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GPF-PROPERTIES OF GROUP RINGS

HUDA ODETALLAH (1), HASAN AL-EZEH (2) AND EMAD ABUOSBA (3)

Abstract. All rings R in this article are assumed to be commutative with unity

1 6= 0. A ring R is called a GPF−ring if for every a ∈ R there exists a positive

integer n such that the annihilator ideal AnnR (an) is pure. We prove that for a

ring R and an Abelian group G, if the group ring RG is a GPF−ring then so is

R. Moreover, if G is a finite Abelian group then |G| is a unit or a zero-divisor

in R. We prove that if G is a group such that for every nontrivial subgroup H of

G, [G : H ] < ∞, then the group ring RG is a GPF−ring if and only if RH is a

GPF−ring for each finitely generated subgroup H of G. It is proved that if R is a

local ring and RG is a U−group ring, then RG is a GPF−ring if and only if R is

a GPF−ring and p ∈ Nil (R). Finally, we prove that if R is a semisimple ring and

G is a finite group such that |G|−1 ∈ R, then RG is a GPF−ring if and only if RG

is a PF−ring.

1. Introduction

All rings considered in this paper are assumed to be commutative with unity 1 6= 0,

and all groups are Abelian. Recall that a ring R is called a PF−ring if every principal

ideal is a flat R−module. An ideal I of a ring R is called pure if for every a ∈ I, there

exists b ∈ I such that ab = a. It is well known that a ring R is a PF−ring if and only
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if AnnR (a) = {x ∈ R : xa = 0} is a pure ideal for every a ∈ R, see [2]. There are

different characterizations of PF−rings, see [7] and [3]. A ring R is called a PP−ring

if for each a ∈ R, AnnR (a) is generated by an idempotent element in R. These rings

were studied extensively in literatures, see [6], [9], and [3]. As a generalization of

PP−ring, Hirano in [10] introduced a new class of rings called GPP−rings. A ring

R is called a GPP−ring if for each a ∈ R, there exists a positive integer n such that

anR is projective. It is known that a ring R is a GPP−ring if and only if for every

a ∈ R there exists a positive integer n such that the annihilator ideal AnnR (an) is

generated by an idempotent. Some properties of GPP−rings were investigated in

[10] and [11].

Al-Ezeh in [4] introduced a new class of rings called GPF−rings. A ring R is

called a GPF−ring if for each a ∈ R, there exists a positive integer n such that anR

is a flat R−module. Also, a ring R is a GPF−ring if and only if for every a ∈ R,

there exists a positive integer n such that the annihilator ideal AnnR (an) is a pure

ideal. A study of this class of rings and the relationship between GPP−rings and

GPF−rings were carried by Al-Ezeh [4].

Clearly, every PF−ring is a GPF−ring. Every PF−ring is a reduced ring (a ring

with no nonzero nilpotent elements), see [2, Lemma 2], but not every GPF−ring is

a reduced ring. Al-Ezeh in [4] proved that a ring R is a reduced GPF−ring if and

only if R is a PF−ring. Let C(X) be the ring of all real valued continuous functions

defined on X. Then C(N) is PF−ring, and so it is GPF−ring, while C(R) is not

GPF−ring, being a reduced non PF−ring. Later on we will give an example of a

GPF−ring which is not a PF−ring.

It was shown in [14] that if the group ring RG is PP−ring (PF−ring), then so is

R, and if G is torsion free, then the converse is also true. Other cases for the converse

can be found also in [16].
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The PP−rings has been studied on group rings by Zan and Chen in [17]. Our

aim in this paper is to characterize when group rings RG are GPF−rings. Our work

would be parallel to the work done in [17], with modifications when needed.

2. GPF−Rings

In this section, we establish general new results on GPF−rings.

Definition 2.1 ([15]). An ideal I of the ring R is said to be generalized pure if for

every a ∈ I there exists b ∈ I and a positive integer n such that an = anb.

