GPF-PROPERTIES OF GROUP RINGS

HUDA ODETALLAH (1), HASAN AL-EZEH (2) AND EMAD ABUOSBA (3)

ABSTRACT. All rings R in this article are assumed to be commutative with unity $1 \neq 0$. A ring R is called a GPF-ring if for every $a \in R$ there exists a positive integer n such that the annihilator ideal $Ann_R(a^n)$ is pure. We prove that for a ring R and an Abelian group G, if the group ring RG is a GPF-ring then so is R. Moreover, if G is a finite Abelian group then |G| is a unit or a zero-divisor in R. We prove that if G is a group such that for every nontrivial subgroup H of G, $[G:H] < \infty$, then the group ring RG is a GPF-ring if and only if RH is a GPF-ring for each finitely generated subgroup H of G. It is proved that if R is a local ring and RG is a U-group ring, then RG is a GPF-ring if and only if R is a GPF-ring and $P \in Nil(R)$. Finally, we prove that if R is a semisimple ring and RG is a finite group such that $|G|^{-1} \in R$, then RG is a GPF-ring if and only if RG is a finite group such that $|G|^{-1} \in R$, then RG is a GPF-ring if and only if RG is a PF-ring.

1. Introduction

All rings considered in this paper are assumed to be commutative with unity $1 \neq 0$, and all groups are Abelian. Recall that a ring R is called a PF-ring if every principal ideal is a flat R-module. An ideal I of a ring R is called pure if for every $a \in I$, there exists $b \in I$ such that ab = a. It is well known that a ring R is a PF-ring if and only

¹⁹⁹¹ Mathematics Subject Classification. 16D40, 16S34, 16S85.

Key words and phrases. GPF-ring, group ring, local ring, U-group ring.

This paper is a part of Ph.D. thesis prepared by the first author, under supervision of the other authors, in The University of Jordan.

Copyright @ Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: July 8, 2018 Accepted: Sept. 26, 2018.

if $Ann_R(a) = \{x \in R : xa = 0\}$ is a pure ideal for every $a \in R$, see [2]. There are different characterizations of PF-rings, see [7] and [3]. A ring R is called a PP-ring if for each $a \in R$, $Ann_R(a)$ is generated by an idempotent element in R. These rings were studied extensively in literatures, see [6], [9], and [3]. As a generalization of PP-ring, Hirano in [10] introduced a new class of rings called GPP-rings. A ring R is called a GPP-ring if for each $a \in R$, there exists a positive integer n such that a^nR is projective. It is known that a ring R is a GPP-ring if and only if for every $a \in R$ there exists a positive integer n such that the annihilator ideal $Ann_R(a^n)$ is generated by an idempotent. Some properties of GPP-rings were investigated in [10] and [11].

Al-Ezeh in [4] introduced a new class of rings called GPF-rings. A ring R is called a GPF-ring if for each $a \in R$, there exists a positive integer n such that a^nR is a flat R-module. Also, a ring R is a GPF-ring if and only if for every $a \in R$, there exists a positive integer n such that the annihilator ideal $Ann_R(a^n)$ is a pure ideal. A study of this class of rings and the relationship between GPP-rings and GPF-rings were carried by Al-Ezeh [4].

Clearly, every PF-ring is a GPF-ring. Every PF-ring is a reduced ring (a ring with no nonzero nilpotent elements), see [2, Lemma 2], but not every GPF-ring is a reduced ring. Al-Ezeh in [4] proved that a ring R is a reduced GPF-ring if and only if R is a PF-ring. Let C(X) be the ring of all real valued continuous functions defined on X. Then $C(\mathbb{N})$ is PF-ring, and so it is GPF-ring, while $C(\mathbb{R})$ is not GPF-ring, being a reduced non PF-ring. Later on we will give an example of a GPF-ring which is not a PF-ring.

It was shown in [14] that if the group ring RG is PP-ring (PF-ring), then so is R, and if G is torsion free, then the converse is also true. Other cases for the converse can be found also in [16].

The PP-rings has been studied on group rings by Zan and Chen in [17]. Our aim in this paper is to characterize when group rings RG are GPF-rings. Our work would be parallel to the work done in [17], with modifications when needed.

2.
$$GPF$$
-RINGS

In this section, we establish general new results on GPF-rings.

