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MEROMORPHIC FUNCTIONS CONCERNING DIFFERENCE

OPERATOR

HARINA P. WAGHAMORE (1) AND RAMYA MALIGI (2)

Abstract. We deal with a uniqueness question of meromorphic functions sharing a

polynomial with their difference operators and obtain some results, which generalize

and improve the recent result of Sujoy Majumder [11].

1. Introduction and main results

In this paper, a meromorphic function will mean meromorphic in the whole com-

plex plane. We will use the standard notations of Nevanlinna’s value distribution

theory such as T (r, f), N(r, f), N(r, f), and m(r, f), as explained in Hayman [4],

Yang [14], and Yang and Yi [13]. We denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)), as r → ∞ possibly outside a set of finite linear measures. We

denote ρ(f) for order of f. ρ2(f) is hyper order of f(z), defined by

ρ2(f) = lim
r→∞

sup
log log T (r, f)

log r
.

Let f and g be two nonconstant meromorphic functions and a be a finite complex

number. We say that f, g share the value a CM (counting multiplicities) if f, g have
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the same a-points with the same multiplicities, and we say that f, g share the value

a IM(ignoring multiplicities) if we do not consider the multiplicities.

Recently, people have raised great interest in difference analogues of Nevanlinna’s

theory and obtained many profound results. A number of papers have focused on

value distribution and uniqueness of difference polyomials, which are analogues of

Nevanlinna theory. For a meromorphic function f(z) and a constant c, f(z + c) is

called the shift of f, where f(z) is not periodic function with period c. We define the

difference operator ∆cf = f(z + c) − f(z) and ∆k
cf = ∆k−1

c (∆cf) for any positive

integer k.

In 2011, K. Liu, X. L. Liu and T. B. Cao studied the uniqueness of the difference

monomials and obtained the following results.

Theorem 1.1. [9] Let f and g be two transcendental meromorphic functions with

finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 14, f n(z)f(z + c) and

gn(z)g(z + c) share 1 CM, then f ≡ tg or fg ≡ t, where tn+1 = 1.

Theorem 1.2. [9] Let f and g be two transcendental meromorphic functions with

finite order. Suppose that c ∈ C \ {0} and n ∈ N. If n ≥ 26, f n(z)f(z + c) and

gn(z)g(z + c) share 1 IM, then f ≡ tg or fg ≡ t, where tn+1 = 1.

We now explain the notation of weighted sharing as introduced in [6].

Definition 1.1. [6] Let k ∈ N∪ {0} ∪ {∞}. For a ∈ C∪ {∞} we denote by Ek(a, f)

the set of all a-points of f where an a-point of multiplicity m is counted m times if

m ≤ k and k + 1 times is m > k. If Ek(a, f) = Ek(a, g), we say that f, g share the

value a with weight k.

We write f, g share (a, k) to mean that f, g share the value a with weight k.

Clearly if f, g share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also
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we note that f, g share a value a IM or CM if and only if f, g share (a, 0) or (a,∞)

respectively.

Definition 1.2. For each meromorphic function f on complex plane, by a difference

product, we mean a difference monomial and its shifts, that is, an expression of type

m
∏

ν=1

f(z + cν)
lν ,

where c1, ..., cm are distinct complex numbers and l1, ..., lm are natural numbers.

In 2015, Y.Liu, J. P. Wang and F. H. Liu improved Theorems 1.1, 1.2 and obtained

the following results.

Theorem 1.3. [10] Let c ∈ C \ {0} and let f and g be two transcendental mero-

morphic functions with finite order, and n (≥ 14), k (≥ 3) be two positive integers.

If Ek(1, f
n(z)f(z + c)) = Ek(1, g

n(z)g(z + c)), then f ≡ t1g or fg ≡ t2 for some

constants t1 and t2 satisfying tn+1
1 = 1 and tn+1

2 = 1.

Theorem 1.4. [10] Let c ∈ C\{0} and let f and g be two transcendental meromorphic

functions with finite order, and n (≥ 16) be a positive integer. If E2(1, f
n(z)f(z+c)) =

E2(1, g
n(z)g(z + c)), then f ≡ t1g or fg ≡ t2, for some constants t1 and t2 satisfying

tn+1
1 = 1 and tn+1

2 = 1.