Proposition 2.1 ([15, Theorem 2.5]). Let R be a GPF−ring. Then for every a ∈ R,

AnnR (a) is a generalized pure ideal.

Recall that a ring S is called an over ring of R if R ⊂ S ⊂ Q (R), where Q (R) is

the total quotient ring of R.

Theorem 2.1. If a ring R is a GPF−ring, then every over ring of R is a GPF−ring.

Proof. Let S be an over ring of R. Let
a

t
∈ S. Since R is a GPF−ring, there exists

a positive integer n such that AnnR (an) is a pure ideal. Let
x

s
∈ AnnS

(

an

tn

)

. Then

xan = 0, and so there exists y ∈ AnnR (an) such that x = xy. Hence, y ∈ AnnS

(

an

tn

)

and
x

s
=

x

s
y. So, S is a GPF−ring. �

Theorem 2.2. Let R be a subring of a ring S both with the same identity. Suppose

that S is a free R−module with a basis G such that 1 ∈ G. If S is GPF−ring, then

so is R.

Proof. Let a ∈ R ⊆ S. Then there exists a positive integer n ≥ 1 such that AnnS (an)

is pure.
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Let b ∈ AnnR (an) ⊆ AnnS (an). Then there exists c = c0 + c1g1 + ... + cmgm ∈
AnnS (an) such that b = bc, where c0, c1, ..., cm ∈ R.

So, b = bc = bc0 + bc1g1 + ... + bcmgm. Thus, b = bc0.

Moreover, since 0 = anc = anc0+anc1g1+...+ancmgm, anci = 0 for all i = 0, 1, ..., m,

we have c0 ∈ AnnR (an) and b = bc0.

Thus, R is GPF−ring. �

Corollary 2.1. If R [x] or R [x, x−1] is a GPF−ring, then so is R.

Proof. R [x] and R [x, x−1] are free R−module with bases {xi : i = 0, 1, ...}
and {xi : i = 0,±1, ...}, respectively, satisfying the assumptions of Theorem 2.2.

�

Corollary 2.2. Let f (x) = xm + a1x
m−1 + ... + am ∈ R [x] be a monic polynomial.

If R [x] /(f(x)) is a GPF−ring, then R is so.

Proof. S = R [x] /(f (x)) is a free R−module with a basis {1, x, ..., xm−1} satisfying

the assumptions of Theorem 2.2. �

Lemma 2.1. Let R1, R2, ..., Rm be rings. Then R =
m
∏

i=1

Ri is a GPF−ring if and

only if Ri is a GPF−ring for all i = 1, 2, ..., m.

Proof. Assume that Ri is a GPF−ring for all i = 1, 2, ..., m.

Let x = (x1, x2, ..., xm) ∈ R. Then there exist positive integers ni ≥ 1 such that

AnnRi
(xni

i ) is pure ideal for all i = 1, 2, ..., m.

Hence, AnnRi

(

xk
i

)

is pure ideal for all k ≥ ni; i = 1, 2, ..., m, see [15, Lemma 3.2].

Let k = max {n1, n2, ..., nm} and let y = (y1, y2, ..., ym) ∈ AnnR

(

xk
)

.

Then yi ∈ AnnRi

(

xk
i

)

and so, there exists ci ∈ AnnRi

(

xk
i

)

such that yi = yici for

all i = 1, 2, ..., m.

So, c = (c1, c2, ..., cm) ∈ AnnR

(

xk
)

and y = yc.
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Thus, R is a GPF−ring.

Conversely, assume that R =
m
∏

i=1

Ri is a GPF−ring and let xi ∈ Ri; i = 1, 2, ..., m.

Consider x = (α1, α2, ..., αm), with αj =







xi j = i

0 j 6= i
. Then since R is a

GPF−ring, there exists a positive integer n such that AnnR (xn) is pure.

Let yi ∈ AnnRi
(xn

i ). Consider y = (β1, β2, ..., βm), with βj =







yi j = i

0 j 6= i
. Then

y ∈ AnnR (xn) and hence there exists c = (c1, c2, ..., cm) ∈ AnnR (xn) such that

y = yc.

