Jordan Journal of Mathematics and Statistics (JJMS) 12(4), 2019, pp 473 - 483

ON ALTERNATE DUALS OF GENERALIZED FRAMES

K.N. RAJESWARI $^{(1)}$ AND NEELAM GEORGE $^{(2)}$

ABSTRACT. In this paper we give a sufficient condition as to when the difference of two g-frames is a g-frame and characterize an alternate dual g-frame of a given g-frame in a Hilbert space.

1. Introduction

Frames in Hilbert spaces have been introduced in 1952 by J. Duffin and A.C. Schaeffer [5] while studying non harmonic Fourier series. The work of Daubechies, Grossmann and Meyer [4] in 1986 reintroduced the Frames. Since then Frames have been widely developed and applied in signal and image processing [1], characterizing functional spaces [4], wireless communications [10, 11], probabilistic [6, 13] and coding theory [12]. The concept of generalized frames (or g-frames) in Hilbert spaces was introduced by W. Sun in [15]. G-frames are a natural generalizations of frames which cover many other recent generalizations of frames such as bounded quasi-projections [7], fusion frames [2] and pseudo frames [14]. In this paper, we obtain a sufficient condition [Theorem 3.1] for difference of g-frames to be a g-frame and characterization [Theorem3.3] of alternate dual g-frames.

2000 Mathematics Subject Classification. 42C15.

Key words and phrases. g-frames; Dual g-frames; Orthogonal g-frames; g-R-dual sequence.

 $\hbox{Copyright} \ \textcircled{c} \ \ \hbox{Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. }$

Received: July 3, 2018 Accepted: Sept. 16, 2019.

2. Preliminaries

Throughout this paper, \mathscr{H} and \mathscr{K} are separable Hilbert spaces and $\{\mathscr{V}_i\}_{i\in I}$ is a sequence of closed subspaces of \mathscr{K} , where I is a subset of Z and $L(\mathscr{H}, \mathscr{V}_i)$ is the collection of all bounded linear operators from \mathscr{H} into \mathscr{V}_i . And we denote by $I_{\mathscr{H}}$ the identity operator on \mathscr{H} .

Definition 2.1. A sequence $\{f_i : i \in I\}$ of elements in \mathcal{H} is called a frame for \mathcal{H} if there exist constants $0 < A \le B < \infty$ such that

(1)
$$A\|\mathbf{f}\|^2 \le \sum_{i \in I} |\langle f, f_i \rangle|^2 \le B\|\mathbf{f}\|^2 \ \forall \ f \in \mathcal{H}$$

The constants A and B are called lower and upper frame bounds.

Definition 2.2. A sequence $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ of bounded operators is said to be a generalized frame or simply a g-frame for \mathcal{H} with respect to $\{\mathcal{V}_i\}_{i \in I}$ if there exist constants $0 < A \le B < \infty$ such that

(2)
$$A\|\mathbf{f}\|^2 \le \sum_{i \in I} \|\Lambda_i f\|^2 \le B\|\mathbf{f}\|^2 \ \forall \ f \in \mathcal{H}$$

we call A and B the lower and upper g-frame bounds, respectively. We call $\{\Lambda_i\}_{i\in I}$ a tight g-frame if A=B and a Parseval g-frame if A=B=1. If only the second inequality is required, we call it a g-Bessel sequence.

Definition 2.3. $\left(\sum_{i\in I} \oplus \mathcal{V}_i\right)_{I^2}$ is a Hilbert space and is defined by

$$\left(\sum_{i \in I} \oplus \mathcal{V}_i\right)_{l^2} = \left\{ \{f_i\}_{i \in I} : f_i \in \mathcal{V}_i, i \in I, \ \|\{f_i\}_{i \in I}\|^2 = \sum_{i \in I} \|f_i\|^2 < \infty \right\}.$$

with the inner product defined by: $\langle \{f_i\}, \{g_i\} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle$.

