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m EXTENSION OF LUCAS p-NUMBERS IN INFORMATION
THEORY
BANDHU PRASAD

ABSTRACT. In this paper, we introduced a new Lucas @, matrix for m-extension
of Lucas p-numbers where p(> 0) is integer and m(> 0). Thereby, we discuss
various properties of @)p , matrix, coding and decoding theory followed from the

Qp,m matrix.

1. INTRODUCTION

The Lucas p-numbers [2] are defined by the following recurrence relation

Ly(n) = Ly(n — 1)+ Ly(n —p —1)

with n > p+ 1 and initial terms

where p=10,1,2,---.
For p=1, Ly(n) = L,, are known as classical Lucas numbers.

The Fibonacci numbers, F;, are defined by the following recurrence relation
F,=F,_1+F,»
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with n > 2 and initial terms
F,=F =1

The ratio of two consecutive Lucas numbers or Fibonacci numbers converges to the

irrational number, p = z; = #

which is known as golden mean or golden ratio
or golden proportion. The Fibonacci numbers, Lucas numbers and golden mean
have widely identified in physical science, biological sciences, architectures and art
[5,6,10]. Now a days, the golden proportion widely used in modern sciences. It is
impossible to imagine the further research work in almost all conceivable physical,
mathematical, chemical, biological disciplines and even in human body. It also plays
an profound role in various areas of art. Prof. El. Naschie [8,9] is one of the well
known followers of golden proportion with a special interest. He [7] shows its uses in
£(®) Cantorian-fractal space-time or E-infinity theory. The practical applications of
recent scientific discoveries based on the golden proportion are El Nashie’s theory of
E-infinity theory [7], Fibonacci matrices and a new coding theory [4], a new class of
the hyperbolic functions and the improved method of golden cryptography [10], the
golden genomatrices etc.

E. Kocer EG et al.[3] introduced the m-extension of Lucas p-numbers which satisfy

the recurrence relation

(1.1) Lym(n)=mLym(n—1)+L,,,(n—p—1)

with initial terms

(1.2)  Lpm(1) = a1, Lpm(2) = ag, Lym(3) = az, -+ Lym(p + 1) = tp1a

where p(> 0) is integer, m(> 0), n > p+ 1 and ay, as, as, ..., a,41 are arbitrary real

or complex numbers.
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In this paper, we consider initial terms as

(1.3) Lym(n)=m""1'n=1234-- p+1.

In this paper, we established the relations among the code elements for all values
of p(> 0) is integer and m(> 0). The relation among the code matrix elements for
p(> 0) is integer and m = 1, coincides with the relation among the code matrix
elements [1] and correction ability of this method increases as p increases but it is

independent of m.

2. GOLDEN (p, m)-PROPORTION (MEAN), fi;m

The characteristic equation of the m-extension of the Lucas p-numbers is

(2.1) 2Pt —ma? —1=0

Ly(n)
Ly(n—1)

where z = lim,,__ . The only one positive root p, ,, of the equation (2.1) is

called golden (p, m)-proportion(mean).

TABLE 1: pip,m
m=1 | py,1 = 1.6180 m=1 | po,; = 1.4656
—9 | 1,0 = 2.4142 m=2 | 1, = 2.2056
p=1|m=3 | u1,3=3.3028 | p=2 | m=3 | ug,3 = 3.1038
=4 | p1,4 = 4.2361 =4 | p2,4 = 4.0606
=5 | p1,5 = 9.1926 =5 | p2,5 = 5.0394
m=06 | u1,6 = 6.6123 m=6 | fi2,6 = 6.0275
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m=1 3,1 = 1.3803 m=1 Ha,1 = 1.3247
m=2 | us,e = 2.1069 m=2 | jt4,2 = 2.0560
p=3 | m=3 | u3,3 = 3.0357 | p=4 | m=3 | p4,3 = 3.0121

m=4 | 3,1 = 4.0154 m=4 | 14,4 = 4.0039
m=>5 | ps3,5 = 5.0080 m=>5 | 4,5 = 5.0016
m=06 | i3, = 6.0046 m=06 | 4,6 = 6.0008
m=1 | p5,1 = 1.2852 m=1 | pg,1 = 1.2554
m=2 | fi5,2 = 2.0291 m=2 | pg,2 = 2.0150

p=5| m=3 | us,3 = 3.0041 | p=6 | m=3 | pg,3 = 3.0014

m=4 U5,4 = 4.0010 m=4 H6,4 = 4.0002
m=> | 5,5 = 5.0003 m=> | g5 = 5.0001
m=0 | us,6 = 6.0001 m=0 | ug,s = 6.0000

ipm Numbers are of theoretical interest for discrete mathematics and open new per-

spectives for the development of theoretical physics and information sciences.

