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TRIANGULAR FUNCTIONS WITH CONVERGENCE FOR
SOLVING LINEAR SYSTEM OF TWO-DIMENSIONAL FUZZY
FREDHOLM INTEGRAL EQUATION

E. HENGAMIAN ASL ) AND J. SABERI-NADJAFI (@

ABSTRACT. In this paper, we present a review on triangular functions (TFs) to
solve linear two-dimensional fuzzy Fredholm integral equations system of the second
kind (2D-FFIES-2). The properties of triangular functions are utilized to reduce
the 2D-FFIES-2 to a linear system of algebraic equations. Moreover, we state the
convergence analysis of the method. Finally, some examples show the simplicity

and the validity of the present numerical method.

1. INTRODUCTION

It is well known that the fuzzy differential equations and the fuzzy integral equa-
tions are one of the important parts of numerical analysis and applied mathematics.
Usually in many mathematical models, some of problems are represented by fuzzy
Volterra and Fredholm integral equations. For example, Nanda, in his book, [1] in-
troduced the integration of fuzzy mappings. Kaleva [2], Wu and Ma [3] introduced
the differential equations and integral equations of fuzzy set-valued functions. There
are several numerical methods to to solve Fredholm integral equations, fuzzy Fred-

holm integral equations and fuzzy integro-differential equations. Otadi and Mosleh
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[4] considered fuzzy nonlinear integral equations of the second kind and obtained
an approximate solution to the fuzzy nonlinear integral equations. The existence of
solution of nonlinear fuzzy Fredholm integro-differential equations is discussed in [5].
Rivaz and Yousefi [6] and Ezzati and Ziari [7] used homotopy perturbation method
and fuzzy Bivariate Bernestein polynomials method for solving two-dimensional fuzzy
Fredholm integral equations of the second kind, respectively. Recently, Babolian et
al. [8, 9, 10], Maleknejad et al. [11], Mirzaee et al. [12] and Hengamian Asl et al.
[13, 14] have used triangular functions for solving of Fredholm integral equations and
fuzzy Fredholm integral equations. Since the triangular functions method is a suc-
cessful numerical method for solving Fredholm integral equations, we will develop this
method for following general form of linear system of two-dimensional fuzzy Fredholm

integral equation of the second kind (2D-FFIES-2):

e

ul(l‘v y) = gl(l‘v y) D Z?:l )‘1j ® f()l f()l kjlj(l‘v Y, s, t) ® uj(87 t)det7
u2(l‘7 y) = 92(1‘7 y) D Z?:l )‘Qj ® f()l f()l k:Qj(:Ev Y, s, t) ® uj(87 t)det7

(1.1)

| (@) = gu(@,9) & X0 Ay ® J [ ng(,, 5, 8) @ wj(s, t)dsdt,
J

where k;j(x,y,s,t), i,j =1,...,n, are an orbitary kernel function over (2 x €2) and
Nij 70, 4,5 =1,...,n are real constants and u;(x,y) and g;(x,y) are fuzzy real
valued functions for i = 1,--- ,n and uy(z,y), us(z,y), ..., u,(x,y) are the solutions

to be determined.

This paper is organized as follows. Review of triangular functions and their prop-
erties which will be used later, is briefly provided in Section 2. Also in this section,
we give an overview of elementary concepts of the fuzzy calculus. Section 3 presents
a numerical method for solving system of two-dimensional fuzzy Fredholm integral

equations of the second kind. Convergence analysis for this method is established in
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Section 4. Finally, we illustrate in Section 5 some numerical examples to show the

efficiency and accuracy of the proposed method.

2. PRELIMINARIES

2.1. One-dimensional triangular functions.

Definition 2.1. ([9]) Two m-sets of one-dimensional triangular functions (1D-TF's)

are defined over the interval [0,T] as:

1—Eh h<t<(i+1)h,

0, o.w,

=ih b <t < (i + 1)h,

T2(t) =4 "
0, o.w,
where 1 =0,1,...,.m—1,h = %, with a positive integer value for m.
Moreover, if
(2.1) T1(t) = [T1o(t), T11(t),..., Tl 1 ()],
(2.2) T2(t) = [T2(t), T2:(t), ..., T2 (t)]",

then T'(t), the TF vector, can be defined as:
(2.3) T(t) =[T1(t) T2(t)]".
2.2. Two-dimensional triangular functions.