Definition 2.1 ([15]). An ideal I of the ring R is said to be generalized pure if for every $a \in I$ there exists $b \in I$ and a positive integer n such that $a^n = a^n b$.

Proposition 2.1 ([15, Theorem 2.5]). Let R be a GPF-ring. Then for every $a \in R$, $Ann_R(a)$ is a generalized pure ideal.

Recall that a ring S is called an over ring of R if $R \subset S \subset Q(R)$, where Q(R) is the total quotient ring of R.

Theorem 2.1. If a ring R is a GPF-ring, then every over ring of R is a GPF-ring.

Proof. Let S be an over ring of R. Let $\frac{a}{t} \in S$. Since R is a GPF-ring, there exists a positive integer n such that $Ann_R(a^n)$ is a pure ideal. Let $\frac{x}{s} \in Ann_S\left(\frac{a^n}{t^n}\right)$. Then $xa^n = 0$, and so there exists $y \in Ann_R(a^n)$ such that x = xy. Hence, $y \in Ann_S\left(\frac{a^n}{t^n}\right)$ and $\frac{x}{s} = \frac{x}{s}y$. So, S is a GPF-ring. \square

Theorem 2.2. Let R be a subring of a ring S both with the same identity. Suppose that S is a free R-module with a basis G such that $1 \in G$. If S is GPF-ring, then so is R.

Proof. Let $a \in R \subseteq S$. Then there exists a positive integer $n \ge 1$ such that $Ann_S(a^n)$ is pure.

Let $b \in Ann_R(a^n) \subseteq Ann_S(a^n)$. Then there exists $c = c_0 + c_1g_1 + ... + c_mg_m \in Ann_S(a^n)$ such that b = bc, where $c_0, c_1, ..., c_m \in R$.

So,
$$b = bc = bc_0 + bc_1g_1 + ... + bc_mg_m$$
. Thus, $b = bc_0$.

Moreover, since $0 = a^n c = a^n c_0 + a^n c_1 g_1 + ... + a^n c_m g_m$, $a^n c_i = 0$ for all i = 0, 1, ..., m, we have $c_0 \in Ann_R(a^n)$ and $b = bc_0$.

Thus,
$$R$$
 is GPF -ring.

Corollary 2.1. If R[x] or $R[x, x^{-1}]$ is a GPF-ring, then so is R.

Proof. R[x] and $R[x, x^{-1}]$ are free R-module with bases $\{x^i : i = 0, 1, ...\}$ and $\{x^i : i = 0, \pm 1, ...\}$, respectively, satisfying the assumptions of Theorem 2.2.

Corollary 2.2. Let $f(x) = x^m + a_1 x^{m-1} + ... + a_m \in R[x]$ be a monic polynomial. If R[x]/(f(x)) is a GPF-ring, then R is so.

Proof. S = R[x]/(f(x)) is a free R-module with a basis $\{1, x, ..., x^{m-1}\}$ satisfying the assumptions of Theorem 2.2.

Lemma 2.1. Let $R_1, R_2, ..., R_m$ be rings. Then $R = \prod_{i=1}^m R_i$ is a GPF-ring if and only if R_i is a GPF-ring for all i = 1, 2, ..., m.

Proof. Assume that R_i is a GPF-ring for all i = 1, 2, ..., m.

Let $x = (x_1, x_2, ..., x_m) \in R$. Then there exist positive integers $n_i \geq 1$ such that $Ann_{R_i}(x_i^{n_i})$ is pure ideal for all i = 1, 2, ..., m.

Hence, $Ann_{R_i}(x_i^k)$ is pure ideal for all $k \ge n_i$; i = 1, 2, ..., m, see [15, Lemma 3.2]. Let $k = \max\{n_1, n_2, ..., n_m\}$ and let $y = (y_1, y_2, ..., y_m) \in Ann_R(x^k)$.

Then $y_i \in Ann_{R_i}(x_i^k)$ and so, there exists $c_i \in Ann_{R_i}(x_i^k)$ such that $y_i = y_i c_i$ for all i = 1, 2, ..., m.

So,
$$c = (c_1, c_2, ..., c_m) \in Ann_R(x^k)$$
 and $y = yc$.

Thus, R is a GPF-ring.

Conversely, assume that $R = \prod_{i=1}^{m} R_i$ is a GPF-ring and let $x_i \in R_i$; i = 1, 2, ..., m.

