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GPF-PROPERTIES OF GROUP RINGS
HUDA ODETALLAH (), HASAN AL-EZEH () AND EMAD ABUOSBA ®)

ABSTRACT. All rings R in this article are assumed to be commutative with unity
1 # 0. A ring R is called a GPF—ring if for every a € R there exists a positive
integer n such that the annihilator ideal Anng (a™) is pure. We prove that for a
ring R and an Abelian group G, if the group ring RG is a GPF —ring then so is
R. Moreover, if G is a finite Abelian group then |G| is a unit or a zero-divisor
in R. We prove that if G is a group such that for every nontrivial subgroup H of
G, |G : H] < oo, then the group ring RG is a GPF—ring if and only if RH is a
G PF —ring for each finitely generated subgroup H of G. It is proved that if R is a
local ring and RG is a U—group ring, then RG is a GPF—ring if and only if R is
a GPF—ring and p € Nil (R). Finally, we prove that if R is a semisimple ring and
G is a finite group such that |G|71 € R, then RG is a GPF—ring if and only if RG

is a PF—ring.

1. INTRODUCTION

All rings considered in this paper are assumed to be commutative with unity 1 # 0,
and all groups are Abelian. Recall that a ring R is called a PF —ring if every principal
ideal is a flat R—module. An ideal I of a ring R is called pure if for every a € I, there

exists b € I such that ab = a. It is well known that a ring R is a PF—ring if and only
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if Anng(a) = {x € R:xa =0} is a pure ideal for every a € R, see [2]. There are
different characterizations of PF—rings, see [7] and [3]. A ring R is called a PP—ring
if for each a € R, Anng (a) is generated by an idempotent element in R. These rings
were studied extensively in literatures, see [6], [9], and [3]. As a generalization of
PP—ring, Hirano in [10] introduced a new class of rings called GPP—rings. A ring
R is called a GPP—ring if for each a € R, there exists a positive integer n such that
a™R is projective. It is known that a ring R is a GPP—ring if and only if for every
a € R there exists a positive integer n such that the annihilator ideal Anng (a™) is
generated by an idempotent. Some properties of GPP—rings were investigated in
[10] and [11].

Al-Ezeh in [4] introduced a new class of rings called GPF —rings. A ring R is
called a GPF —ring if for each a € R, there exists a positive integer n such that ™R
is a flat R—module. Also, a ring R is a GPF—ring if and only if for every a € R,
there exists a positive integer n such that the annihilator ideal Anng (a™) is a pure
ideal. A study of this class of rings and the relationship between GPP—rings and
G PF —rings were carried by Al-Ezeh [4].

Clearly, every PF—ring is a GPF—ring. Every PF—ring is a reduced ring (a ring
with no nonzero nilpotent elements), see [2, Lemma 2], but not every GPF —ring is
a reduced ring. Al-Ezeh in [4] proved that a ring R is a reduced GPF—ring if and
only if Ris a PF—ring. Let C'(X) be the ring of all real valued continuous functions
defined on X. Then C(N) is PF—ring, and so it is GPF —ring, while C'(R) is not
G PF—ring, being a reduced non PF—ring. Later on we will give an example of a
G PF—ring which is not a PF —ring.

It was shown in [14] that if the group ring RG is PP—ring (PF—ring), then so is
R, and if G is torsion free, then the converse is also true. Other cases for the converse

can be found also in [16].
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The PP—rings has been studied on group rings by Zan and Chen in [17]. Our
aim in this paper is to characterize when group rings RG are GPF—rings. Our work

would be parallel to the work done in [17], with modifications when needed.

2. GPF—-RINGS

In this section, we establish general new results on G PF —rings.

Definition 2.1 ([15]). An ideal I of the ring R is said to be generalized pure if for

every a € I there exists b € I and a positive integer n such that a™ = a™b.

Proposition 2.1 ([15, Theorem 2.5]). Let R be a GPF—ring. Then for every a € R,

Anng (a) is a generalized pure ideal.

Recall that a ring S is called an over ring of R if R C S C @ (R), where Q (R) is

the total quotient ring of R.
Theorem 2.1. If a ring R is a GPF —ring, then every over ring of R is a GPF —ring.