The synthesis(g-pre frame) operator of $\{\Lambda_i\}_{i\in I}$ is defined by

$$T_{\Lambda}: \left(\sum_{i \in I} \oplus \mathscr{V}_i\right)_{I^2} o \mathscr{H}, \ \ T_{\Lambda}\Big(\{f_i\}_{i \in I}\Big) = \sum_{i \in I} \Lambda_i^* f_i,$$

We call the adjoint T_{Λ}^* , where $T_{\Lambda}^*: \mathscr{H} \to \left(\sum_{i \in I} \oplus \mathscr{V}_i\right)_{l^2}$, of the synthesis operator, the analysis operator which is given by

$$T_{\Lambda}^* f = \{\Lambda_i f\}_{i \in I} \ \forall \ f \in \mathcal{H}.$$

By composing T_{Λ} and T_{Λ}^* , we obtain the g-frame operator $S_{\Lambda}: \mathcal{H} \to \mathcal{H}$ given by

(3)
$$S_{\Lambda}f = T_{\Lambda}T_{\Lambda}^{*}f = \sum_{i \in I} \Lambda_{i}^{*}\Lambda_{i}f$$

which is bounded, positive, self adjoint, invertible operator and satisfies $AI_{\mathscr{H}} \leq S_{\Lambda} \leq BI_{\mathscr{H}}$. Then the following reconstruction formula takes place for all $f \in \mathscr{H}$

$$f = S_{\Lambda}^{-1} S_{\Lambda} f = S_{\Lambda} S_{\Lambda}^{-1} f.$$

 $\{\Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ is also a g-frame for \mathscr{H} with respect to $\{\mathscr{V}_i\}_{i\in I}$ with bounds B^{-1} and A^{-1} and is said to be the canonical dual g-frame of $\{\Lambda_i\}_{i\in I}$.

Definition 2.4. A g-frame $\{\Theta_i\}_{i\in I}$ of \mathcal{H} is called an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$ if it satisfies

(4)
$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f, \qquad \forall f \in \mathscr{H}.$$

It is easy to show that if $\{\Theta_i\}_{i\in I}$ is a dual g-frame of $\{\Lambda_i\}_{i\in I}$, then $\{\Lambda_i\}_{i\in I}$ will be an alternate dual g-frame of $\{\Theta_i\}_{i\in I}$.

Definition 2.5. We call two g-Bessel sequences $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ to be orthogonal if

(5)
$$\sum_{i \in I} \Lambda_i^* \Theta_i f = 0 \text{ or } \sum_{i \in I} \Theta_i^* \Lambda_i f = 0 \qquad \forall f \in \mathscr{H}.$$

In terms of synthesis operators

(6)
$$T_{\Lambda}T_{\Theta}^{*} = 0 \quad \text{or} \quad T_{\Theta}T_{\Lambda}^{*} = 0.$$

where T_{Λ} and T_{Θ} are the synthesis operators for $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ respectively.

Definition 2.6. Let $\{\Xi_i \in \mathcal{L}(\mathcal{H}, \mathcal{W}_i) : i \in I\}$ be a sequence of operators. Then

- (1) $\{\Xi_i\}_{i\in I}$ is a g-complete set for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$ if $\mathscr{H} = \overline{Span} \ \{\Xi_i^*(\mathscr{W}_i)\}_{i\in I}$;
- (2) $\{\Xi_i\}_{i\in I}$ is a g-orthonormal system for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$ if $\Xi_i\Xi_j^* = \delta_{ij}I_{\mathscr{W}_j}$ for all $i,j\in I$;
- (3) a g-complete and g-orthonormal system $\{\Xi_i\}_{i\in I}$ is called a g-orthonormal basis for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$.

For more details about g-frames theory and it's applications Ref. [9] and [15].

Definition 2.7. (8):Let $\{\Xi_i\}_{i\in I}$ and $\{\Psi_i\}_{i\in I}$ be g-orthonormal basis for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$ and $\{\mathscr{V}_i\}_{i\in I}$, respectively. Let $\{\Lambda_i\in\mathscr{L}(\mathscr{H},\mathscr{V}_i):i\in I\}$ be such that the series $\sum_{i\in I}\Lambda_i^*g_i'$ is convergent for all $\{g_i'\}_{i\in I}\in\left(\sum_{i\in I}\oplus\mathscr{V}_i\right)_{l^2}$

The g-R-dual sequence for the sequence $\{\Lambda_i\}_{i\in I}$ is $\Gamma_i^{\Lambda}: \mathcal{H} \to W_j$ and is defined as

$$\Gamma_j^{\Lambda} = \sum_{i \in I} \Xi_j \Lambda_i^* \Psi_i \quad \forall j \in I.$$

The following results which are referred to in this paper are listed in the form of lemmas.