Consider
$$x = (\alpha_1, \alpha_2, ..., \alpha_m)$$
, with $\alpha_j = \begin{cases} x_i & j = i \\ 0 & j \neq i \end{cases}$. Then since R is a

GPF-ring, there exists a positive integer n such that $Ann_R(x^n)$ is pure.

Let
$$y_i \in Ann_{R_i}(x_i^n)$$
. Consider $y = (\beta_1, \beta_2, ..., \beta_m)$, with $\beta_j = \begin{cases} y_i & j = i \\ 0 & j \neq i \end{cases}$. Then $y \in Ann_R(x^n)$ and hence there exists $c = (c_1, c_2, ..., c_m) \in Ann_R(x^n)$ such that $y = yc$.

Thus, $c_i \in Ann_{R_i}(x_i^n)$ and $y_i = y_i c_i$.

Therefore, R_i is a GPF-ring for all i = 1, 2, ..., m.

3. Group Rings

Given a ring R and a group G, we will denote the group ring of G over R by RG. Elements of the ring RG are just formal finite sums of the form $\sum_{g \in G} a_g g$ with all but a finite number of a_g are 0_R . We write C_n for the cyclic group of order n, \mathbb{Z} for the ring of integers, \mathbb{Z}_n for the ring of integers modulo n, and \mathbb{C} is the field of complex numbers. The imaginary unit is denoted by \mathbf{i} .

Theorem 3.1. Let R be a ring and G be a group. If RG is a GPF-ring, then so is R.

Proof. S = RG is a free R-module with a basis G satisfying the assumptions of Theorem 2.2.

However, the converse of this theorem is not true, as well be seen in Example 3.4, and the question is what extra conditions on R or G can be added to ensure that if R is a GPF-ring, then so is RG.

Theorem 3.2. If RG is a GPF-ring and H is a subgroup of G, then RH is a GPF-ring too.

Proof. RH is a subring of RG and RG is a free RH-module on the set $\{g_1, g_2, ...\}$, the coset representatives of H in G. So, by Theorem 2.2, RH is a GPF-ring. \square

Corollary 3.1. Let G be a group such that for every non trivial finitely generated subgroup H of G, $[G:H] < \infty$. Then the group ring RG is a GPF-ring if and only if RH is a GPF-ring for each finitely generated subgroup H of G.

Proof. If RG is GPF—ring, then by Theorem 3.2 RH is a GPF—ring for each finitely generated subgroup H of G.

Assume that RH is a GPF-ring for each finitely generated subgroup H of G. Let $u = \sum_{i=1}^{m} a_i h_i \in RG$, and let $H = \langle h_1, ..., h_m \rangle$ be the finitely generated subgroup of G generated by $h_1, ..., h_n$. Then RH is a GPF-ring. Since $u \in RH$, there exists a positive integer n such that $Ann_{RH}(u^n)$ is pure ideal.

Let $v \in Ann_{RG}(u^n)$. Since $[G:H] < \infty$, let $\{g_0, g_1, ..., g_r\}$ be a left coset representative of H in G, $g_0 = 1$. That is $G = H \cup g_1 H \cup ... \cup g_r H$. Now, v can be written as $v = \sum_{j=0}^r g_j b_j$, where $b_j \in RH$. Since $0 = vu^n = \sum_{j=0}^r g_j (b_j u^n)$, we obtain that $b_j u^n = 0$ for all j = 0, 1, ..., r. So, $b_j \in Ann_{RH}(u^n)$ and thus $b_j = b_j c_j$ for some $c_j \in Ann_{RH}(u^n)$, j = 0, 1, ..., r.

Let $1 - c = \prod_{j=0}^{r} (1 - c_j)$. Then $c \in Ann_{RH}(u^n)$ and $b_j = b_j c$ for all j = 0, 1, ..., r.

It follows that $v = \sum_{j=0}^{r} g_j b_j = \sum_{j=0}^{r} g_j (b_j c) = \left(\sum_{j=0}^{r} g_j b_j\right) c = vc$ and $c \in Ann_{RH}(u^n) \subseteq Ann_{RG}(u^n)$.

Hence, $Ann_{RG}(u^n)$ is pure ideal for some positive integer n.

Therefore, RG is GPF-ring.