Proof. Let S be an over ring of R. Let % € S. Since R is a GPF —ring, there exists

T a”
a positive integer n such that Anng (a") is a pure ideal. Let — € Anng (t_”> Then
S

an
xa" = 0, and so there exists y € Anng (a™) such that x = zy. Hence, y € Anng (t_”)

and & = fy. So, S is a GPF —ring. U
s s

Theorem 2.2. Let R be a subring of a ring S both with the same identity. Suppose
that S is a free R—module with a basis G such that 1 € G. If S is GPF —ring, then

so 1s R.

Proof. Let a € R C S. Then there exists a positive integer n > 1 such that Anng (a™)

is pure.
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Let b € Anng (a") C Anng (a™). Then there exists ¢ = co + 191 + ... + CnGm €
Anng (a™) such that b = be, where ¢, ¢q, ..., ¢, € R.

So, b = bc = bcy + beygy + ... + b Gnm. Thus, b = beg.

Moreover, since 0 = a”c = a"co+a"c1g1+...+a"CpGm, a™c; = 0 foralli = 0,1, ..., m,
we have ¢y € Anng (a™) and b = bey.

Thus, R is GPF—ring. OJ
Corollary 2.1. If R[z] or Rlx,x7'] is a GPF—ring, then so is R.

Proof. R[z] and R [x, "] are free R—module with bases {z': i =0,1,...}
and {z':1=0,%+1,...}, respectively, satisfying the assumptions of Theorem 2.2.
O

Corollary 2.2. Let f(z) = 2™ + a;2™ ' + ... + a,, € R[] be a monic polynomial.
If R[x] /(f(x)) is a GPF—ring, then R is so.

Proof. S = R[z]/(f (x)) is a free R—module with a basis {1,z,...,2™ '} satisfying

the assumptions of Theorem 2.2. O

Lemma 2.1. Let Ry, Ry, ..., Ry, be rings. Then R = [[R; is a GPF—ring if and
i=1
only if R; 1s a GPF—ring for alli=1,2,...,m.

Proof. Assume that R; is a GPF —ring for all i = 1,2,...,m.
Let z = (21,9, ...,2,) € R. Then there exist positive integers n; > 1 such that

Anng, (x]") is pure ideal for all i = 1,2, ..., m.

k
Hence, Annp, (z}

) is pure ideal for all k > n;; i =1,2,...,m, see [15, Lemma 3.2].
Let k = max {ny, ng,...,ny,} and let y = (y1,v2, ..., Ym) € Anng (xk) )

Then y; € Anng, (xk) and so, there exists ¢; € Anngp, (:c’?

K3 3

) such that y; = y,¢; for
alli=1,2,....m.

So, ¢ = (c1,¢a,...,Cm) € Anng (xk) and y = yc.



GPF-PROPERTIES OF GROUP RINGS 489

Thus, R is a GPF—ring.

Conversely, assume that R = [[R; is a GPF—ring and let x; € R;; i =1,2,...,m.
i=1

Consider z = (aq,ay, ..., ), with o; = J . Then since R is a
0 j#i

G PF —ring, there exists a positive integer n such that Anng (™) is pure.

Yi J=1

Let y; € Anng, («}). Consider y = (31, B2, ..., Bm), with §; = . Then
0 jAi
y € Anng (2™) and hence there exists ¢ = (¢, ¢, ...,¢n) € Anng (™) such that
Yy = yc.
Thus, ¢; € Anng, (') and y; = y;¢;.
Therefore, R; is a GPF —ring for all i = 1,2, ..., m. O

3. GROUP RINGS

Given a ring R and a group GG, we will denote the group ring of G over R by RG.
Elements of the ring RG are just formal finite sums of the form ) a,g with all but
a finite number of a, are 0r. We write C,, for the cyclic group ogfegrder n, Z for the
ring of integers, Z, for the ring of integers modulo n, and C is the field of complex

numbers. The imaginary unit is denoted by i.

Theorem 3.1. Let R be a ring and G be a group. If RG is a GPF—ring, then so is
R.

Proof. S = RG is a free R—module with a basis G satisfying the assumptions of
Theorem 2.2. 0]

However, the converse of this theorem is not true, as well be seen in Example 3.4,
and the question is what extra conditions on R or GG can be added to ensure that if

R is a GPF—ring, then so is RG.
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Theorem 3.2. If RG is a GPF—ring and H is a subgroup of G, then RH is a
GPF—ring too.

Proof. RH is a subring of RG and RG is a free RH—module on the set {g1,92, ...},
the coset representatives of H in GG. So, by Theorem 2.2, RH is a GPF —ring. U

Corollary 3.1. Let G be a group such that for every non trivial finitely generated
subgroup H of G, |G : H| < oo. Then the group ring RG is a GPF—ring if and only
if RH is a GPF—ring for each finitely generated subgroup H of G.