Definition 2.2. ([11]) An (m; X ma)-set of two-dimensional triangular functions

(2D-TFs) are defined on 2 = [0, 1] x [0, 1] as:
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ihl <s < (Z + 1)h1,

T, (s,1) = jhy <t < (j+1)ha,
0, otherwise,
th) <s< (’l + 1)h1,
h1
T (s,1) = jha <t < (j+ 1)ho,
0, otherwise,
th) <s< (’l + 1)h1,
T3 (s,t) = jhy <t < (j + 1)ha,

0, otherwise,

(s—ihl)(t—j/w) Zhl <s < (Z + ]_)hl,

2,2 h h . .
T;7 (s,t) = 1 i ghe <t < (j+1)hy,
\ 0, otherwise,
where ¢ = 0,1,--- ,m; — 1,7 =0,1,--- ,mg — 1, hy = m%,hg = m% my and my are

arbitrary positive integers.

Moreover, if

T11(57 t) = [T()l,bl(sa t)? s Tl’l Tll,bl(sa t)? s ?Tr}ﬁl—l,mg—l(sa t)]Ta

») = 0,me—1>

T12(s7 t) = [T()l,g(sa t)? ce TLQ T117’02(8, t)? s ?Tr}{ffl mgfl(‘S? t)]Ta

» = 0,ma—1>

T21(S7 t) = [T()Q,bl(sv t)7 ce T271 T12,701(87 t)7 s 7T73171171,m271(87 t)]Ta

» = 0,ma—1»

T22(37 t) = [T()Z,g(sv t)7 te T272 T12,b2(87 t)7 tet 7T31712—1,m2—1(87 t)]Tv

» = 0,mo—17
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then 7T'(s,t), the 2D-TF vector, can be defined as:

T11(s, 1) |
T12(s, 1)
(s,1)
(s,1)

s, t

T22(s,t

- = dmimao X1

Also, we have

(2.5) /01 /OITT(s,t)T(s,t)dsdt =D,

where D is (4mymgy X 4myms)-matrix as follows:

%h@%b %h@%b %h@%b %h@%b
(2 6) D_ %h@%b %h@%b %h@%b %h@%b
%h@%b %h@%b %h@%b %h@%b

%h@%b %h@%b %h@%b %h@%b

where Iy = I, xm, and Iy = I, xm, (see [12]).

2.3. Function expansion with 1D-TFs and 2D-TFs. Let f(¢) be an L?0,1)

function, the expansion of f(¢) with respect to 1D-TF's, can be defined as follows:

3

(2.7) ft) ~ [ FTL() + fiaT2:(0)] = F1TT1(t) + F27T2(t) = FL.T(t),

[

1§
o

where the sequence of constant coefficients {f;}™, are the samples of f(¢) function
such that f; = f(ih) fori =0,1,...,m

Let f(s,t) be a function of two variables on Q = [0, 1] x [0, 1]. It can be approxi-
mated with respect to 2D-TF's as follows:

mi1—1mo—1 m1—1mo—1

ZZCU Y ZZd”Tlgst

=0 5=0 =0 7=0
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mi1—1mo—1 mi1—1mao—1
2,2
+ E E el g E LT (s,1)
=0 7=0 =0 5=0

=F17.T11(s,t) + F2T.T12(s,t) + F37.T21(s,t) + F4T.T22(s,t)

[ T11(s,1) |
T12(s,t
=[F1T F2" F3" F47). (5:9) = FT.T(s,t),
T21(s,t)
| 122(s,t) |
or
(2.8) f(s,t) ~T"(s,1).F,

where F'1, F2, F3 and F4 can be computed by sampling the function f(s,?) at grid
points s; and ¢; such that s; = ih; and t; = jhs, for various values of ¢ and j. So we

have

(F1)k = cij = f(si,t5),
(F2), = d;j = f(siathrl)?
(F?))k =€; = f(SiJrlatj)’

(Fd)p = lij = f(Siv1,tj41),

where k =tmo+jand ¢ =0,1,--- . m; —1,7=0,1,--- ,mgy — 1.