Theorem 3.3. If RG is a GPF-ring, then the order of each finite order element $q \in G$ is either a unit or a zero-divisor in R.

Proof. Let $g \in G$ with |g| = m. Let H be the cyclic subgroup generated by g. Then, by Theorem 3.2, RH is a GPF-ring too. Now $1+g+g^2+...+g^{m-1} \in Ann_{RH} (1-g)$.

Since RH is a GPF-ring, Ann_{RH} (1-g) is generalized pure ideal in RH. So, there exists a positive integer $n \geq 1$ and $a = a_0 + a_1g + ... + a_{m-1}g^{m-1} \in Ann_{RH}$ (1-g) such that $(1+g+g^2+...+g^{m-1})^n$ $a = (1+g+g^2+...+g^{m-1})^n$ and a(1-g) = 0.

Thus, $a_0 = a_1 = ... = a_{m-1}$ since a = ag.

So,
$$(1+g+...+g^{m-1})^n (a_0+a_0g+...+a_0g^{m-1}) = (1+g+...+g^{m-1})^n$$
.

Hence,
$$a_0 (1 + g + ... + g^{m-1})^{n+1} = (1 + g + ... + g^{m-1})^n$$
.

So, $a_0 m^n = m^{n-1}$ and hence $(a_0 m - 1) m^{n-1} = 0$.

Therefore, m is either a unit or a zero-divisor in R.

Corollary 3.2. If G is a finite group and RG is a GPF-ring, then |G| is either a unit or a zero-divisor in R.

Proof. Let G be a finite group and $|G| = n = \prod_{i=1}^k p_i^{\alpha_i}$ where p_i are distinct primes and $\alpha_i \geq 1$ are positive integers for all i = 1, ..., k. Then by Cauchy Theorem, there exists $g_i \in G$ such that $|g_i| = p_i$, for all i = 1, ..., k.

Thus, since RG is a GPF-ring and by Theorem 3.3, p_i is either a unit or a zero-divisor in R for all i = 1, ..., k.

So,
$$|G| = \prod_{i=1}^k p_i^{\alpha_i}$$
 is either a unit or a zero-divisor in R .

Example 3.1. Let $R = \mathbb{Z}_4$ and $G = C_2$. Then RG is not a PF-ring because RG is not a reduced ring. Since every non-zero element in RG is either a unit or a nilpotent, then it follows by [4, Lemma 1.5] that RG is a GPF-ring. Moreover, 2 is a zero-divisor in $R = \mathbb{Z}_4$.

Example 3.2. $\mathbb{Z}G$ is not a GPF-ring for any nontrivial finite group G.

A group ring is called a U-group ring if $a = \sum a_i g_i \in RG$ is a unit if and only if $\epsilon(a) = \sum a_i$ is a unit in R. It was proved in [1] that RG is a U-group ring if and only if G is a p-group and $p \in J(R)$, the Jacobson Radical of R.

Theorem 3.4. Let R be a local ring and RG be a U-group ring. Then RG is a GPF-ring if and only if R is a GPF-ring and $p \in Nil(R)$.

Proof. By [13, page 138], RG is a local ring.

Since RG is a local ring, RG is a GPF-ring if and only if RG is a domainlike ring, (Z(R) = Nil(R)), see [4, Lemma 1.5].

Now, G is a torsion group because G is an Abelian p-group and so by [5, Theorem 3.8] RG is a domainlike ring if and only if R is a domainlike ring and $p \in Nil(R)$.

But since R is a local ring, R is a domainlike ring if and only if R is a GPF-ring. Thus, RG is a GPF-ring if and only if R is a GPF-ring and $p \in Nil(R)$.

Example 3.3. $\mathbb{Z}_{p^r}G$ is a GPF-ring for any Abelian p-group because $p \in Nil(\mathbb{Z}_{p^r})$ and \mathbb{Z}_{p^r} is local domainlike ring.

The following lemma exists in [12, page 134].

Lemma 3.1.
$$(R_1 \times R_2 \times \cdots \times R_m) G \cong \prod_{i=1}^m R_i G$$

Theorem 3.5. If $R = R_1 \times R_2 \times \cdots \times R_m$, then RG is a GPF-ring if and only if R_iG is a GPF-ring for all i = 1, 2, ..., m.