Proof. It RG is GPF —ring, then by Theorem 3.2 RH is a G PF —ring for each finitely
generated subgroup H of G.

Assume that RH is a GPF —ring for each finitely generated subgroup H of G. Let
u = iaihi € RG, and let H = (hq, ..., hy,) be the finitely generated subgroup of
G gerllzelrated by hi,...,h,. Then RH is a GPF—ring. Since u € RH, there exists a
positive integer n such that Anngy (u”) is pure ideal.

Let v € Anngg (u™). Since [G : H] < oo, let {go, g1, ---, -} be a left coset represen-
tative of H in G, go = 1. That is G =HUg HU...Ug,H. Now, v can be written as
v= igjbj, where b; € RH. Since 0 = vu" = Zr:gj (bju™), we obtain that b;u™ = 0 for
all j]iOO, 1,...,r. So, b; € Anngy (u™) and thJu:sObj = b,c; for some ¢; € Anngy (u™),
7=0,1,....7

Let 1 —c¢= ][ (1 —¢j). Then ¢ € Anngy (u™) and b; = bjc for all j = 0,1,...,r.
j=0

It follows that v = > g;b; = > g; (bjc) = <Zgjbj> ¢ =wvcand ¢ € Anngy (u") C
j=0 j=0 j=0
Anngg (u™) .

Hence, Annge (u™) is pure ideal for some positive integer n.

Therefore, RG is GPF —ring. U

Theorem 3.3. If RG is a GPF—ring, then the order of each finite order element

g € G is either a unit or a zero-divisor in R.
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Proof. Let g € G with |g| = m. Let H be the cyclic subgroup generated by g. Then,
by Theorem 3.2, RH is a GPF —ring too. Now 1+g+¢?+...+¢™ ! € Anngy (1 —g).
Since RH is a GPF—ring, Anngy (1 — g) is generalized pure ideal in RH. So, there
exists a positive integer n > 1 and a = ag + a1 + ... + apm_19™ ' € Anngg (1 — g)
such that (1+g+¢*+ ...+ g™ N'a=1+g+¢*+...+g" H" and a(1 —g) =0.
Thus, ag = a1 = ... = a,,—1 since a = ag.
So, 14+g+ ... +¢g™ 1) (ao +apg+ ... +agg™ ) =1 +g+..+g™H".

Hence, ag (1 4+ g+ ... + gm—l)"Jrl =(14g+..+gm )"

n—1

So, apm™ = m™! and hence (agm — 1) m"~* = 0.

Therefore, m is either a unit or a zero-divisor in R. Il

Corollary 3.2. If G is a finite group and RG is a GPF—ring, then |G| is either a

unit or a zero-divisor in R.

Proof. Let G be a finite group and |G| =n = ﬁ p;* where p; are distinct primes and
a; > 1 are positive integers forallt =1, ..., k. Zl: _ﬁen by Cauchy Theorem, there exists
g; € G such that |g;| = p;, for alli =1, ..., k.

Thus, since RG is a GPF—ring and by Theorem 3.3, p; is either a unit or a
zero-divisor in R for all i =1,..., k.

So, |G| = ﬁlpf" is either a unit or a zero-divisor in R. O
Example 3.1. Let R = Z4 and G = C5. Then RG is not a PF—ring because RG
1s not a reduced ring. Since every non-zero element in RG s either a unit or a
nilpotent, then it follows by [4, Lemma 1.5] that RG is a GPF—ring. Moreover, 2 is

a zero-divisor in R = Z4.

Example 3.2. ZG is not a GPF—ring for any nontrivial finite group G.
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A group ring is called a U—group ring if @ = > a;9; € RG is a unit if and only if
€(a) = > a; is a unit in R. It was proved in [1] that RG is a U—group ring if and
only if G is a p—group and p € J(R), the Jacobson Radical of R.

Theorem 3.4. Let R be a local ring and RG be a U—group ring. Then RG is a
GPF—ring if and only if R is a GPF—ring and p € Nil (R).