Let u(s,t,r) be a function of three variables on €2 x [0, 1]. It can be approximated

with respect to 2D-TFs and 1D-TFs as follows:
(2.9) u(s,t,r) =T (s,t).UT(r),

where T'(s,t) and T'(r) are 2D-TF vector and 1D-TF vector of dimension 4m ms and

2myg, respectively and U is a (4dmimgy X 2mg) 2D-TF coefficient matrix. This matrix
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can be represented as

Ull U12

U21 U22
(2.10) U= ,
U3l U32

U4l U42

where each block of U is an (mjmgy X mg)-matrix that can be computed by sampling

the function u(s,t,r) at grid points (s;,t;,r) such that

1

Si:ihl, i:O,l,...,ml—l, hlz—,
my

. . 1
tj:jh27 j:0717"'7m2_17 h2:_7
ma

1
Tk:khg, ]{]:O,l,...,mg—l, h3:—.
mg

Choosing | = 1my + 7, we have

U31), = u(Sit1,tj, k),
U32)1 = u(siv1,t, Thy1),
)

( (
( (
(Udl)i e = usivr, i1, 7x),

(U42)11 = u(Sit1, 1, Thr)-

Let k(s,t,x,y) be a function of four variables on (2 x Q). It can be approximated

with respect to 2D-TFs as follows:

(2.11) k(s t,z,y) ~T"(s,t).K.T(z,y),
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where T'(s,t) and T'(x,y) are 2D-TF vectors of dimension 4mimy and 4mgmy, re-

spectively and K is a (4dmymg X 4mgmy) 2D-TF coefficient matrix. This matrix can

be represented as

K11
K21
(2.12) K =
K31

K41

K12
K22
K32
K42

K13
K23
K33
K43

K14
K24
K34
K44

where each block of K is an (mjms Xmgmy)-matrix that can be computed by sampling

the function k(s,t,z,y) at grid points (s;,,t;,, Ty, yj,) such that

Sil - Zlhla 11 =

Liq :izhg, ’ig :0,1,...

yjz :j2h47 j2 :0,1,...

i1 = Jiha, J1=0,1,...

.o, —1,
;me — 1,
7m3_17
7m4_17

1
hl — T
my

1
hy = —,
mg

1
hy = —,
mg3

1

hy = —
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Choosing p = 11mo + j1 and q = iomy + Jo, we get

(K11),4 = k(Siy, Ly, Tigs Yjy )
(K12),4 = k(Siys by Tigs Yjut1),
(K13),4 = k(Siys by Tig+1, Yin),
(K14)pq = k(i iy, Tig+1, Yjot1)

(K21)pq = k(i tji+1, Tia, Yja)
(K22)p,q = k(i tj 415 Ty Yjorr1)
(K23)p,q = k(Siy, tj1 415 Tigs 15 Y )
(K24)p = k(Siy, G111, Tig15 Yjos1)

(K31)pq = k(Siv1, 15 g, Yja)
(K32)p,g = k(siy+1, L1, Tigs Yjt1),
(K33)pq = k(Sis+1, Ljis Tint1, Vs ),
(£34)p,q = K( t

Sip+1, 719 Lig+1, ng—f—l)

(KA1)pg = k(Siy+1, tji4+1, Tiys Yj)
(K42)pg = k(Siy11, tj 41, Tigs Yjot1),
(K43)p,g = k(Siy1+1, tj 41, Tint1, Yj)
(K44)pq = K(Sii41, Lji41, Tigt1s Yjor1)-

In this paper for convergence, we supposed that m; = ms = mg = my = m. More

details about the properties of functions expansion with TFs are given in [12, 13, 14].

2.4. The basic concepts of fuzzy equations.
In this Section the most basic used notations in fuzzy calculus and integral equations

are briefly introduced. We started by defining the fuzzy number.
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Definition 2.3. ([15]) A fuzzy number is a fuzzy set u : R! — [0, 1] such that:
(a): w is upper semi-continuous,
(b): u(z) = 0 outside some interval [a, d],
(c): There are real numbers b, ¢ such as a < b < ¢ < d and
(1) u(z) is monotonic increasing on [a, bl
(ii) u(x) is monotonic decreasing on [c, d],

(iii) u(zx) =1,b <z <.