Lemma 2.8.(3): Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ be a g-frame for \mathcal{H} with g-frame operator S and bounds A and B. Let L be a bounded linear operator on \mathcal{H} . Then $\{\Lambda_i L \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ is a g-frame for \mathcal{H} if and only if L is invertible on \mathcal{H} . Moreover, in this case, the g-frame operator for $\{\Lambda_i L\}_{i \in I}$ is L^*SL and new bounds are $A\|L^{-1}\|^2$ and $B\|L\|^2$.

Lemma 2.9.(9): Suppose that $\{\Lambda_i : i \in I\}$ and $\{\Theta_i : i \in I\}$ are g-frames for Hilbert space \mathscr{H} , T_1 and T_2 are g-pre frame operators associated with $\{\Lambda_i : i \in I\}$ and $\{\Theta_i : i \in I\}$ respectively. If $T_2T_1^* = 0$, then $\{\Lambda_i + \Theta_i : i \in I\}$ is a g-frame for \mathscr{H} . Moreover, if $\{\Lambda_i : i \in I\}$ and $\{\Theta_i : i \in I\}$ are normalized tight g-frames and $T_2T_1^* = 0$, then $\{\Lambda_i + \Theta_i : i \in I\}$ is a tight g-frame for \mathscr{H} with bounds 2.

3. Characterization of Duality

Theorem 3.1. Let $\{\Lambda_i \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ and $\{\Theta_i \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ be two g-frames for \mathcal{H} and S be the g-frame operator of $\{\Lambda_i\}_{i\in I}$. Then $\{(\Lambda_i - \Theta_i) \in \mathcal{L}(\mathcal{H}, \mathcal{V}_i) : i \in I\}$ is a g-frame for \mathcal{H} , if $\Theta_i = \Lambda_i S^a, i \in I, a \in \mathcal{R} - \{0\}$

Proof. Let A and B be the frame bounds of the g-frame $\{\Lambda_i\}_{i\in I}$. Note that

$$\sum_{i \in I} \|(\Lambda_i - \Theta_i)f\|^2 = \sum_{i \in I} \|\Lambda_i f\|^2 + \sum_{i \in I} \|\Theta_i f\|^2 - 2\langle S^{a+1}f, f \rangle \quad \forall f \in \mathcal{H}.$$

For a > 0, we have for all $f \in \mathcal{H}$

$$(A + A^{2a+1} - 2B^{a+1}) ||f||^2 \le \sum_{i \in I} ||(\Lambda_i - \Theta_i)f||^2 \le (B + B^{2a+1} - 2A^{a+1}) ||f||^2.$$

and for a < 0, we have for all $f \in \mathcal{H}$

$$(A + B^{2a+1} - 2A^{a+1}) ||f||^2 \le \sum_{i \in I} ||(\Lambda_i - \Theta_i)f||^2 \le (B + A^{2a+1} - 2B^{a+1}) ||f||^2.$$

Hence $\{\Lambda_i - \Theta_i\}_{i \in I}$ is a g-frame for \mathscr{H} with respect to $\{\mathscr{V}_i\}_{i \in I}$.

Corollary 3.2. Let $\{\Lambda_i\}_{i\in I}$ be a g-frame for \mathscr{H} and S be the g- frame operator of $\{\Lambda_i\}_{i\in I}$. Then $\{\Lambda_i - \Lambda_i S^{-1}\}_{i\in I}$ is a g-frame.

Proof. This follows immediately from Theorem 3.1 if we take a = -1.

We state our main result

Theorem 3.3. Let $\{\Lambda_i\}_{i\in I}$ be a g-frame for \mathscr{H} with respect to $\{\mathscr{V}_i\}_{i\in I}$ and S_{Λ} be the g-frame operator of $\{\Lambda_i\}_{i\in I}$. Then $\{\Theta_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$ if and only if $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i\in I}$ are orthogonal.