Thus, ci ∈ AnnRi
(xn

i ) and yi = yici.

Therefore, Ri is a GPF−ring for all i = 1, 2, ..., m. �

3. Group Rings

Given a ring R and a group G, we will denote the group ring of G over R by RG.

Elements of the ring RG are just formal finite sums of the form
∑

g∈G

agg with all but

a finite number of ag are 0R. We write Cn for the cyclic group of order n, Z for the

ring of integers, Zn for the ring of integers modulo n, and C is the field of complex

numbers. The imaginary unit is denoted by i.

Theorem 3.1. Let R be a ring and G be a group. If RG is a GPF−ring, then so is

R.

Proof. S = RG is a free R−module with a basis G satisfying the assumptions of

Theorem 2.2. �

However, the converse of this theorem is not true, as well be seen in Example 3.4,

and the question is what extra conditions on R or G can be added to ensure that if

R is a GPF−ring, then so is RG.
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Theorem 3.2. If RG is a GPF−ring and H is a subgroup of G, then RH is a

GPF−ring too.

Proof. RH is a subring of RG and RG is a free RH−module on the set {g1, g 2, ...},
the coset representatives of H in G. So, by Theorem 2.2, RH is a GPF−ring. �

Corollary 3.1. Let G be a group such that for every non trivial finitely generated

subgroup H of G, [G : H] < ∞. Then the group ring RG is a GPF−ring if and only

if RH is a GPF−ring for each finitely generated subgroup H of G.

Proof. If RG is GPF−ring, then by Theorem 3.2 RH is a GPF−ring for each finitely

generated subgroup H of G.

Assume that RH is a GPF−ring for each finitely generated subgroup H of G. Let

u =
m
∑

i=1

aihi ∈ RG, and let H = 〈h1, ..., hm〉 be the finitely generated subgroup of

G generated by h1, ..., hn. Then RH is a GPF−ring. Since u ∈ RH, there exists a

positive integer n such that AnnRH (un) is pure ideal.

Let v ∈ AnnRG (un). Since [G : H] < ∞, let {g0, g1, ..., gr} be a left coset represen-

tative of H in G, g0 = 1. That is G = H ∪ g1H ∪ ...∪ grH. Now, v can be written as

v =
r
∑

j=0

gjbj, where bj ∈ RH. Since 0 = vun =
r
∑

j=0

gj (bju
n), we obtain that bju

n = 0 for

all j = 0, 1, ..., r. So, bj ∈ AnnRH (un) and thus bj = bjcj for some cj ∈ AnnRH (un) ,

j = 0, 1, ..., r.

Let 1 − c =
r
∏

j=0

(1 − cj). Then c ∈ AnnRH (un) and bj = bjc for all j = 0, 1, ..., r.

It follows that v =
r
∑

j=0

gjbj =
r
∑

j=0

gj (bjc) =

(

r
∑

j=0

gjbj

)

c = vc and c ∈ AnnRH (un) ⊆

AnnRG (un) .

Hence, AnnRG (un) is pure ideal for some positive integer n.

Therefore, RG is GPF−ring. �

Theorem 3.3. If RG is a GPF−ring, then the order of each finite order element

g ∈ G is either a unit or a zero-divisor in R.
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Proof. Let g ∈ G with |g| = m. Let H be the cyclic subgroup generated by g. Then,

by Theorem 3.2, RH is a GPF−ring too. Now 1+g+g2+...+gm−1 ∈ AnnRH (1 − g) .

Since RH is a GPF−ring, AnnRH (1 − g) is generalized pure ideal in RH. So, there

exists a positive integer n ≥ 1 and a = a0 + a1g + ... + am−1g
m−1 ∈ AnnRH (1 − g)

such that (1 + g + g2 + ... + gm−1)
n
a = (1 + g + g2 + ... + gm−1)

n
and a (1 − g) = 0.