An alternative definition or parametric form of a fuzzy number which yields the

same E' is given by Kaleva [2] as follows:

Definition 2.4. A fuzzy number u is a pair (u,u) of functions w(r) and w(r),
0 <r <1, such that

(a): u(r) is abounded monotonic increasing left continuous function,

(b): @w(r) is abounded monotonic decreasing left continuous function,

(c): u(r) <wu(r),0 <r<1.

For arbitrary fuzzy numbers v = (u(r),u(r)), v = (v(r),v(r)) and real number k,
we define
(a): w = if and only if u(r) = v(r) and u(r) = v(r),

(b): addition, u ® v = (u(r) +v(r),u(r) + v(r)),

(c): scalar multiplicationand, k ® u =

Definition 2.5. For arbitrary numbers u = (u(r),@(r)) and v = (v(r),v(r)),

(2.13) D(u,v) = maz{ sup |u(r) —v(r)|, sup [u(r) —v(r)|}

0<r<1 0<r<1
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is the distance between u and v. It is proved that (E', D) is a complete metric space
with the properties [1], and

(a): Yu,v,w € EY; D(u® w,v® w) = D(u,v),

(b): Yu,v € EY,Vk € R; D(k ® u, k @ v) = |k|D(u,v),

(c): Yu,v,w,e € EY; D(u® v, w @ e) < D(u,w) + D(v,e).

More details about the properties of the fuzzy integral are given in [1, 2, 3, 15].

3. SOLVING LINEAR 2D-FFIES-2

In this section, we present a 2D-TFs method to solve a linear 2D-FFIES-2. First
consider (g.(z,y,7),9;(x,y,7)) and (u;(z,y,7),w(z,y,7)), 0 < r < 1 be parametric

forms of ¢;(x,y) and w;(z,y) in system (1.1), respectively. In this paper, we assumed

that \;; = 1 and k;;(z,y, s,t) > 0. Therefore, by using definition (4), we can write
kij(xa v,s, t) ® Uj(l', 3/) = (kij(xa Y,Ss, t)ﬂj(xa Y, T)? kij(xa y,Ss, t)ﬂj(xa Y, 7“)),

Now, for solving (1.1) we write the parametric form of the given fuzzy integral
equations system as follows:

(

w(z,y,7) =g, (2, y,7) + 30 fo Jo Ry, y, s, t)u;(s,t,r)dsdt,
W (2, y, 1) = G0 (2,9,7) + S0y fo Jo Fai(x,y, 8,005 (s, ¢, r)dsdt,

(3 1) QQ(:L‘v Y, T) - gg(xa Y, T’) + Z?:l fol fol k:Qj(:L‘v Y, S, t)@j(sv t7 T)detv

EQ(IL‘a Y, T) = §2($a Y, T’) + Z?:l f(]l fol kj?j(l‘v Y, s, t)ﬂj(sa t7 ’I“)det,
n 1 p1

Qn(xa Y, T’) = _n(l‘v Y, T) + Zj:l fO fO knj(l‘v Y, S, t)@j(& ta r)deta

Un(xa Y, T’) = gn(l‘a Y, T) + Z?:l fol fol knj(xv Y, S, t)ﬂ] (87 ta T’)det
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For convenience, we consider the ith equation of system (3.1) as

(3.2) u(z,y,r) =g.(2,y,r / / (@, s, t)u;(s, t, r)dsdt,

(3.3) ui(x,y,r) =g;(x,y,r / / iz, y, s, t)u;(s, t,r)dsdt.

For solving (3.2) by using TF's, first let us expand u;(z,y,r), g.(z,y,r) and k;(z, y, s, t)
by using Egs. (2.9) and (2.11) as follows:

Qi(l‘v Y, T) = TT(xv y)QzT(T)v
(3.4) g.(z,y,r) =TT (2,y).G,.T(r),

kij(xa y,Ss, t) = TT(xa y)Kz]T(Sa t)?

where U, and G, for i = 1,...,n are similar to Eq. (2.10) as follows:
U1, U1 | [ G11, G12; |
U21; U22; G21; G22;
Qi = ) Qz = )
U3l;, U32; G31; G32;
| U4l U42; | | G4L; G42; |

and K;; for 7,7 =1,...,n are similar to Eq. (2.12) as follows:

[ K11; K12, K13; K14 |
K21, K22, K23; K24;
K31, K32; K33; K34;

K41

Substituting the Egs. (3.4) in Eq. (3.2), we have

T (2, y)UT(r) =~ T (2,y)GT(r)

+§; /0 /0 (T" (2, y) KT (s,)T" (s, 6)U,;T(r)) dsdt
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(3.5) = T"(z,y)GT(r)

n 11
+T7(2,y) > Ky ( / / T(s,t)TT(s,t)dsdt) U,T(r).
= o Jo
Substituting the Eq. (2.5) in Eq. (3.5), we can write

T" (2, y)U; ~ T" (2, 9)G, + T" (2,9) > XijKi; DU

i=1
Thus we have

j=1
therefore we get the following system
(3.6) > (A= N\gKyD)U, =G,
j=1

where

I, i=j,

Ay = ’

0, i# 7,

fori,7=1,2,...,nand I is a 4m? x 4m? identity matrix. By solving matrix system

(3.6), we can find U, for i = 1,2,...,n. So u,(z,y,r) ~ TT(x,y)U,T(r). The same
trend hold for w;(z,y,r) in Eq. (3.3) as follows:

Ui (z,y,7) ~ TT (z,y)U;T(r).
For solving system (3.1), we need to solve two systems of (3.6).

4. CONVERGENCE ANALYSIS

In this Section, we prove that the present numerical method converges to the exact

solution.

Theorem 4.1. If k;;(z,y,s,t), i,7 = 1,2,...,n and 0 < z,y,s,t < 1 are bounded
and continuous, then approzimate solution of system (1.1), converges to the exact

solution.



570 E. HENGAMIAN ASL AND J. SABERI-NADJAFI

Proof. Suppose that u; m(x,y),i=1,...,n is approxzimate solution of exact solution

u;(z,y). Therefore

m—1m—1 m—1m—1
i (2, Y) = Ty (50 + D > dy 17 (s,1)
p=0 ¢q=0 p=0 ¢=0
m—1m—1 m—1m—1
(4.1) + e;’qT;ql(s, t) + lp quQ(;(s t).
p=0 ¢=0 p=0 ¢=0
By using FEqs. (1.1) and (4.1), we can write
m—1m—1

Dluintrns) i) = (A [ [ ster ol E L il
p=

m—1m—1 m—1m—1 m—1m—1
12 2,1 j 2,2
YN T )+ S0 e T s )+ S0 S B T2, 1)) dsdt
p=0 ¢q=0 p=0 ¢=0 p=0 ¢=0

n 1 1
_Z)‘ij/ / ’fij(f,y,S,t)uj(s,t)dsdt)
j=1 0 0
n 1 1
= MZ/O /0 D (ujm(s,t) — u;(s, t))dsdt,
j=1

where

M = max |)\ij]€ij(l',y,8,t)‘ < 0.

0<z,y,s,t<1
Also, we have limy, oo wjm (2, y) = uj(2,y), 50 D(ujm(z,y) —uj(z,y)) — 0 as m —

oo forj=1,...,n , and since M 1is bounded, thus

m—00

So the proof is completed.
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5. NUMERICAL ILLUSTRATION

In this section, we present two examples of linear 2D-FFIES-2 and results will
be compared with the exact solutions. All results are computed by using a program
written in the Matlab. in this regard, the result presented in the following Tables and

Figures.

Example 5.1. Consider the system of linear two-dimensional fuzzy Fredholm integral

equations with

8 1

gl(w,y,T)ny(§r—E(r5+2r),
_ 8 1 5
gi(w,y,r) = wy(5(2=r) = 56 = 3r%),

115

= ay(——5r — —(r" +2

QQ(x,y,?“) l’y( 12T 16(T + T)?

1 15
Galw,y,7) = 2y(= 5 (2= 1) = 75(6 = 3r%),

and kernel functions:
kij(z,y,8,t) = xys't’, i,j=1,2.
One can easily verify that,

(Ql(‘r’ Y, r)7ﬂ1(l‘7 Y, T)) = xy(ﬁ 2— T)a
(QQ(‘I’ Y, r)7ﬂ2(l‘7 Y, T)) - xy(T5 + 2T, 6 — 3T3),

s an exact solution of the given problem.