Proof. The proof follows from Lemma 2.1 and Lemma 3.1. \Box

Theorem 3.6. Let $R = \prod_{i=1}^{n} R_i$ where each R_i is local ring. Assume that RG is a U-group ring. Then RG is a GPF-ring if and only if R is GPF-ring and $p \in Nil(R_i)$ for all i = 1, ..., n.

Proof. RG is a U-group ring if and only if R_iG is a U-group ring for all i = 1, ..., n, see [1].

But since R_i is local and R_iG is a U-group ring, R_iG is a GPF-ring if and only if R_i is a GPF-ring and $p \in Nil(R_i)$ for all i = 1, ..., n.

By Theorem 3.5, RG is a GPF-ring if and only if R_iG is a GPF-ring for all i = 1, ..., n.

So, RG is a GPF-ring if and only if R_iG is a GPF-ring for all i = 1, ..., n if and only if R_i is a GPF-ring and $p \in Nil(R_i)$ for all i = 1, ..., n if and only if R is a GPF-ring and $p \in Nil(R_i)$ for all i = 1, ..., n.

Recall that, every Artinian ring R is isomorphic to a finite direct product of Artinian local rings R_i .

Corollary 3.3. Let R be an Artinian ring and RG be a U-group ring. Then RG is a GPF-ring if and only if R is a GPF-ring and $p \in Nil(R_i)$, where $R = \prod_{i=1}^{n} R_i$, for all i = 1, ..., n.

Theorem 3.7. If R is a semisimple ring and G is a finite group such that $|G|^{-1} \in R$, then RG is a GPF-ring if and only if RG is a PF-ring.

Proof. By [12, Theorem 3.4.7], RG is a simisimple ring and hence it is a reduced ring. Thus, RG is a GPF-ring if and only if RG is a PF-ring.

Theorem 3.8. Let R be a ring and G be a torsion free group such that $|Spec(RG)| < \infty$. Then RG is a GPF-ring if and only if R is a GPF-ring.

Proof. By Theorem 3.1, if RG is a GPF-ring then R is a GPF-ring.

Conversely, assume R is a GPF-ring. Then R_p is a domainlike for every $p \in Spec(R)$.

Since G is a torsion free, it follows that R_pG is a domainlike, see [5, Theorem 3.11].

Let $P \in Spec(RG)$. Then $q = P \cap R \in Spec(R)$, and $(RG)_P = (R_qG)_{PR_qG}$. Consequently, $(RG)_P$ is a domainlike for all $P \in Spec(RG)$. Since $|Spec(RG)| < \infty$ and by [4, Theorem 1.8], RG is a GPF-ring.

The following proposition exists in [16].

Proposition 3.1. Let R be a ring. Then

- (1) If $2^{-1} \in R$, then $RC_2 \cong R \times R$ and $RC_4 \cong R \times R \times (R[x]/(x^2+1))$
- (2) If $R \subseteq \mathbb{C}$ and $3^{-1} \in R$, then $RC_3 \cong R \times (R[x]/(x^2+x+1))$.

Corollary 3.4. If $2^{-1} \in R$, then RC_2 is a GPF-ring if and only if R is a GPF-ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1 and Lemma 2.1. \Box

Corollary 3.5. If $2^{-1} \in R$, then RC_4 is a GPF-ring if and only if $R[x]/(x^2+1)$ is a GPF-ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma 2.1. $\hfill\Box$

Corollary 3.6. If $R \subseteq \mathbb{C}$ and $3^{-1} \in R$, then RC_3 is a GPF-ring if and only if $R[x]/(x^2+x+1)$ is a GPF-ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma 2.1. \Box

Note that, if $G = H \times K$, then $RG = R(H \times K) \cong (RH) K$.

Corollary 3.7. If $R \subseteq \mathbb{C}$ and $6^{-1} \in R$, then RC_6 is a GPF-ring if and only if $R[x]/(x^2+x+1)$ is a GPF-ring.

Proof. Since $C_6 \cong C_3 \times C_2$, then $RC_6 \cong (RC_3) C_2$.

So, because $2^{-1} \in R \subseteq RC_3$, RC_6 is a GPF-ring if and only if RC_3 is a GPF-ring. Since $R \subseteq \mathbb{C}$ and $3^{-1} \in R$, RC_3 is a GPF-ring if and only if $R[x]/(x^2 + x + 1)$ is a GPF-ring.