Proof. By [13, page 138], RG is a local ring.
Since RG is a local ring, RG is a GPF—ring if and only if RG is a domainlike ring,
(Z(R) = Nil(R)), see [4, Lemma 1.5].
Now, G is a torsion group because G is an Abelian p—group and so by [5, Theorem
3.8] RG is a domainlike ring if and only if R is a domainlike ring and p € Nil (R).
But since R is a local ring, R is a domainlike ring if and only if R is a GPF —ring.
Thus, RG is a GPF —ring if and only if R is a GPF—ring and p € Nil (R). O

Example 3.3. Z,-G is a GPF—ring for any Abelian p—group because p € Nil (Z,r)

and Zyr is local domainlike ring.

The following lemma exists in [12, page 134].

Lemma 3.1. (Ry X Ry X --- x R,,) G = [[R;G
i=1

Theorem 3.5. I[f R= Ry x Ry X --- X R,,, then RG is a GPF—ring if and only if
R,G is a GPF—ring for all i =1,2,...,m.

Proof. The proof follows from Lemma 2.1 and Lemma 3.1. U

Theorem 3.6. Let R = [[R; where each R; is local ring. Assume that RG is
i=1

a U—group ring. Then RG is a GPF—ring if and only if R is GPF—ring and

p € Nil (R;) foralli=1,...n.
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Proof. RG is a U—group ring if and only if R;G is a U—group ring for all i =1, ..., n,
see [1].

But since R; is local and R;G is a U—group ring, R;G is a GPF —ring if and only
if R; is a GPF—ring and p € Nil (R;) foralli=1,...,n.

By Theorem 3.5, RG is a GPF —ring if and only if R;G is a GPF —ring for all
1=1,..,n.

So, RG is a GPF —ring if and only if R;G is a GPF—ring for all : = 1,...,n if and
only if R; is a GPF—ring and p € Nil (R;) for all ¢ = 1,...,n if and only if R is a
GPF—ring and p € Nil (R;) for alli =1,...,n. O

Recall that, every Artinian ring R is isomorphic to a finite direct product of Ar-

tinian local rings R;.

Corollary 3.3. Let R be an Artinian ring and RG be a U—group ring. Then RG is
a GPF—ring if and only if R is a GPF—ring and p € Nil (R;), where R = [[R;,
i=1

foralli=1,... n.

Theorem 3.7. If R is a semisimple ring and G is a finite group such that |G|_1 €ER,
then RG is a GPF—ring if and only if RG is a PF—ring.

Proof. By [12, Theorem 3.4.7], RG is a simisimple ring and hence it is a reduced ring.
Thus, RG is a GPF—ring if and only if RG is a PF —ring. O

Theorem 3.8. Let R be a ring and G be a torsion free group such that |Spec (RG)| <
0o. Then RG is a GPF—ring if and only if R is a GPF—ring.

Proof. By Theorem 3.1, if RG is a GPF—ring then R is a GPF—ring.
Conversely, assume R is a GPF—ring. Then R, is a domainlike for every p €
Spec (R) .

Since G is a torsion free, it follows that R,G is a domainlike, see [5, Theorem 3.11].
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Let P € Spec(RG). Then ¢ = PN R € Spec(R), and (RG)p = (R,G)pp -
Consequently, (RG)p is a domainlike for all P € Spec (RG). Since |Spec (RG)| < oo
and by [4, Theorem 1.8], RG is a GPF—ring,. O

The following proposition exists in [16].

Proposition 3.1. Let R be a ring. Then
(1) If27' € R, then RCy; 2 Rx R and RCy = Rx Rx (R[z] /(z* + 1))
(2) fRCC and 37" € R, then RC3 ¥ R x (R[x] /(x> + x4+ 1)).

Corollary 3.4. If27! € R, then RC5 is a GPF —ring if and only if R is a GPF—ring.
Proof. The proof follows from Theorem 3.1, Proposition 3.1 and Lemma 2.1. U

Corollary 3.5. If 271 € R, then RCy is a GPF—ring if and only if R[x] /(z* + 1)
1s a GPF—ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma
2.1. O

Corollary 3.6. If R C C and 37! € R, then RC3 is a GPF—ring if and only if
Rlz] /(z* + 2+ 1) is a GPF—ring.

Proof. The proof follows from Theorem 3.1, Proposition 3.1, Corollary 2.2 and Lemma
2.1. O

Note that, if G = H x K, then RG = R(H x K) = (RH) K.

Corollary 3.7. If R C C and 6! € R, then RCy is a GPF—ring if and only if
Rlz] /(z* + 2+ 1) is a GPF—ring.