Theorem 1.5. [10] Let c ∈ C\{0} and let f and g be two transcendental meromorphic

functions with finite order, and n (≥ 22) be a positive integer. If E1(1, f
n(z)f(z+c)) =

E1(1, g
n(z)g(z + c)), then f ≡ t1g or fg ≡ t2, for some constants t1 and t2 satisfying

tn+1
1 = 1 and tn+1

2 = 1.

Recently, Sujoy Majumder has replaced the sharing value 1 in Theorems 1.3, 1.4

and 1.5 by a nonzero polynomial and obtained the following results
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Theorem 1.6. [11] Let f and g be two transcendental meromorphic functions of

finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 14. Let p (6≡ 0) be a polynomial

such that deg(p) < (n − 1)/2. If fn(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z) share

(0, 2), then one of the following two cases holds:

(1) f ≡ tg for some constant t such that tn+1 = 1,

(2)fg ≡ t, where p(z) reduces to a nonzero constant c and t is a constant such that

tn+1 = c2.

Theorem 1.7. [11] Let f and g be two transcendental meromorphic functions of

finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 16. Let p (6≡ 0) be a polynomial

such that deg(p) < (n − 1)/2. Suppose f n(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z)

share (0, 1). Then conclusion of Theorem 1.6 holds.

Theorem 1.8. [11] Let f and g be two transcendental meromorphic functions of

finite order, c ∈ C \ {0} and n ∈ N be such that n ≥ 26. Let p (6≡ 0) be a polynomial

such that deg(p) < (n − 1)/2. Suppose f n(z)f(z + c) − p(z) and gn(z)g(z + c) − p(z)

share (0, 0). Then conclusion of Theorem 1.6 holds.

Now it is quite natural to ask the following question.

Question 1.1. What can be said about the uniqueness of finite order meromorphic

functions f and g of the difference polynomials fn(z)∆cf(z) and gn(z)∆cg(z) when

they share a non-zero polynomial?

We give a positive answer to the above question by using notion of weighted sharing

values which generalize and improves Theorems 1.6, 1.7 and 1.8.

Theorem 1.9. Let f and g be two transcendental meromorphic functions of finite

order and n be a positive integer such that n ≥ 12. Suppose that c is a non-zero

complex constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0. Let fn(z)∆cf(z) − p(z)

and gn(z)∆cg(z) − p(z) share (0, 2), where p(z) be a nonzero polynomial such that
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deg(p) < (n−2)/2 and g(z), g(z + c) share 0 CM, then one of the following two cases

holds:

(1) f ≡ tg for some constant t such that tn+1 = 1,

(2) f(z) = c1e
az and g(z) = c2e

−az, where a, c1 and c2 are non-zero constants such

that (c1c2)
n+1(eac + e−ac − 2) = −d2.

Theorem 1.10. Let f and g be two transcendental meromorphic functions of finite

order and n be a positive integer such that n ≥ 27/2. Suppose that c is a non-zero

complex constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0. Let fn(z)∆cf(z) − p(z)

and gn(z)∆cg(z) − p(z) share (0, 1), where p(z) be a nonzero polynomial such that

deg(p) < (n − 2)/2 and g(z), g(z + c) share 0 CM. Then conclusion of Theorem 1.9

holds.

Theorem 1.11. Let f and g be two transcendental meromorphic functions of finite

order and n be a positive integer such that n ≥ 17. Suppose that c is a non-zero

complex constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0. Let fn(z)∆cf(z) − p(z)

and gn(z)∆cg(z) − p(z) share (0, 0), where p(z) be a nonzero polynomial such that

deg(p) < (n − 2)/2 and g(z), g(z + c) share 0 CM. Then conclusion of Theorem 1.9

holds.

2. Lemmas

Let F, G be two non-constant meromorphic functions. Henceforth we shall denote

by H the following function

(2.1) H =

(

F
′′

F ′
−

2F
′

F − 1

)

−

(

G
′′

G′
−

2G
′

G − 1

)

.

Lemma 2.1. [12] Let f be a non-constant meromorphic function and let an(z)(6≡

0), an−1(z), ..., a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i =

0, 1, 2, ..., n. Then

T (r, anfn + an−1f
n−1 + ... + a1f + a0) = nT (r, f) + S(r, f).
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Lemma 2.2. [14] Let f and g be two non-constant meromorphic functions. Then

N

(

r,∞;
f

g

)

− N

(

r,∞;
g

f

)

= N(r,∞; f) + N(r, 0; g) − N(r,∞; g) − N(r, 0; f).