Thus, a0 = a1 = ... = am−1 since a = ag.

So, (1 + g + ... + gm−1)
n
(a0 + a0g + ... + a0g

m−1) = (1 + g + ... + gm−1)
n
.

Hence, a0 (1 + g + ... + gm−1)
n+1

= (1 + g + ... + gm−1)
n
.

So, a0m
n = mn−1 and hence (a0m − 1)mn−1 = 0.

Therefore, m is either a unit or a zero-divisor in R. �

Corollary 3.2. If G is a finite group and RG is a GPF−ring, then |G| is either a

unit or a zero-divisor in R.

Proof. Let G be a finite group and |G| = n =
k
∏

i=1

pαi

i where pi are distinct primes and

αi ≥ 1 are positive integers for all i = 1, ..., k. Then by Cauchy Theorem, there exists

gi ∈ G such that |gi| = pi, for all i = 1, ..., k.

Thus, since RG is a GPF−ring and by Theorem 3.3, pi is either a unit or a

zero-divisor in R for all i = 1, ..., k.

So, |G| =
k
∏

i=1

pαi

i is either a unit or a zero-divisor in R. �

Example 3.1. Let R = Z4 and G = C2. Then RG is not a PF−ring because RG

is not a reduced ring. Since every non-zero element in RG is either a unit or a

nilpotent, then it follows by [4, Lemma 1.5] that RG is a GPF−ring. Moreover, 2 is

a zero-divisor in R = Z4.

Example 3.2. ZG is not a GPF−ring for any nontrivial finite group G.
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A group ring is called a U−group ring if a =
∑

aigi ∈ RG is a unit if and only if

ε(a) =
∑

ai is a unit in R. It was proved in [1] that RG is a U−group ring if and

only if G is a p−group and p ∈ J(R), the Jacobson Radical of R.

Theorem 3.4. Let R be a local ring and RG be a U−group ring. Then RG is a

GPF−ring if and only if R is a GPF−ring and p ∈ Nil (R) .

Proof. By [13, page 138], RG is a local ring.

Since RG is a local ring, RG is a GPF−ring if and only if RG is a domainlike ring,

(Z(R) = Nil(R)), see [4, Lemma 1.5].

Now, G is a torsion group because G is an Abelian p−group and so by [5, Theorem

3.8] RG is a domainlike ring if and only if R is a domainlike ring and p ∈ Nil (R).

But since R is a local ring, R is a domainlike ring if and only if R is a GPF−ring.

Thus, RG is a GPF−ring if and only if R is a GPF−ring and p ∈ Nil (R) . �

Example 3.3. ZprG is a GPF−ring for any Abelian p−group because p ∈ Nil (Zpr)

and Zpr is local domainlike ring.

The following lemma exists in [12, page 134].

Lemma 3.1. (R1 × R2 × · · · × Rm) G ∼=
m
∏

i=1

RiG

Theorem 3.5. If R = R1 × R2 × · · · × Rm, then RG is a GPF−ring if and only if

RiG is a GPF−ring for all i = 1, 2, ..., m.

Proof. The proof follows from Lemma 2.1 and Lemma 3.1. �

Theorem 3.6. Let R =
n
∏

i=1

Ri where each Ri is local ring. Assume that RG is

a U−group ring. Then RG is a GPF−ring if and only if R is GPF−ring and

p ∈ Nil (Ri) for all i = 1, ..., n.
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Proof. RG is a U−group ring if and only if RiG is a U−group ring for all i = 1, ..., n,

see [1].

But since Ri is local and RiG is a U−group ring, RiG is a GPF−ring if and only

if Ri is a GPF−ring and p ∈ Nil (Ri) for all i = 1, ..., n.

By Theorem 3.5, RG is a GPF−ring if and only if RiG is a GPF−ring for all

i = 1, ..., n.