The results will be compared with the exact solutions. The accuracy of present
method is estimated by the absolute errors E'(v,y,r) and E; (v,y,r), which are

giwen as follows:

E:n(xa Y, T’) - |Qz(l‘7 Y, T) - TT(:Ev y)QzT(r)|7
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—=m

Ez’ (l’, Y, 7”) = |ﬂi(l‘7y77ﬂ) - TT(:Evy)UZT(r”

We have applied the numerical method given in this paper to this equation. The
absolute errors E"(x,y,r) and E;n(x,y,r), are listed in Tables 1 and 2. We see
that the proposed method is accurate for this example. As it can be observed in
Table 1, the absolute error is greater at grid points far from the (x,y) = (0,0). The
dependence of the absolute error on m is displayed in Table 2. We see that the absolute
error decreases by increasing m. Also Fig. 1 shows a comparison between the exact
solution and the approximate solution by the presented method. Moreover, Absolute
error functions obtained by the present method for w,(z,y,r),w(z,y,7), uy(z,y,T)
and Us(x,y,r) are shown in Figs. 2 and 3. We can see that the absolute error

converges to zero as m — oo (see the absolute error functions obtained for w,(zx,y,r)

for m =5,10,15,20. in the Fig. 2).

TABLE 1. Absolute errors E™(z,y,r) and E; (z,y,r), for Example 1,
with r = 0.5, m = 20.

(2,y)  EX(x,y.r) B (z,y.7)) EX(x,y,r) Ey (2,y,7)
(0.0,0.0) 0.0000e-00  0.0000e-00  0.0000e-00 0.0000e-00
(0.1,0.1) 9.5597e-07 5.1283e-06 1.6019¢-06 7.8208e-06
(0.2,0.2) 3.8239¢-06 2.0513e-05 6.4076e-06 3.1283¢-05
(0.3,0.3) 8.6037e-06 4.6155e-05 1.4417e-05 7.0387e-05
(0.4,0.4) 1.5295e-05 8.2054e-05 2.5630e-05 1.2513e-04
(0.5,0.5) 2.3899¢-05 1.2821e-04 4.0048e-05 1.9552¢-0
(0.6,0.6) 8.4415e-05 1.8462e-04 5.7669¢-05 2.8155e-04
(0.7,0.7)  4.6842e-05 2.5129e-04 7.8493¢-05 3.8322¢-0/
(0.8,0.8) 06.1182e-05 3.2821e-04 1.0252e-04 5.0053¢-0
(0.9,0.9) 7.7433e-05 4.1540e-04 1.2975e-04 6.3349¢-04
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TABLE 2. Absolute errors £} (x,y,r) and Ezn(x, y,7), for Example 1,
with m = 5,10, 15, 20.

m  E70.1,0.1,0.5) E;(0.1,0.1,0.5) E5(0.1,0.1,0.5) Ej (0.1,0.1,0.5)

3 1.5525e-05 8.1646e-05 1.5355e-04 3.2478e-04
10 3.8202¢-06 2.0525e-05 6.4166¢e-00 3.1331e-05
15 1.7020e-06 9.1105e-06 1.6772e-05 3.6101e-05
20 9.5597e-07 5.1283e-06 1.6019¢e-06 7.8208e-006

Example 5.2. Consider the system of linear two-dimensional fuzzy Fredholm integral

equations

wy(,y,1) = g, (2, 9,7) + [y fy wsuy(s,t,r)dsdt + [ [ ytPu,(s,t,r)dsdt,
Uy (z,y, 1) =g, (2, y,7) + fol fol xsu; (s, t,r)dsdt + fol fol yt*u;(s, t,r)dsdt,

uy(x,y, ) = g, (,y,7) + fol fol ys*u;(s,t,r)dsdt + fol fol wtu,(s,t,7)dsdt,
Us(2,y,7) = Go(x,y,7) + fol fol ys*u; (s, t,r)dsdt + fol fol wtu(s,t,7)dsdt,

with

2 x Yy
0,@9,7) = (% + 7+ Dy - ) = S+ 1)e - 1),

Gie.y,r) = (4=r)(ey = 5) —y(B - r)e - 2),

Y

Xz
g,(wy,r) =€ (r+1) =2 +r+1) =3

S+ (e - 1),
Golayr) =/ (B—r) = Z(4—1) —a(3 - 7).
One can easily verify that,

(uy(z,7), 0 (z,7)) = 2y(r®* +r+ 1,4 — 1),

(QQ(LT)?UQ(LT)) = (ex(r + 1)? ey(3 - T))?
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s an exact solution of the given problem.