Lemma 2.3. [3] Let f be a meromorphic function of finite order σ, and let c ∈ C\{0}

be fixed. Then for each ε > 0, we have

m

(

r,
f(z + c)

f(z)

)

+ m

(

r,
f(z)

f(z + c)

)

= O(rσ−1+ε) = S(r, f).

The following lemma has little modifications of the original version (Theorem 2.1

of [3])

Lemma 2.4. [3] Let f be a transcendental meromorphic function of finite order,

c ∈ C \ {0} be fixed. Then

T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.5. [5] Let f be a non-constant meromorphic function of finite order and

c ∈ C. Then

N (r, 0; f(z + c)) ≤ N (r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f),

N (r, 0; f(z + c)) ≤ N (r, 0; f(z)) + S(r, f), N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Lemma 2.6. Let f be a transcendental meromorphic function of finite order and let

F = fn(z)∆cf(z), where n is positive integer. Then

(n − 2)T (r, f) ≤ T (r, F ) + S(r, f).

Proof. From Lemma 2.1, Lemma 2.3 and first fundamental theorem, we obtain

(n + 1)T (r, f) = T (r, fn+1) + S(r, f)

≤ T

(

r,
f(z)F

∆cf

)

+ S(r, f)

≤ T (r, F ) + T

(

r,
f(z)

∆cf

)

+ S(r, f)
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≤ T (r, F ) + m

(

r,
∆cf

f(z)

)

+ N

(

r,
∆cf

f(z)

)

+ S(r, f)

≤ T (r, F ) + 3T (r, f) + S(r, f)

(n − 2)T (r, f) ≤ T (r, F ) + S(r, f).

Hence, we get Lemma 2.5.

Lemma 2.7. Let f, g be two transcendental meromorphic functions of finite order,

c ∈ C \ {0} and n ∈ N such that n ≥ 3. Let p(z) be a nonzero polynomial such that

deg(p) < (n − 2)/2. Then

(1) if deg(p) ≥ 1, then fn(z)∆cf(z)gn(z)∆cg(z) 6≡ p2(z);

(2) if p(z) is a nonconstant d and fn(z)∆cf(z)gn(z)∆cg(z) ≡ p2(z), then

f(z) = c1e
az, g(z) = c2e

−az,

where a, c1 and c2 are non-zero constants such that (c1c2)
n+1(eac + e−ac − 2) = d2.

Proof. Suppose

(2.2) fn(z)∆cf(z)gn(z)∆cg(z) ≡ p2(z).

Let h1 = fg. Then by (2.2), we have

(2.3) hn
1 (z) ≡

p2(z)

∆cf(z)∆cg(z)
.

We now consider following three cases.

Case 1. Suppose h1 is a transcendental meromorphic function. Now by Lemmas 2.1,

2.3 and 2.5, we get

nT (r, h1) = T (r, hn
1 ) + S(r, h1) = T

(

r,
p2

∆cf(z)∆cg(z)

)

+ S(r, h1)

≤ N(r, 0; ∆cf(z)∆cg(z)) + m(r, 0; ∆cf(z)∆cg(z))

+ S(r, h1)
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≤ 2[T (r, f) + T (r, g)] + S(r, h1)

n[T (r, f) + T (r, g)] ≤ 2[T (r, f) + T (r, g)] + S(r, h1),

which is a contradiction.

Case 2. Suppose h1 is a rational function. Let

(2.4) h1 =
h2

h3
,

where h2 and h3 are two nonzero relatively prime polynomials. By (2.4), we have

(2.5) T (r, h1) = max{deg(h2), deg(h3)} log r + O(1).

Now by (2.3)-(2.5), we have

n max{deg(h2), deg(h3)} log r = T (r, hn
1) + O(1)

≤ 2[T (r, f) + T (r, g)] + 2T (r, p) + O(1)

n max{deg(h2), deg(h3)} log r ≤ 2 max{deg(h2), deg(h3)} log r + 2 deg(p) log r

+ O(1).
(2.6)

We see that max{deg(h2), deg(h3)} ≥ 1. Now by (2.6), we deduce that (n − 2)/2 ≤

deg(p), which contradicts our assumption that deg(p) < (n− 2)/2. Hence h1 must be

a nonzero constant. Let

(2.7) h1 = t ∈ C \ {0}.