GPF-PROPERTIES OF GROUP RINGS 495

Proof. Since Cg = C3 x Cy, then RCg = (RC3) Cs.
So, because 27! € R C RC3, RCs is a GPF —ring if and only if RC5 is a GPF —ring.
Since R C C and 37! € R, RC3 is a GPF—ring if and only if R[z] /(2? + x + 1)
is a GPF—ring.
Hence, RCq is a GPF—ring if and only if R[z] /(z? + x4+ 1) is a GPF—ring. [

We now investigate a case at which R[z] /(2? + x + 1) is a GPF—ring.

Lemma 3.2. Let Ry and Ry be two integral domains, and let T' be a non-integral
domain subring of R = Ry X Ry containing the identity element (1,1). Then T is a
GPF—ring if and only if (0,1) € T.

Proof. Assume that T is a GPF —ring. Since T is not an integral domain, there are
non-zero elements (a,b),(c,d) € T such that (a,b).(c,d) = (0,0). Since (a,b) #
(0,0), either a # 0 or b # 0, say a # 0. Thus ¢ = 0 and d # 0. Since (¢,d) €
Anny ((a,b)), by [15, Theorem 2.5] there exists a positive integer n and (z,y) €
Annz ((a, b)) such that (¢,d)" (z,y) = (¢,d)". So, d"y = d" and d # 0 in Ry. Thus
y =1. Since 2"a =0 and a # 0 in Ry, x = 0. So, (x,y) = (0,1) € T.

Now, assume that (0,1) € 7. Then, (1,1) — (0,1) = (1,0) € T. Consider any
(0,0) # (a,b) € T. If a # 0,b # 0, Anny ((a,0)) = {(0,0)}. If a =0, b # 0,
Annr ((a,0)) = (1,0) T and ifa # 0,b = 0, Anny ((a,0)) = (0, 1) T. Alsoifa =0 =0,
then Annr ((a,b)) =T So, T is a PP—ring and hence T is a GPF —ring. O

Theorem 3.9. Let R be an integral domain and let Q(R) denotes the quotient field
of R. Consider the polynomial x* + a1z + ay € R[x] with a, 3 are its roots in some
field extension, and o— (3 is a unit in R. Then R[x] /(2 + ayx + a3) is a GPF—ring
if and only if either « € R or a ¢ Q(R).

Proof. Let T = R[] /(2® + a1z + az) and 22 + a1 + as = (v — a) (x — 3) . By hy-
pothesis, o # 3. First suppose a ¢ Q (R). Then z? + a;x + ay is irreducible over
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@ (R) and hence it is irreducible over R since the polynomial is monic. Thus, T is
an integral domain. In particular 7" is a GPF—ring.

Ifa € @ (R), then define ® : Rz] — Q (R)xQ (R) by ® (f (z)) = (f (a), [ (8)) €
Q(R) x Q(R). Then @ is a ring homomorphism with Ker (®) = (2* + a1z + ap).
Hence, T is a subring of Q (R) x @ (R).

Assume now that 7" is a GPF—ring, and so it follows by Lemma 3.2 that (0,1) € 7.

Thus there exists ax + b € R [z] such that ac +b = 0 and a5 + b = 1. But since
P?+azr+a=x—a)(z—pF),a+8=—a and aff = ay. So,

2(b—1)b=2(—afB) (—aa) = 2a*afB = 2a’ay.
Also,

20-1)b=2b-2)b=—(1+ala+B)b=—(1—aa)b=(aa; —1)0.

So,
2a*ay = (aa; — 1) b.
Thus
—b = 2a’as — aayb.
Hence
b
a=—— =2aay; —a1b € R.
a
So, a € R.

r —

Now, assume that o € R, and define p(z) = . Then p(z) € R|x], since § — «
o

is a unit. But ®(p(x)) = (p(«),p(B) = (0,1). Thus it follows by Lemma 3.2 that T
is a GPF—ring. ([l

Example 3.4. Let S = {3% n ke, k> 0}. Then S s a subring of Q. Set
R = {a+ V/3bi:a,be S}. Then R is a subring of C with % € R. Because R is a

domain, it is certainly a GPF—ring.
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-1 3i
__;%)£}_¢]{

Let r =2V/3i, s = — (3+/3i). Thenr,s € R andaz?EQ(R).

V3

Since (a — )" = (\/gi)_1 = —?i €R, RCs~Rx (Rx]/(z*+x+1)) is not
a GPF—ring.

The above example shows that RC' is not a GPF —ring although 3 is a unit in R
and R is a GPF—ring.
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