3. RELATION AMONG [y m, [p1 AND [i]
The characteristic equation of the m-extension of the Lucas p-numbers is
(3.1) Pt —ma? —1 =0
Whereas the characteristic equation of the Lucas p-numbers is

(3.2) Pt — P —1=0

Both the equations (3.1) and (3.2) have (p + 1) roots. The only one positive root
T3 = lpm of the equation (3.1) is called golden (p, m)-proportion. Also the only one
positive root s = pu,, golden p-proportion, of the equation (3.2) coincides with i, 1,

golden (p, 1)-proportion. gy ,,, golden (1, m)-proportion is the positive root x4 of the
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characteristic equation 22 — ma — 1 = 0.
It is obvious that x5 , x3, x4 satisfy the equation

logrs  log(1+ w4(w3 — 24)) — logay
logry log(zy — 1)

4. Lucas Qpm MATRIX

In this paper, we define a new matrix called Lucas @, ,, matrix (4.1) of order (p+1)

on the m-extension of the Lucas p-numbers where p (> 0) is integer and m > 0.

m 1 0 . . . .00
o o1 ... .00
(4.1) Qpm =
0 0 0 . 01
1 0 0 . 0 0
Using (1.3) we can write
Lp,m(2) Lp,m(1) - o Lpm(B-p) Lp,m(2—p)
Lym(2-p) Lpm(l-p) . . . . Lpm(@B—2p) Lpm(2—2p)
(4-2) Qp,m =
Lp,m(0) Lpm(=1) co Lpm(1—p) Lp,m(=p)

Lp,m(1) Lp,m(0) o Lpm(2-p) Lp,m (1 —p)
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So that,
m 1 Ll,m(2) Ll,m(l)
Ql,m: =
1 0 Ll,m(l) Ll,m(())
m 1 0 Lom(2)  Lom(l)  Lom(0)
QQ,m: 0 01 = LQ,m(O) L2,m(_1> LQ,m(_Q)
1 00 Lom(1)  Lgum(0)  Loym(—1)
m 1 0 0 L3m(2) Lgm(l)  L3m(0) Ls,(—1)
0 0 010 Lym(—1) L3m(—2) Lsm(—3) Lsm(—4)
3m — =
0 00 1 L3, (0)  Lsu(—1) Lgm(—2) Lsm(—3)
1 000 Lym(1)  L3m(0)  Lgm(—1) Lgm(—2)
m 1 0 0 0
0 0100
Qim=1]10 0010
0 0001
1 0000

Lim(2)  Lam(1)  Lam(0)  Lam(=1) (=2)
Lym(=2) Lam(=3) Lam(—4) (=3) (—6)
= | Lam(=1) Lam(=2) Lam(=3) Lam(=4) Lam(=5)
Lim(0)  Lam(=1) Lam(=2) (=3) (—4)
Lim(1)  Lam(0)  Lam(=1) (=2) (=3)

and so on.



m EXTENSION OF LUCAS p-NUMBERS IN INFORMATION THEORY 547

Theorem 4.1. For a given integer n (n =0, £1, 2, £3, ...) the nth power of the
Qp.m matriz is given by

n —

p,m
Lym(n+1) Lymmn) . . . . . Lymn—p+2) Ly,n(n—p+1)
Lym(n—p+1) Lymn—p) . . . . . Lymn—2p+2) L,,(n—2p+1)
Lymn—1) Lyn(n—2) . . . . . Lym(n—p) Lym(n—p—1)
Lym(n) Lymin—1) . . . . . Lyn(n—p+1) Lym(n—p)

n—

where Ly, ,(n) =m"! is given in (1.3).

Proof. When p = 1, we have to prove

LLm(TL + 1) lem(n)

(4.3) n -
lem(n) Ll,m (7’L - 1)

1,m

We will prove it by mathematical induction.

Forn=1

m 1 Ll,m(2) Ll,m(]-)

Qum = = by (1.3)

1 0 Ly (1) Ly,,(0)
which is true for n = 1.
Forn =2

m2 +1 m Ll,m(3) Ll,m(2)
Qi = = by (1.3)

m 1 Ll,m(2) Ll,m(]-)
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which is true for n = 2.

Suppose (4.3) is true for integer n = k, then

Liy(k+1) Ly, (k)

Qi =
Lim(k)  Lim(k—1)

Now, we can write

Ll,m(k + 1) Ll,m(k) m 1

]1€,+ml = (Qlf,m)(Ql,m> =
Lim(k)  Lym(k—1) 10

Lip(k+2) Lin(k+1)

= by (1.3)
Liy(k+1)  Lim(k)
Hence by induction, we can write
no lem(n + 1) LLm(n)
1m —
LLm(n) lem(n — 1)
When p = 2, we have to prove
L2,m (7’L + 1) L2,m (n) L2,m (7’L — 1)
(44) g,m = LQ,m(n - 1) LQ,m(n - 2) L2,m(n - 3)
Lgvm(n) L27m(n — ].) L27m(7’L — 2)
We will prove it by mathematical induction. For n =1
m 1 0 Lgym(Q) Lgym(l) Lgvm(O)
Qrm=1| 0 0 1 | =| Lym(0) Lon(—1) Lyn(—2) | by (1.3)

1 00 Lom(1)  Lom(0)  Lom(—1)
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which is true for n = 1.