Proof. Since $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ are g-frames, there exist $0 < A_1 \le B_1 < \infty$ and $0 < A_2 \le B_2 < \infty$ such that

(7)
$$A_1 \|\mathbf{f}\|^2 \le \sum_{i \in I} \|\Lambda_i \mathbf{f}\|^2 \le B_1 \|\mathbf{f}\|^2 \qquad \forall \ f \in \mathcal{H}$$

and

$$A_2 \|\mathbf{f}\|^2 \le \sum_{i \in I} \|\Theta_i \mathbf{f}\|^2 \le B_2 \|\mathbf{f}\|^2 \qquad \forall f \in \mathcal{H}.$$

Let $\{\Theta_i\}_{i\in I}$ be an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$. Then we have

(8)
$$f = \sum_{i \in I} \Lambda_i^* \Theta_i f = \sum_{i \in I} \Theta_i^* \Lambda_i f \qquad \forall f \in \mathscr{H}.$$

By corollary 3.2, the sequence $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ is a g-frame.

And

$$\begin{split} \|(\Lambda_{i}S_{\Lambda}^{-1} - \Theta_{i})f\|^{2} &= \|\Lambda_{i}S_{\Lambda}^{-1}f\|^{2} + \|\Theta_{i}f\|^{2} - 2Re\langle\Lambda_{i}S_{\Lambda}^{-1}f, \Theta_{i}f\rangle \\ &= \|\Lambda_{i}S_{\Lambda}^{-1}f\|^{2} + \|\Theta_{i}f\|^{2} - 2Re\langle\Theta_{i}^{*}\Lambda_{i}S_{\Lambda}^{-1}f, f\rangle \end{split}$$

Therefore

$$\sum_{i \in I} \|(\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f\|^2 = \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{-1} f\|^2 + \sum_{i \in I} \|\Theta_i f\|^2 - 2Re \left\langle \sum_{i \in I} \Theta_i^* \Lambda_i S_{\Lambda}^{-1} f, f \right\rangle$$

By eq.(8), we get

(9)
$$\sum_{i \in I} \|(\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f\|^2 = \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{-1} f\|^2 + \sum_{i \in I} \|\Theta_i f\|^2 - 2\langle S_{\Lambda}^{-1} f, f \rangle$$

Since $\{\Theta_i\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ are g-frames with bounds A_2, B_2 and B_1^{-1}, A_1^{-1} respectively, we have for each $f \in \mathcal{H}$

$$B_1^{-1} \|f\|^2 \le \sum_{i \in I} \|\Lambda_i S_{\Lambda}^{-1} f\|^2 \le A_1^{-1} \|f\|^2$$
 and
$$A_2 \|f\|^2 \le \sum_{i \in I} \|\Theta_i f\|^2 \le B_2 \|f\|^2$$

$$\Rightarrow B_1^{-1} ||f||^2 + A_2 ||f||^2 \le \sum_{i \in I} ||\Lambda_i S_{\Lambda}^{-1} f||^2 + \sum_{i \in I} ||\Theta_i f||^2$$

(10)

$$\Rightarrow B_1^{-1} ||f||^2 + A_2 ||f||^2 - 2\langle S_{\Lambda}^{-1} f, f \rangle \leq \sum_{i \in I} ||\Lambda_i S_{\Lambda}^{-1} f||^2 + \sum_{i \in I} ||\Theta_i f||^2 - 2\langle S_{\Lambda}^{-1} f, f \rangle$$

Now

$$\left\langle S_{\Lambda}^{-1}f,f\right\rangle = \left\langle S_{\Lambda}^{-1/2}S_{\Lambda}^{-1/2}f,f\right\rangle = \left\langle S_{\Lambda}^{-1/2}f,S_{\Lambda}^{-1/2}f\right\rangle = \left\|S_{\Lambda}^{-1/2}f\right\|^{2} \leq \left\|S_{\Lambda}^{-1/2}\right\|^{2} \|f\|^{2}$$