Now when deg(p) ≥ 1, by (2.3) and (2.7), we arrive at a contradiction. Therefore in

this case we have fn(z)∆cf(z)gn(z)∆cg(z) 6≡ p2(z).

Case 3. Let p(z) be a non-zero constant d. In this case we see that f(z) and g(z)

have no zeros and so we can take f(z) and g(z) as follows:

(2.8) f(z) = eα(z), g(z) = eβ(z),
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where α and β are non-constant polynoimals. Now from (2.8) we get

(2.9) (eα(z+c)−α(z) − 1)(eβ(z+c)−β(z) − 1) ≡ d2e−(n+1)[α(z)+β(z)].

We conclude from (2.9) that eα(z+c)−α(z) − 1 has no zeros. Let φ(z) = eα(z+c)−α(z).

Then φ(z) 6= 0, 1,∞ for any z ∈ C. By Picard’s theorem, φ is a constant and so

deg(α) = 1. Similarly we can prove that deg(β) = 1. Assume now that

f(z) = c1e
az, g(z) = c2e

bz ,

where a, b, c1 and c2 are non-zero constants. Applying (2.2) again we get a = −b and

(c1c2)
n+1(eac + e−ac − 2) = −d2.

Finally f(z) and g(z) take the form

f(z) = c1e
az, g(z) = c2e

−az,

where a, c1 and c2 are non-zero constants such that (c1c2)
n+1(eac + e−ac − 2) = −d2.

This completes the proof.

Lemma 2.8. [7] If N(r, 0; f (k)|f 6= 0) denotes the counting function of those zeros of

f (k)(z) which are not the zeros of f(z), where a zero of f (k)(z) is counted according

to its multiplicity, then

N(r, 0; f (k)|f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f | < k) + kN(r, 0; f | ≥ k) + S(r, f).

Lemma 2.9. Let f and g be two transcendental meromorphic functions of finite

order, c ∈ C \ {0} be finite complex constant such that ∆cf(z) 6≡ 0 and ∆cg(z) 6≡ 0

and let n be an integer such that n > 8. Let F (z) = fn(z)∆cf(z)
p(z)

and G(z) = gn(z)∆cg(z)
p(z)

,

where p(z) is non-zero polynomial. If g(z), g(z + c) share 0 CM and H ≡ 0, then one

of the following conclusions occur

(i) fn(z)∆cf(z)gn(z)∆cg(z) ≡ p2(z), where fn(z)∆cf(z) − p(z) and gn(z)∆cg(z) −

p(z) share 0 CM;
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(ii) f(z) ≡ tg(z) for a constant t with tn+1 = 1.

Proof. Since H ≡ 0, by integration we get

(2.10)
1

F − 1
=

BG + A − B

G − 1
,

where A, B are constants and A 6= 0. From (2.10) it is clear that F and G share

(1,∞). We now consider following cases.

Case 1. Let B 6= 0 and A 6= B.

If B = −1, then from (2.10) we have

F =
−A

G − A − 1
.

Therefore

N(r, A + 1; G) = N(r, 0; p) = S(r, g).

So in view of Lemma 2.6 and the second fundamental theorem we get

(n − 2)T (r, g) ≤ T (r, gn∆cg) + S(r, g)

≤ T (r, G) + s(r, g)

≤ N(r,∞; G) + N(r, 0; G) + N(r, A + 1; G) + S(r, g)

≤ N(r,∞; gn∆cg) + N(r, 0; gn∆cg) + S(r, g)

≤ 3T (r, g) + S(r, g),

which is a contradiction since n > 5.

If B 6= −1, from (2.10) we obtain that

F −

(

1 +
1

B

)

=
−A

B2[G + A−B
B

]
.

So

N

(

r,
(B − A)

B
; G

)

= S(r, g).

Using Lemma 2.6 and the same argument as used in the case when B = −1 we can

get a contradiction.
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Case 2. Let B 6= 0 and A = B.

If B = −1, then from (2.10) we have

F (z)G(z) ≡ 1,

i.e.,

fn(z)∆cf(z)gn(z)∆cg(z) ≡ p2(z),

where fn(z)∆cf(z) − p(z) and gn(z)∆cg(z) − p(z) share 0 CM.

If B 6= −1, from (2.10) we have

1

F
=

BG

(1 + B)G − 1
.

