - [8] M.Sundaram, R.Ponraj and S.Somasundaram, Prime cordial labeling of graphs, Journal of Indian Academy of Mathematics, 27(2005), 373-390. (1) Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India. $E ext{-}mail\ address: ponrajmaths@gmail.com}$ (2) Research Scholar, Register number: 18124012091054, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India. $E\text{-}mail\ address{:}\ \mathtt{mmani2011@gmail.com}$ (3) Department of Mathematics, Manonmaniam sundarnar university,, Abishekapatti, Tirunelveli-627012,, Tamilnadu, India. $E ext{-}mail\ address: karthipyi91@yahoo.co.in}$