Therefore

$$\langle S_{\Lambda}^{-1} f, f \rangle \le \left\| S_{\Lambda}^{-1/2} \right\|^{2} \|f\|^{2}$$

$$\Rightarrow -2 \langle S_{\Lambda}^{-1} f, f \rangle \ge -2 \left\| S_{\Lambda}^{-1/2} \right\|^{2} \|f\|^{2}.$$
(11)

Therefore from equations (9), (10) and (11) we get

$$\sum_{i \in I} \| (\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f \|^2 \ge \left(B_1^{-1} + A_2 - 2 \left\| S_{\Lambda}^{-1/2} \right\|^2 \right) \| f \|^2.$$

Similarly, we can show that

$$\sum_{i \in I} \| (\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f \|^2 \le (A_1^{-1} + B_2) \| f \|^2.$$

Thus $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$ is a g-frame.

To prove the orthogonality of $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$, we compute $\sum_{i \in I} (\Lambda_i - \Lambda_i S_{\Lambda}^{-1})^* (\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f$.

$$\sum_{i \in I} (\Lambda_{i} - \Lambda_{i} S_{\Lambda}^{-1})^{*} (\Lambda_{i} S_{\Lambda}^{-1} - \Theta_{i}) f = \sum_{i \in I} (\Lambda_{i}^{*} - S_{\Lambda}^{-1} \Lambda_{i}^{*}) (\Lambda_{i} S_{\Lambda}^{-1} - \Theta_{i}) f$$

$$= \sum_{i \in I} (\Lambda_{i}^{*} \Lambda_{i} S_{\Lambda}^{-1} - \Lambda_{i}^{*} \Theta_{i} - S_{\Lambda}^{-1} \Lambda_{i}^{*} \Lambda_{i} S_{\Lambda}^{-1} + S_{\Lambda}^{-1} \Lambda_{i}^{*} \Theta_{i}) f$$

$$= (S_{\Lambda} S_{\Lambda}^{-1} - I - S_{\Lambda}^{-1} S_{\Lambda} S_{\Lambda}^{-1} + S_{\Lambda}^{-1} I) f$$

$$= (I - I - S_{\Lambda}^{-1} + S_{\Lambda}^{-1}) f$$

$$= 0$$

Thus $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ is orthogonal to $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$.

Conversely, let $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ be orthogonal to $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$. We note that sequences $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$ are g-Bessel sequences.

$$\sum_{i \in I} \| (\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f \|^2 \le 2 (\sum_{i \in I} \| \Lambda_i S_{\Lambda}^{-1} f \|^2 + \sum_{i \in I} \| \Theta_i f \|^2)$$

$$\le 2 (A_1^{-1} + B_2) \| f \|^2.$$

We shall prove that $\{\Theta_i\}_{i\in I}$ is an alternate dual of $\{\Lambda_i\}_{i\in I}$. Since $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ is orthogonal to $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i\in I}$, we have

$$\sum_{i \in I} (\Lambda_i - \Lambda_i S_{\Lambda}^{-1})^* (\Lambda_i S_{\Lambda}^{-1} - \Theta_i) f = 0$$

$$\left(I - \sum_{i \in I} \Lambda_i^* \Theta_i - S_{\Lambda}^{-1} + S_{\Lambda}^{-1} \sum_{i \in I} \Lambda_i^* \Theta_i \right) f = 0$$

$$\Rightarrow \left(I - S_{\Lambda}^{-1} \right) \left(I - \sum_{i \in I} \Lambda_i^* \Theta_i \right) f = 0$$

Since $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I} = \{\Lambda_i (I - S_{\Lambda}^{-1})\}_{i \in I}$ is a g-frame, we have by lemma [2.8] that $(I - S_{\Lambda}^{-1})$ is invertible. Therefore for all $f \in \mathcal{H}$

$$\left(I - \sum_{i \in I} \Lambda_i^* \Theta_i\right) f = 0$$

which implies that $\sum_{i\in I} \Lambda_i^* \Theta_i f = f$. Thus $\{\Theta_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$.

Corollary 3.4. Let $\{\Lambda_i\}_{i\in I}$ be a g-frame for \mathscr{H} with respect to $\{\mathscr{V}_i\}_{i\in I}$ and S be the g-frame operator of $\{\Lambda_i\}_{i\in I}$. If $\{\Theta_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$, then $\{\Lambda_i - \Theta_i\}_{i\in I}$ is also a g-frame for \mathscr{H} .