Therefore

N

(

r,
1

1 + B
; G

)

= N(r, 0; F ) + S(r, f).

So in view of Lemmas 2.3, 2.6 and the second fundamental theorem we get

(n − 2)T (r, g) ≤ T (r, gn∆cg) + S(r, g)

≤ T (r, G) + S(r, g)

≤ N(r,∞; G) + N(r, 0; G) + N(r,
1

1 + B
; G) + S(r, g)

≤ N(r,∞; gn∆cg) + N(r, 0; gn∆cg) + N(r, 0; fn∆cf)

+ S(r, f) + S(r, g)

≤ 3T (r, g) + 3T (r, f) + S(r, f) + S(r, g).

So for r ∈ I we have

(n − 8)T (r, g) ≤ S(r, g),

which is a contradiction since n > 8.

Case 3. Let B = 0. From (2.10) we obtain

(2.11) F =
G + A − 1

A
.
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If A 6= 1, then from (2.11) we obtain

N(r, 1 − A; G) = N(r, 0; F ).

We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and from

(2.11) we obtain

F (z) ≡ G(z),

i.e.,

(2.12) fn(z)∆cf(z) ≡ gn(z)∆cg(z)

Let h = f

g
, and then substituting f = gh in (2.12) we deduce

hn+1 =
f

∆cf
.
∆cg

g

If h is not a constant, then we have

(n + 1)T (r, h) ≤ T

(

r,
f

∆cf

)

+ T

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)

≤ T

(

r,
∆cf

f

)

+ T

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)

≤ N

(

r,
∆cf

f

)

+ N

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)

≤ 3[T (r, f) + T (r, g)] + S(r, f) + S(r, g).

Combining above inequality with T (r, h) = T (r, f

g
) = T (r, f) + T (r, g) + S(r, f) +

S(r, g, ), we obtain (n − 2)[T (r, f) + T (r, g)] ≤ S(r, f) + S(r, g) which is impossible.

Therefore, h is a constant, then substitute f = gh in to (2.12), we have hn+1 ≡ 1.

Therefore f = tg, where t is a constant with tn+1 = 1.

Lemma 2.10. [1] If f, g be two non-constant meromorphic functions such that they

share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) + N
(2

E (r, 1; f) − N f>2(r, 1; g) ≤ N(r, 1; g) − N(r, 1; g).
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Lemma 2.11. [2] Let f, g share (1, 1). Then

Nf>2(r, 1; g) ≤
1

2
N(r, 0; f) +

1

2
N(r,∞; f) −

1

2
N0(r, 0; f

′

) + S(r, f),

where N0(r, 0; f
′

) is the counting function of those zeros of f
′

which are not the zeros

of f(f − 1).

Lemma 2.12. [2] Let f and g be two non-constant meromorphic functions sharing

(1, 0). Then

NL(r, 1; f)+2NL(r, 1; g)+N
(2

E (r, 1; f)−N f>1(r, 1; g)−N g>1(r, 1; f) ≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.13. [2] Let f, g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) + N(r,∞; f) + S(r, f)

Lemma 2.14. [2] Let f, g share (1, 0). Then

(i)N f>1(r, 1; g) ≤ N(r, 0; f) + N(r,∞; f) − N0(r, 0; f
′

) + S(r, f)

(ii)N g>1(r, 1; f) ≤ N(r, 0; g) + N(r,∞; g)− N0(r, 0; g
′

) + S(r, f).

3. Proofs of the Theorems.

Proof of Theorem 1.9. Let F (z) = fn(z)∆cf(z)
p(z)

and G(z) = gn(z)∆cg(z)
p(z)

. It follows

that F and G share (1,2) except for the zeros of p(z).

Case 1. Let H 6≡ 0.

From (2.1) we obtain

N(r,∞; H) ≤ N ∗(r, 1; F, G) + N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N 0(r, 0; F
′

)

+ N 0(r, 0; G
′

).(3.1)

Let z0 be a simple zero of F −1 such that p(z0) 6= 0. Then z0 is a simple zero of G−1

and a zero of H. So

(3.2) N(r, 1; F | = 1) ≤ N(r, 0; H) ≤ N(r,∞; H) + S(r, f) + S(r, g).
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Using (3.1) and (3.2) we get

N(r, 1; F ) ≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N ∗(r, 1; F, G) + N(r, 1; F | ≥ 2)

+ N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g).(3.3)

Now in view of Lemma 2.8 we get

N 0(r, 0; G
′

) + N(r, 1; F | ≥ 2) + N ∗(r, 1; F, G) ≤ N 0(r, 0; G
′

) + N(r, 1; F | ≥ 2)

+ N(r, 1; F | ≥ 3)

≤ N(r, 0; G
′

|G 6= 0)

≤ N(r, 0; G) + S(r, g).(3.4)

Note that since g(z) and g(z + c) share 0 CM, it follows that N
(

r,∞; ∆cg

g

)

= 0.