Forn =2
m* m 1 Lom(3) Lom(2) Lom(l)
DGm=] 1 0 0 [=] Lom1) Lom(0) Lom(-1) | by (1.3)
m 1 0 Lom(2) Lom(l)  Lom(0)
which is true for n = 2.
Suppose (4.4) is true for integer n = k, then
Ly (k+1) Ly (K) Ly (k—1)
Q= | Lom(k—1) Lom(k—2) Lon(k—3)
Lom(k)  Lom(k—1) Lom(k—2)
Now, we can write
Lowm(k+1)  Lom(k)  Lon(k—1) m 1 0
son = (Q5,,)(Q2m) = | Log(k —1) Lom(k —2) Lom(k—3) 0 0 1

Lom(k)  Lom(k—1) Lon(k—2) 1 00

Lyy(k+2) Lop(k+1) Loy (k)
= Lym(k)  Lom(k—1) Lon(k—2)
Lyyw(k+1)  Lom(k)  Lom(k—1)
Hence by induction, we can write
Lyy(n+1)  Lyyu(n) Lyy,(n—1)
om = | Lom(n—1) Lonu(n—2) Ly,(n—3)
Ly m(n) Lypm(n—1) Loy(n—2)
Similarly, by induction it can be proved for all values of p.

Hence the theorem.
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Theorem 4.2. Qp,, = mQZ;zl + QZ;n(pH)

Proof. By theorem 1

n j—
p,m

Ly m (n+1) Lp,m(n)
Lp,m(n —p+1) Lp,m(n - D)

BANDHU PRASAD

Lymn—p+2) Lyn(n—p+1)

Lp,m(n 1) Lp,m(n —2) Lp,m(n p) Lp,m(n p—1)
Lp,m(n) Lym (n—1) Lp,m(n —p+1) Lp,m(n )
When p =1
n Ll,m (7’L + 1) lem(n)
1,m =
Ll,m (n) Ll,m (7’L — 1)

mLym(n) + Lym(n —1)
mLym(n —1) + Ly (n — 2)

mLy ()
le,m(n — 1)
Li,,(n—1
It (n—1)
LLm(TL — 2)

mLym(n —1) + Ly (n — 2)
mLym(n —2) + Ly (n — 3)
le,m(n — 1)
le,m(n — 2)

Ll,m (7’L — 2)
Ll,m (7’L — 3)

=mQ7,, + Q7.
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When p =2

szm(n -+ 1) szm(n) L27m(77/ — 1)
§7m == L27m(n — 1) L27m(n — 2) L27m(77/ — 3)
L27m(77,) L27m(n — 1) szm(n — 2)

mLym(n) + Lo m(n —2) mLym(n —1) 4+ Lom(n —3) mLgym(n —2)+ Lay,(n —4)
= mLgm(n —2) + Lom(n —4) mLoy,(n—3)+ Lam(n—5) mLgy(n—4)+ Lap(n —6)
mLgm(n — 1)+ Lom(n —3) mLay,(n—2)+ Loym(n—4) mLgp,(n—3)+ Lap(n —5)

mLgm(n)  mLg,(n—1) mLg,(n—2)
= | mLy,(n—2) mLsy,,(n—3) mLy,(n—4)
mLym(n—1) mLy,,(n—2) mLg,(n—3)

L27m(n — 2) szm(n — 3) szm(n — 4)
+ | Lom(n—4) Lynm(n—>5) Lom(n—6)
L27m(7’L - 3) Lgym (7’L - 4) L27m(n - 5)

_ n—1 n—3
- mQQ,m + 2m
Similarly, we can show that,
n  _ n—1 n—(p+1)
pm = My m + Qp,m )