Hence, RC_6 is a GPF-ring if and only if $R[x]/(x^2+x+1)$ is a GPF-ring. \square We now investigate a case at which $R[x]/(x^2+x+1)$ is a GPF-ring.

Lemma 3.2. Let R_1 and R_2 be two integral domains, and let T be a non-integral domain subring of $R = R_1 \times R_2$ containing the identity element (1,1). Then T is a GPF-ring if and only if $(0,1) \in T$.

Proof. Assume that T is a GPF-ring. Since T is not an integral domain, there are non-zero elements (a,b), $(c,d) \in T$ such that (a,b). (c,d) = (0,0). Since $(a,b) \neq (0,0)$, either $a \neq 0$ or $b \neq 0$, say $a \neq 0$. Thus c = 0 and $d \neq 0$. Since $(c,d) \in Ann_T((a,b))$, by [15, Theorem 2.5] there exists a positive integer n and $(x,y) \in Ann_T((a,b))$ such that $(c,d)^n(x,y) = (c,d)^n$. So, $d^ny = d^n$ and $d \neq 0$ in R_2 . Thus y = 1. Since $x^n a = 0$ and $a \neq 0$ in R_1 , x = 0. So, $(x,y) = (0,1) \in T$.

Now, assume that $(0,1) \in T$. Then, $(1,1) - (0,1) = (1,0) \in T$. Consider any $(0,0) \neq (a,b) \in T$. If $a \neq 0, b \neq 0$, $Ann_T((a,b)) = \{(0,0)\}$. If $a = 0, b \neq 0$, $Ann_T((a,b)) = (1,0)T$ and if $a \neq 0, b = 0, Ann_T((a,b)) = (0,1)T$. Also if a = b = 0, then $Ann_T((a,b)) = T$ So, T is a PP-ring and hence T is a GPF-ring.

Theorem 3.9. Let R be an integral domain and let Q(R) denotes the quotient field of R. Consider the polynomial $x^2 + a_1x + a_2 \in R[x]$ with α, β are its roots in some field extension, and $\alpha - \beta$ is a unit in R. Then $R[x]/(x^2 + a_1x + a_2)$ is a GPF-ring if and only if either $\alpha \in R$ or $\alpha \notin Q(R)$.

Proof. Let $T = R[x]/(x^2 + a_1x + a_2)$ and $x^2 + a_1x + a_2 = (x - \alpha)(x - \beta)$. By hypothesis, $\alpha \neq \beta$. First suppose $\alpha \notin Q(R)$. Then $x^2 + a_1x + a_2$ is irreducible over

Q(R) and hence it is irreducible over R since the polynomial is monic. Thus, T is an integral domain. In particular T is a GPF-ring.

If $\alpha \in Q(R)$, then define $\Phi : R[x] \longrightarrow Q(R) \times Q(R)$ by $\Phi(f(x)) = (f(\alpha), f(\beta)) \in Q(R) \times Q(R)$. Then Φ is a ring homomorphism with $Ker(\Phi) = (x^2 + a_1x + a_2)$. Hence, T is a subring of $Q(R) \times Q(R)$.

Assume now that T is a GPF-ring, and so it follows by Lemma 3.2 that $(0,1) \in T$. Thus there exists $ax + b \in R[x]$ such that $a\alpha + b = 0$ and $a\beta + b = 1$. But since $x^2 + a_1x + a_2 = (x - \alpha)(x - \beta)$, $\alpha + \beta = -a_1$ and $\alpha\beta = a_2$. So,

$$2(b-1)b = 2(-a\beta)(-a\alpha) = 2a^{2}\alpha\beta = 2a^{2}a_{2}.$$

Also,

$$2(b-1)b = (2b-2)b = -(1+a(\alpha+\beta)b = -(1-aa_1)b = (aa_1-1)b.$$

So,

$$2a^2a_2 = (aa_1 - 1) b.$$

Thus

$$-b = 2a^2a_2 - aa_1b.$$

Hence

$$\alpha = -\frac{b}{a} = 2aa_2 - a_1b \in R.$$

So, $\alpha \in R$.

Now, assume that $\alpha \in R$, and define $p(x) = \frac{x - \alpha}{\beta - \alpha}$. Then $p(x) \in R[x]$, since $\beta - \alpha$ is a unit. But $\Phi(p(x)) = (p(\alpha), p(\beta) = (0, 1)$. Thus it follows by Lemma 3.2 that T is a GPF-ring.