Hence using (3.3), (3.4), Lemmas 2.3 and 2.6 we get from second fundamental theorem

that

(n − 2)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1; F ) − N0(r, 0; F
′

) + S(r, f)

≤ N(r,∞; F ) + N2(r, 0; F ) + N2(r, 0; G) + S(r, f) + S(r, g)

≤ N(r,∞; f) + N(r,∞; ∆cf) + 2N(r, 0; f) + N(r, 0; ∆cf)

+ N2

(

r, 0; gn+1∆cg

g

)

+ S(r, f) + S(r, g)

≤ N(r,∞; f) + N(r,∞; ∆cf) + 2N(r, 0; f) + N(r, 0; ∆cf)

+ N2

(

r, 0; gn+1
)

+ N2

(

r, 0;
∆cg

g

)

+ S(r, f) + S(r, g)

≤ 7T (r, f) + 2T (r, g) + T

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)

≤ 7T (r, f) + 2T (r, g) + m

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)
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≤ 7T (r, f) + 2T (r, g) + S(r, f) + S(r, g).(3.5)

In a similar way we can obtain

(n − 2)T (r, g) ≤ 7T (r, g) + 2T (r, f) + S(r, f) + S(r, g).(3.6)

Combining (3.5) and (3.6) we see that

(n − 2)[T (r, f) + T (r, g)] ≤ 9[T (r, f) + T (r, g)] + S(r, f) + S(r, g).(3.7)

Since n ≥ 12, (3.7) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 2.7 and 2.9. This

completes the proof.

Proof of Theorem 1.10. Let F (z) = fn(z)∆cf(z)
p(z)

and G(z) = gn(z)∆cg(z)
p(z)

. Then F

and G share (1,1) except for the zeros of p(z). We now consider the following two

cases.

Case 1. H 6≡ 0.

Using Lemmas 2.8, 2.10, 2.11, (3.1) and (3.2) we get

N(r, 1; F ) ≤ N(r, 1; F | = 1) + NL(r, 1; F ) + NL(r, 1; G) + N
(2

E (r, 1; F )

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N ∗(r, 1; F, G) + NL(r, 1; F )

+ NL(r, 1; G) + N
(2

E (r, 1; F ) + N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + 2NL(r, 1; F ) + 2NL(r, 1; G)

+ N
(2

E (r, 1; F ) + N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + NF>2(r, 1; G) + N(r, 1; G)

− N(r, 1; G) + N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g)
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≤ N(r, 0; F | ≥ 2) +
1

2
N(r, 0; F ) + N(r, 0; G| ≥ 2) + N(r, 1; G)

− N(r, 1; G) + N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) +
1

2
N(r, 0; F ) + N(r, 0; G| ≥ 2) + N(r, 0; G

′

|G 6= 0)

+ N 0(r, 0; F
′

) + S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) +
1

2
N(r, 0; F ) + N2(r, 0; G) + N 0(r, 0; F

′

)

+ S(r, f) + S(r, g).(3.8)

Hence using (3.8), Lemmas 2.3 and 2.6 we get from second fundamental theorem that

(n − 2)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1; F ) − N0(r, 0; F
′

) + S(r, f)

≤ N(r,∞; F ) +
1

2
N(r, 0; F ) + N2(r, 0; F ) + N2(r, 0; G) + S(r, f)

+ S(r, g)

≤ N(r,∞; f) + N(r,∞; ∆cf) +
1

2
N(r, 0; fn∆cf) + 2N(r, 0; f)

+ N(r, 0; ∆cf) + N2

(

r, 0; gn+1∆cg

g

)

+ S(r, f) + S(r, g)

≤ N(r,∞; f) + N(r,∞; ∆cf) +
1

2
N(r, 0; fn∆cf) + 2N(r, 0; f)

+ N(r, 0; ∆cf) + N2

(

r, 0; gn+1
)