5. LucASs @), ,, CODING AND DECODING METHOD

Lucas @), matrix allows developing the following applications to the coding the-
ory. Let us represent the initial message in the form of the nonsingular square matrix,
M of order (p+1) where p = 1, 2, 3, .... We take @)}, matrix of order (p+1) as a

coding matrix. We name a transformation M x @y, = E as coding and E' is known
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as code matrix.
For example, consider the case for p = 1, we represent the initial message, M in the

form of nonsingular square matrix of order 2

m m
(5.1) M= """

msz My

where all elements of the matrix are positive integers. i.e. my, msg, ms, my > 0. Let
us select for any value of n, the Q7 ,, matrix treated as the coding matrix. For n =4

we have

4 m*+3m2+1 m?+2m
(5.2) lem =

m3 + 2m m? +1

Then the coding of the message (5.1) consists of the multiplication by the initial

matrix (5.2) that is

4 my My m*+3m2+1 m3+2m
MXQl,m:

ms My m3 + 2m m? +1

mim* + 3mim? + my + mam? + 2mam  mym? + 2mim + mam? + mo

msm?* + 3msm? + ms + mam?® + 2mam mam3 + 2mgm + mam? + my

e e
(5.3) =" )=

€3 €4

where e; = mym* + 3mim? +my +mom? 4+ 2mom, e = mim? + 2mym + mom? + mo,

es = msm?* 4+ 3mam? + ms + mum?® + 2mam, es = mam? + 2msm + mam? + my.

The decoding of Lucas @), matrix is defined by the following way. The initial
message, M is a square nonsingular matrix of order (p + 1) where p= 1, 2, 3, ---.

We take the inverse of coding matrix @, as decoding matrix ( Z’m)*l so that the

transformation £ x (Q7,,)"" is called decoding and E x (Qy,,)”" = M where E is
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the code matrix.
For example,

The inverse matrix of (5.2) is given by

(5.4) ( -1 m? +1 —m> —2m
. = 1,m =
—m3—2m m*+3m2+1

The decoding of the code message, FE (5.3) is

2 3
e; e m* + 1 —-m> — 2m
Ex (@)= " "
es ey —m3 —2m m*+3m?+1

eym? 4+ e; — eam® — 2eam  —eym? — 2eym + eam® + 3eam? + e

esm? 4+ e3 — eym® — 2e4m —esm® — 2esm + eam* + 3eym? + ey

my Mo

I
<

ms3 My

The code matrix F is defined by the following formula £ = M x @) ,,. According to

the matrix theory, we have

Det E = Det (M x Q,,,) = Det M x Det Q,,, = Det M x (=1)"" = (=1)"" x Det M

6. RELATIONS AMONG THE CODE MATRIX ELEMENTS FOR m (> 0)

Case 1: For p = 1, Similar to [1] , we obtain LR s B R fm
where ji1,,, = ®HYm+1 V2m2+4, e1, €g, €3, eq4 are given in (5.3).
Case 2: For p =2, In this case, let the message

mip Mgy Mg

M=1 my ms mg | then the @3, coding of the message M is

mr7 Mg My
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€1 €2 €3
M x ngm = es €5 € = F.
€7 €3 €9

Similar to [1], we obtain & & i n; 2 & g, and & = 5,

€4

~ ey e oy g2
o5 H2ms oo = H2m and e~ H2m

er
€8

where 9, = W and h = \/108 + 8m3 + 124/81 + 12m3.

In general, like [1], when p = ¢t and n > p+ 1 = t + 1, The generalized relations

€7

~ .8 ~ ~ 1,2
R Pomi of A Ham and e~ H2m

among the code matrix elements are

€t

e Htmi o R Hems s T N Hem

€l ~y 2 . €2 A~ 42 ... Bt 2

ez lut,mﬂ es Mt,m? Veprr lut,m

€1~ 4t

€t+1 ~ ’utam

where ey, eo, €3, -+, e, €41 are the first row elements of the code matrix, E. We

also obtain similar type of relations among the elements of the second row, third row,

.-+, (t+ 1)th row of the code matrix, £ where ji,, is golden (¢, m)-proportion.

7. ERROR DETECTION AND CORRECTION

For the simplest case p = 1 the correction ability of the method is 93.33% [1] which
exceeds the essentially all well known correcting codes. The correction ability of the

method for p = 2 is 99.80% [1]. In general, for p =t and n > p+ 1 =t + 1 the

2(t+1)2_o

correction ability of the method is pTTE

which depends on p but not on m. Hence,

~1=100%.

otp+1)2_9

for large value of p the correction ability of the method is pyPTET
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8. CONCLUSION

The Lucas coding and decoding method is the main application of the Lucas @,
matrix. There lies a difference between the classical algebraic coding and Lucas @,
coding method. The accuracy of Lucas @), coding method is given below:

(1) This coding and decoding method converts to matrix multiplication. Now a days
it can be done very quickly by computer for large values of p.

(2) The correction ability of the method increases as p increases and it is independent
of m.

(3) Lucas @, matrix coincides with golden matrix for p = 1, m = 1 which develops
a new kind of cryptography [10].

(4) In future, based on the works of Prof. EL Naschie, Stakhov, etc. we hope that the
Lucas @, matrix can also have wide applications in matrix theory, cryptography

and information and coding theory.
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