So, RG is a GPF−ring if and only if RiG is a GPF−ring for all i = 1, ..., n if and

only if Ri is a GPF−ring and p ∈ Nil (Ri) for all i = 1, ..., n if and only if R is a

GPF−ring and p ∈ Nil (Ri) for all i = 1, ..., n. �

Recall that, every Artinian ring R is isomorphic to a finite direct product of Ar-

tinian local rings Ri.

Corollary 3.3. Let R be an Artinian ring and RG be a U−group ring. Then RG is

a GPF−ring if and only if R is a GPF−ring and p ∈ Nil (Ri), where R =
n
∏

i=1

Ri,

for all i = 1, ..., n.

Theorem 3.7. If R is a semisimple ring and G is a finite group such that |G|−1 ∈ R,

then RG is a GPF−ring if and only if RG is a PF−ring.

Proof. By [12, Theorem 3.4.7], RG is a simisimple ring and hence it is a reduced ring.

Thus, RG is a GPF−ring if and only if RG is a PF−ring. �

Theorem 3.8. Let R be a ring and G be a torsion free group such that |Spec (RG)| <

∞. Then RG is a GPF−ring if and only if R is a GPF−ring.

Proof. By Theorem 3.1, if RG is a GPF−ring then R is a GPF−ring.

Conversely, assume R is a GPF−ring. Then Rp is a domainlike for every p ∈
Spec (R) .

Since G is a torsion free, it follows that RpG is a domainlike, see [5, Theorem 3.11].
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Let P ∈ Spec (RG). Then q = P ∩ R ∈ Spec (R), and (RG)P = (RqG)
PRqG

.

Consequently, (RG)P is a domainlike for all P ∈ Spec (RG). Since |Spec (RG)| < ∞
and by [4, Theorem 1.8], RG is a GPF−ring. �

The following proposition exists in [16].

Proposition 3.1. Let R be a ring. Then

(1) If 2−1 ∈ R, then RC2
∼= R × R and RC4

∼= R × R × (R [x] /(x2 + 1))

(2) If R ⊆ C and 3−1 ∈ R, then RC3
∼= R × (R [x] /(x2 + x + 1)) .

Corollary 3.4. If 2−1 ∈ R, then RC2 is a GPF−ring if and only if R is a GPF−ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1 and Lemma 2.1. �

Corollary 3.5. If 2−1 ∈ R, then RC4 is a GPF−ring if and only if R [x] /(x2 + 1)

is a GPF−ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma

2.1. �

Corollary 3.6. If R ⊆ C and 3−1 ∈ R, then RC3 is a GPF−ring if and only if

R [x] /(x2 + x + 1) is a GPF−ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma

2.1. �

Note that, if G = H × K, then RG = R (H × K) ∼= (RH)K.

Corollary 3.7. If R ⊆ C and 6−1 ∈ R, then RC6 is a GPF−ring if and only if

R [x] /(x2 + x + 1) is a GPF−ring.
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Proof. Since C6
∼= C3 × C2, then RC6

∼= (RC3) C2.

So, because 2−1 ∈ R ⊆ RC3, RC6 is a GPF−ring if and only if RC3 is a GPF−ring.

Since R ⊆ C and 3−1 ∈ R, RC3 is a GPF−ring if and only if R [x] /(x2 + x + 1)

is a GPF−ring.

Hence, RC6 is a GPF−ring if and only if R [x] /(x2 + x + 1) is a GPF−ring. �

We now investigate a case at which R [x] /(x2 + x + 1) is a GPF−ring.

Lemma 3.2. Let R1 and R2 be two integral domains, and let T be a non-integral

domain subring of R = R1 × R2 containing the identity element (1, 1). Then T is a

GPF−ring if and only if (0, 1) ∈ T.