Proof. Let T_1 and T_2 be synthesis operators of $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$. Since $\{\Theta_i\}_{i \in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i \in I}$, we have by theorem 3.3 $\{\Lambda_i - \Theta_i\}_{i \in I}$. $\Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i\in I}$ are orthogonal that is $T_2 T_1^* = 0$. Therefore by lemma 2.9[9], $\{\Lambda_i - \Theta_i\}_{i\in I}$ is a g-frame for \mathscr{H} .

Remark 3.5. In [8] authors discussed the duality of frames in terms of their R-dual sequences. We note that the g-R-dual sequences of orthogonal g-Bessel sequences are orthogonal.

By theorem 3.3 if $\{\Theta_i\}_{i\in I}$ is an alternate dual g-frame of $\{\Lambda_i\}_{i\in I}$ then $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i\in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i\in I}$ are orthogonal.

Let the g-R-dual sequences of $\{\Lambda_i - \Lambda_i S_{\Lambda}^{-1}\}_{i \in I}$ and $\{\Lambda_i S_{\Lambda}^{-1} - \Theta_i\}_{i \in I}$ be denoted by $\Gamma_j^{(1)}$ and $\Gamma_j^{(2)}$ respectively and are given by

$$\Gamma_j^{(1)} = \sum_{i \in I} \Xi_j (\Lambda_i - \Lambda_i S_{\Lambda}^{-1})^* \Psi_i \quad \forall j \in I.$$

and

$$\Gamma_j^{(2)} = \sum_{i \in I} \Xi_j (\Lambda_i S_{\Lambda}^{-1} - \Theta_i)^* \Psi_i \qquad \forall \ j \in I.$$

where $\{\Xi_i\}_{i\in I}$ and $\{\Psi_i\}_{i\in I}$ are g-orthonormal bases for \mathscr{H} with respect to $\{\mathscr{W}_i\}_{i\in I}$ and $\{\mathscr{V}_i\}_{i\in I}$.

Now for every $i, j \in I$ and $\{g_j\}_{j \in I} \in \left(\sum_{j \in I} \oplus \mathcal{W}_j\right)_{i \in I}$

$$\begin{split} &\Gamma_{i}^{(1)} \left(\Gamma_{j}^{(2)} \right)^{*} g_{j} = \sum_{k \in I} \Xi_{i} \left(\Lambda_{k} - \Lambda_{k} S_{\Lambda}^{-1} \right)^{*} \Psi_{k} \left\{ \sum_{m \in I} \Xi_{j} \left(\Theta_{m} - \Lambda_{m} S_{\Lambda}^{-1} \right)^{*} \Psi_{m} \right\}^{*} g_{j} \\ &= \sum_{k \in I} \sum_{m \in I} \Xi_{i} \left(\Lambda_{k}^{*} - S_{\Lambda}^{-1} \Lambda_{k}^{*} \right) \Psi_{k} \Psi_{m}^{*} \left(\Theta_{m} - \Lambda_{m} S_{\Lambda}^{-1} \right) \Xi_{j}^{*} g_{j} \\ &= \sum_{k \in I} \Xi_{i} \left(\Lambda_{k}^{*} - S_{\Lambda}^{-1} \Lambda_{k}^{*} \right) \left(\Theta_{k} - \Lambda_{k} S_{\Lambda}^{-1} \right) \Xi_{j}^{*} g_{j} \\ &= \Xi_{i} \sum_{k \in I} \left(\Lambda_{k}^{*} \Theta_{k} - \Lambda_{k}^{*} \Lambda_{k} S_{\Lambda}^{-1} - S_{\Lambda}^{-1} \Lambda_{k}^{*} \Theta_{k} + S_{\Lambda}^{-1} \Lambda_{k}^{*} \Lambda_{k} S_{\Lambda}^{-1} \right) \Xi_{j}^{*} g_{j} \\ &= \Xi_{i} \left(I - S_{\Lambda} S_{\Lambda}^{-1} - S_{\Lambda}^{-1} I + S_{\Lambda}^{-1} S_{\Lambda} S_{\Lambda}^{-1} \right) \Xi_{j}^{*} g_{j} \\ &= 0 \end{split}$$

Therefore g-R-dual sequences of orthogonal g-Bessel sequences are orthogonal.