Example 3.4. Let $S = \left\{ \frac{n}{3^k} : n, k \in \mathbb{Z}, \ k \geq 0 \right\}$. Then S is a subring of \mathbb{Q} . Set $R = \left\{ a + \sqrt{3}b\mathbf{i} : a, b \in S \right\}$. Then R is a subring of \mathbb{C} with $\frac{1}{3} \in R$. Because R is a domain, it is certainly a GPF-ring.

Let
$$f(x) = x^2 + x + 1 \in R[x]$$
. Then $\alpha = \frac{-1 + \sqrt{3}\mathbf{i}}{2} \notin R$.
Let $r = 2\sqrt{3}\mathbf{i}$, $s = -(3 + \sqrt{3}\mathbf{i})$. Then $r, s \in R$ and $\alpha = \frac{s}{r} \in Q(R)$.
Since $(\alpha - \beta)^{-1} = (\sqrt{3}\mathbf{i})^{-1} = -\frac{\sqrt{3}}{3}\mathbf{i} \in R$, $RC_3 \cong R \times (R[x]/(x^2 + x + 1))$ is not a GPF-ring.

The above example shows that RC_3 is not a GPF-ring although 3 is a unit in R and R is a GPF-ring.

Acknowledgement

We would like to thank the editor and the referees for their careful reading and valuable comments.

References

- E. Abu Osba, H. Al-Ezeh and M. Ghanem, On U-group rings, Comm. Korean Math. Soc.33(4) (2018), 1075-1082.
- [2] H. Al-Ezeh, On Some Properties of Polynomial Rings, Int. J. Math. and Math. Sci. 10 (1987), 311-314.
- [3] H. Al-Ezeh, The Pure Spectrum of a PF-Ring, Comment. Math. Univ. St. Paul $\bf 37$ (1988), 179-183.
- [4] H. Al-Ezeh, On Generalized PF-Rings, Math. J. Okayama Univ. 31 (1989), 25-29.
- [5] D. Anderson and O. Al-Mallah, Commutative Group Rings That are Presimplifiable or Domainlike, J. Algebra and its App. 16 (2017), 1750019 (9 pages).
- [6] G. Bergman, Hereditary Commutative Rings and Centres of Hereditary Rings, Proc. London Math. Soc. 23 (1971), 214-236.
- [7] F. Cheniour and N. Mahdou, When Every Principal Ideal Is Flat, Portugaliae Math. **70** (2011), 51-58
- [8] J. Chen, Y. Li and Y. Zhou, Morphic Group Rings, J. of Pure and Applied Algebra 205 (2006), 621-639.

- [9] S. Endo, Note on PP-Rings, Nagoya Math. J. 17 (1960), 167-170.
- [10] Y. Hirano, On Generlized PP-Rings, Math. J. Okayama Univ. 25 (1983), 7-11.
- [11] C. Huh, H. K. Kim and Y. Lee, PP-Rings and Generalized PP-Rings, J. Pure Appl. Algebra 167 (2002), 37-52.
- [12] C. Milies and S. Sehgal, An Introduction to Group Rings, Kluwer Academic Publishers, Dordrecht, 2002.
- [13] W. Nicholson, Local Group Rings, Cand. Math. Bull. 15 (1972), 137-138.
- [14] R. Schwarz and S. Glaz, Commutative group rings with von Neumann regular total rings of quotients, J. Algebra 388 (2013), 287-293.
- [15] N. Shuker and H. Mahammad, On Generalized PF-Rings, Raf. J. of Comp. and Math. 1 (2004), 39-45.
- [16] Z. Yi and Y. Zhou, Baer and Quasi-Baer Properties of Group Rings, J. Austral. Math. Soc. 83 (2007), 285-296.
- [17] L. Zan and J. Chen, PP- Properties of Group Rings, Int. Electronic J. of Algebra 3 (2008), 117-124.

THE UNIVERSITY OF JORDAN, SCHOOL OF SCIENCE, MATHEMATICS DEPARTMENT, AMMAN, JORDAN.

E-mail address: (1) huda.odetallah123442@gmail.com

E-mail address: (2) alezehh@ju.edu.jo

E-mail address: (3)eabuosba@ju.edu.jo