The results are shown in Table 3 and Figs. 4 and 5. Table 3 shows the absolute

errors E"(x,y,r) and E;n(x,y,r), with x

proposed method is accurate for this example. Fig. 4 shows a comparison between

the exact solution and the approximate solution by the presented method for m =

5,10,7 = 0.5.

We see that the absolute error converges to zero as m — oo (see the absolute error

function of uy(x,y,r) in Fig. 5).

TABLE 3. Absolute errors E™(z,y,r) and E; (z,y,r), for Example 2,

with x =y = 0.1, m = 10.

y = 0.1, m = 10. We see that the

The dependence of the error function on m is depicted in Fig. 5.

E\’(z,y,r)

—=10
El (Z‘, Y, 7“))

EX(z,y,r)

—=10
E2 (.’L’, Y, T)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5.4686¢-04
6.0175¢-0/
6.5705¢-0/
7.1276e-0/
7.6887e-0/
8.2539¢-0
8.8232¢-0/
9.3965¢-0
9.9739¢-0
1.0555¢-03

1.7266¢-03
1.6698¢-03
1.6129¢-03
1.5560e-03
1.4991¢-03
1.4423¢-03
1.385/¢-03
1.3285¢-03
1.2716¢-03
1.21)8e-03

3.0589¢-0
3.3714e-04
3.6970e-0/
4.0858¢-0/
4.5877e-0/
4.7528¢-0/
5.1311e-0/
5.5225¢-0
5.9271e-04
6.3448e-0/

1.0481e-03
1.0153¢-03
9.8258¢-0
9.498e-0/
9.1710e-0/
8.8435e-0/
8.5161e-0/
8.1887e-0/
7.8613¢-0/
7.5338e-0/
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FiGure 1. Comparison between the exact solution and the approxi-

(1):

mate solution by the present method of Example 1, with r = 0.5 :

_1(.17,y,’f‘). (2) Hl(l‘7y77ﬂ>>' (3)1_2(1‘,y,’f‘). (4) ﬂg(l‘,yﬂ“)).
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14
Error for m=5
12~ Error for m=10
[__JEmorform=15
[ TError form=20
1
B
Z 08—
S
5

08 o7 E‘NVO?%—%;'\%}%\ 06

F1GURE 2. Compare the absolute error for m = 5, 10, 15, 20 of Example

1, for u,(z,y,r) and r = 0.5.

.
10
[ JError for m=20 X [ JError for m=20

T | AERERIRN .
‘ """““““‘“ 1 0

0.5

ST

F1GURE 3. Absolute error functions by the present method of Example

1, with » = 0.5.
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F1GURE 4. Comparison between the exact solution and the approxi-

mate solution by the present method in Example 2, with r = 0.5 : (1):

Ql($ayar)' (2) Hl(l‘7y77ﬂ>>' (3)122(1’31%7‘)' (4) ﬂg(l‘,yﬂ“)).
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Error for m=10

Error for m=10 Error for m=10

F1GURE 5. Absolute error functions by the present method of Example

2, with 7 = 0.5.

6. CONCLUSION

In this paper, we introduce TFs method for approximating the solution of the linear
2D-FFIES-2. The structural properties of TFs are utilized to reduce the 2D-FFIES-2
to a system of algebraic equations. The most important advantage of this method
1s low cost of setting up the equations without using any projection method such as
Galerkin method, Collocation method, etc., and any integration. In the above pre-
sented numerical examples one can see that the proposed method well performs for
linear 2D-FFIES-2. Furthermore, the proposed method can be run with increasing
m until the results settle down to a suitable accuracy. Another direction for fur-
ther research would be to extend the presented method to the systems of nonlinear
2D-FFIES-2, nonlinear mized fuzzy Volterra—Fredholm integral equations, and fuzzy

integro-differential equation.
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