+ N2

(

r, 0;
∆cg

g

)

+ S(r, f) + S(r, g)

≤
17

2
T (r, f) + 2T (r, g) + S(r, f) + S(r, g)(3.9)

In a similar way we can obtain

(n − 2)T (r, g) ≤
17

2
T (r, g) + 2T (r, f) + S(r, f) + S(r, g).(3.10)
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Combining (3.9) and (3.10) we see that

(n − 2)[T (r, f) + T (r, g)] ≤
21

2
[T (r, f) + T (r, g)] + S(r, f) + S(r, g).(3.11)

Since n ≥ 27
2
, (3.11) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 2.7 and 2.9. This

completes the proof.

Proof of Theorem 1.11. Let F (z) = fn(z)∆cf(z)
p(z)

and G(z) = gn(z)∆cg(z)
p(z)

. Then F

and G share (1, 0) except for the zeros of p(z).

Here (3.2) changes to

N
1)
E (r, 1; F ) ≤ N(r, 0; H) ≤ N(r,∞; H) + S(r, F ) + S(r, G).(3.12)

Using Lemmas 2.8, 2.12, 2.13, 2.14 , (3.2) and (3.12) we get

N(r, 1; F ) ≤ N
1)
E (r, 1; F ) + NL(r, 1; F ) + NL(r, 1; G) + N

(2

E (r, 1; F )

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + N ∗(r, 1; F, G) + NL(r, 1; F )

+ NL(r, 1; G) + N
(2

E (r, 1; F ) + N0(r, 0; F
′

) + N0(r, 0; G
′

)

+ S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + 2NL(r, 1; F ) + 2NL(r, 1; G)

+ N
(2

E (r, 1; F ) + N0(r, 0; F
′

) + N 0(r, 0; G
′

) + S(r, f) + S(r, g)

≤ N(r, 0; F | ≥ 2) + N(r, 0; G| ≥ 2) + NF>1(r, 1; G) + NG>1(r, 1; F )

+ NL(r, 1; F ) + N(r, 1; G) − N(r, 1; G) + N 0(r, 0; F
′

) + N 0(r, 0; G
′

)

+ S(r, f) + S(r, g)

≤ N2(r, 0; F ) + N(r, 0; F ) + N2(r, 0; G) + N(r, 1; G) − N(r, 1; G)

+ N 0(r, 0; F
′

) + N0(r, 0; G
′

) + S(r, f) + S(r, g)
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≤ N2(r, 0; F ) + N(r, 0; F ) + N2(r, 0; G) + N(r, 0; G
′

|G 6= 0)

+ N0(r, 0; F
′

) + S(r, f) + S(r, g)

≤ N2(r, 0; F ) + N(r, 0; F ) + N2(r, 0; G) + N(r, 0; G) + N 0(r, 0; F
′

)

+ S(r, f) + S(r, g).(3.13)

Hence using (3.13), Lemmas 2.3 and 2.6 we get from second fundamental theorem

that

(n − 2)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r,∞; F ) + N(r, 0; F ) + N(r, 1; F ) − N0(r, 0; F
′

) + S(r, f)

≤ N(r,∞; F ) + 2N2(r, 0; F ) + N2(r, 0; G) + N(r, 0; G) + S(r, f)

+ S(r, g)

≤ N(r,∞; f) + N(r,∞; ∆cf) + 4N(r, 0; f) + 2N(r, 0; ∆cf)

+ N2

(

r, 0; gn+1∆cg

g

)

+ N

(

r, 0; gn+1∆cg

g

)

+ S(r, f) + S(r, g)

≤ 11T (r, f) + 3T (r, g) + T

(

r,
∆cg

g

)

+ S(r, f) + S(r, g)

≤ 11T (r, f) + 3T (r, g) + S(r, f) + S(r, g)(3.14)

In a similar way we can obtain

(n − 2)T (r, g) ≤ 11T (r, g) + 3T (r, f) + S(r, f) + S(r, g).(3.15)

Combining (3.14) and (3.15) we see that

(n − 2)[T (r, f) + T (r, g)] ≤ 14[T (r, f) + T (r, g)] + S(r, f) + S(r, g).(3.16)
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Since n ≥ 17, (3.16) leads to a contradiction.

Case 2. Let H ≡ 0. Then the theorem follows from Lemmas 2.7 and 2.9. This

completes the proof.
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