Proof. Assume that T is a GPF−ring. Since T is not an integral domain, there are

non-zero elements (a, b) , (c, d) ∈ T such that (a, b) . (c, d) = (0, 0). Since (a, b) 6=
(0, 0), either a 6= 0 or b 6= 0, say a 6= 0. Thus c = 0 and d 6= 0. Since (c, d) ∈
AnnT ((a, b)), by [15, Theorem 2.5] there exists a positive integer n and (x, y) ∈
AnnT ((a, b)) such that (c, d)n (x, y) = (c, d)n. So, dny = dn and d 6= 0 in R2. Thus

y = 1. Since xna = 0 and a 6= 0 in R1, x = 0. So, (x, y) = (0, 1) ∈ T.

Now, assume that (0, 1) ∈ T . Then, (1, 1) − (0, 1) = (1, 0) ∈ T . Consider any

(0, 0) 6= (a, b) ∈ T . If a 6= 0, b 6= 0, AnnT ((a, b)) = {(0, 0)}. If a = 0, b 6= 0,

AnnT ((a, b)) = (1, 0)T and if a 6= 0, b = 0, AnnT ((a, b)) = (0, 1)T . Also if a = b = 0,

then AnnT ((a, b)) = T So, T is a PP−ring and hence T is a GPF−ring. �

Theorem 3.9. Let R be an integral domain and let Q(R) denotes the quotient field

of R. Consider the polynomial x2 + a1x + a2 ∈ R[x] with α, β are its roots in some

field extension, and α−β is a unit in R. Then R [x] /(x2 + a1x + a2) is a GPF−ring

if and only if either α ∈ R or α /∈ Q(R).

Proof. Let T = R [x] /(x2 + a1x + a2) and x2 + a1x + a2 = (x − α) (x − β) . By hy-

pothesis, α 6= β. First suppose α /∈ Q (R) . Then x2 + a1x + a2 is irreducible over
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Q (R) and hence it is irreducible over R since the polynomial is monic. Thus, T is

an integral domain. In particular T is a GPF−ring.

If α ∈ Q (R), then define Φ : R [x] −→ Q (R)×Q (R) by Φ (f (x)) = (f (α) , f (β)) ∈
Q (R) × Q (R). Then Φ is a ring homomorphism with Ker (Φ) = (x2 + a1x + a2).

Hence, T is a subring of Q (R) × Q (R) .

Assume now that T is a GPF−ring, and so it follows by Lemma 3.2 that (0, 1) ∈ T.

Thus there exists ax + b ∈ R [x] such that aα + b = 0 and aβ + b = 1. But since

x2 + a1x + a2 = (x − α) (x − β) , α + β = −a1 and αβ = a2. So,

2 (b − 1) b = 2 (−aβ) (−aα) = 2a2αβ = 2a2a2.

Also,

2 (b − 1) b = (2b − 2) b = − (1 + a(α + β) b = − (1 − aa1) b = (aa1 − 1) b.

So,

2a2a2 = (aa1 − 1) b.

Thus

−b = 2a2a2 − aa1b.

Hence

α = − b

a
= 2aa2 − a1b ∈ R.

So, α ∈ R.

Now, assume that α ∈ R, and define p(x) =
x − α

β − α
. Then p(x) ∈ R[x], since β −α

is a unit. But Φ(p(x)) = (p(α), p(β) = (0, 1). Thus it follows by Lemma 3.2 that T

is a GPF−ring. �

Example 3.4. Let S =
{

n
3k : n, k ∈ Z, k ≥ 0

}

. Then S is a subring of Q. Set

R =
{

a +
√

3bi : a, b ∈ S
}

. Then R is a subring of C with 1

3
∈ R. Because R is a

domain, it is certainly a GPF−ring.
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Let f (x) = x2 + x + 1 ∈ R [x]. Then α =
−1 +

√
3i

2
/∈ R.

Let r = 2
√

3i, s = −
(

3 +
√

3i
)

. Then r, s ∈ R and α =
s

r
∈ Q (R).

Since (α − β)−1 =
(√

3i
)−1

= −
√

3

3
i ∈ R, RC3

∼= R × (R [x] /(x2 + x + 1)) is not

a GPF−ring.

The above example shows that RC3 is not a GPF−ring although 3 is a unit in R

and R is a GPF−ring.
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