Remark 3.6. If $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ are dual g-frames then the difference of their g-R-dual sequences is a g-R-dual sequence of the g-frame $\{\Lambda_i - \Theta_i\}_{i\in I}$. g-R-dual of $\{\Lambda_i\}_{i\in I}$ and $\{\Theta_i\}_{i\in I}$ are

$$\Gamma_j^{\Lambda} = \sum_{i \in I} \Xi_j \Lambda_i^* \Psi_i \qquad \forall \ j \in I.$$

and

$$\Gamma_j^{\Theta} = \sum_{i \in I} \Xi_j \Theta_i^* \Psi_i, \quad \forall j \in I.$$

Now

$$\Gamma_j^{\Lambda} - \Gamma_j^{\Theta} = \sum_{i \in I} \Xi_j \Lambda_i^* \Psi_i - \sum_{i \in I} \Xi_j \Theta_i^* \Psi_i, \qquad \forall j \in I$$
$$= \sum_{i \in I} \Xi_j (\Lambda_i - \Theta_i)^* \Psi_i, \qquad \forall j \in I.$$

which is the g-R-dual sequence of the g-frame $\{\Lambda_i - \Theta_i\}_{i \in I}$.

References

- [1] Benedetto JJ, Powell AM, Yilmaz O., Sigma-delta (sigma delta) quantization and finite frames, IEEE Trans Inform Theory, 2006; **52(5)**: 1990-2005.
- [2] Casazza PG, Kutyniok G, Li S., Fusion frames and distributed processing, Applied Comput Harmonic Anal. 2008; 25(1): 114-132.
- [3] Chugh Renu and Goel Shashank, On sums of G-frames in Hilbert spaces, Jordan Journal of Mathematics and Statistics (JJMS). 2012; **5(2)**: 115-124.
- [4] Daubechies I, Grossmann A, Meyer Y, Painless nonorthogonal expansions, J Math Phys. 27 (1986) 1271-1283.
- [5] Duffin RJ, Schaeffer AC, A class of nonharmonic Fourier series, Trans Amer Math Soc. 72 (1952) 341-366.
- [6] Ehler M., Random tight frames, J Fourier Anal Appl. 2011; 18(1): 1-20.

- [7] Fornasier M, Quasi-orthogonal decompositions of structured frames, J Math Anal Appl. 2004; 289(1): 180-199.
- [8] F. Enayati and M.S. Asgari, Duality properties for generalized frames, Banach J. Math. Anal., Volume 11, Number 4 (2017), 880-898.
- [9] Guo X., Operator characterizations and some properties of g-frames on Hilbert spaces, Journal of Function Spaces and Applications, vol. 2013, Article ID 931367, 9 pages, 2013.
- [10] Heath RW, Paulraj AJ., Linear dispersion codes for mimo systems based on frame theory, IEEE Trans Signal Process.2002; 50(10): 2429-2441.
- [11] Leng J, Han D, Huang T., Optimal dual frames for communication coding with probabilistic erasures, IEEE Trans Signal Process. 2011; 59(11): 5380-5389.
- [12] Leng J, Han D., Optimal dual frames for erasures in Linear Algebra Appl. 2011; 435(6): 1464-1472.
- [13] Li D, Leng J, Huang T, et al. Some equalities and inequalities for probabilistic frames, J Inequal Appl. 2016; 2016(1): 245.
- [14] Li S, Ogawa H. Pseudoframes of subspaces with applications, J Fourier Anal Appl. 2004; 10(4): 409-431.
- [15] Sun W. G-frames and g-riesz bases, J Math Anal Appl. 2006; **322(1)**: 437-452.
 - (1) SCHOOL OF MATHEMATICS, D.A.V.V., INDORE, INDIA *E-mail address*: knr_k@yahoo.co.in
 - (2) School of Mathematics, D.A.V.V., INDORE, INDIA $E\text{-}mail\ address:}$ neelamdonneygeorge@gmail.com