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RATIO-TO-PRODUCT EXPONENTIAL-TYPE ESTIMATORS

UNDER NON-RESPONSE

G. N. SINGH (1) AND M. USMAN (2)∗

Abstract. The aim of the present note is to estimate the population mean Ȳ of

study variable y using information on an auxiliary variable x in the presence of non

response. We have proposed a general family of exponential type estimators con-

cerning two different cases of non response and studied their properties under large

sample approximation. In the efficiency comparison, we have shown that the pro-

posed class of estimators perform better than usual unbiased estimator, traditional

ratio and product estimator, classical ratio-type and product-type exponential es-

timator in each case. An empirical study consisting four data sets is also examined

to judge the merits of the proposed class of estimators.

1. Introduction and Notation

In literature, the statisticians have proved that the use of auxiliary information in

the sample which posses a mathematical correlation with the study variable, often

results efficient estimators to estimate the population mean Ȳ . Ratio type estima-

tors and product type estimators are traditionally considered by survey researchers

when the correlation between study variable and auxiliary variable is either positively

(high) or negatively (high), respectively. It is very common in most of the surveys
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that there are incomplete information in the sample due to occurrence of non re-

sponse on some of the sampled units. The sample data with missing information

are treated as non-respondents whose responses may be differ from respondents and

the inferences about the population parameter can be spoiled owing to non response.

Therefore, considering the issues of non response as unavoidable, many authors in-

cluding Cochran (1977), Rao (1986, 1987), Khare and Srivastava (1993, 1995, 1997),

Okafor and Lee (2000), have used the sub sample technique of non respondents in-

troduced by Hansen and Hurwitz (1946) to tackle the threat of incompleteness in

estimating the population mean Ȳ of study variable y. Moreover, Sarndal and Lund-

strom (2005), Tabasum and Khan (2004, 2006), Singh and Kumar (2008a,b, 2009a,b,

2010a,b), Khare and Sinha (2007, 2011), Kumar and Viswanathaiah(2014), Singh et.

al. (2016) and many others have advocated the same technique in survey sampling

and studied their properties.

Consider a finite population U = {U1, U2, ..., UN} of size N where we wish to esti-

mate the population mean Ȳ of the study variable y which is correlated with auxiliary

variable x. Let yi and xi be the observations of y and x respectively which seek the

values on the unit Ui = (yi, xi) in U . Let a sample S of size n is drawn by the simple

random sampling without replacement(SRSWOR) from the population U . Unfor-

tunately, the response is obtained only on n1(= n − n2) units. So the remaining n2

units are treated as group of non-response. Following Hansen and Hurwitz (1946)

method, it is tried to cover more information than n1 units by making extra effort.

They have considered two attempts in their model to collect the information which

are specified as follows:

(i) In the first attempt, only n1 units responded followed by the mailing question-

naire.

(ii) The second attempt was made for sub-sampled units r = n2/k (k > 1) chosen

from non response group and interviewed personally.
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Now combine the data obtained from both attempts, yield an unbiased estimator.

In the Hansen and Hurwitz’s (1946) procedure, the population is assumed to be

divide in two groups, response group of size N1 and non response group of size

N2 = (N − N1). Let Ȳ =
∑N

i=1 yi/N , Ȳ1 =
∑N1

i=1 yi/N1 and Ȳ2 =
∑N2

i=1 yi/N2

denote the means of overall population, response group and non response group

respectively. Let S2
y =

∑N

i=1(yi − Ȳ )2/(N − 1), S2
y(1) =

∑N1

i=1(yi − Ȳ )2/(N1 − 1)

and S2
y(2) =

∑N2

i=1(yi − Ȳ )2/(N2 − 1) denote the variances of overall population, re-

sponse group and non response group of the population, respectively. Moreover, let

{ȳ, ȳ1, ȳ2, ȳr2} and {s2
y, s

2
y(1), s

2
y(2), s

2
yr(2)} be the sets of means and variances based on

the units n, n1, n2 and r respectively, defined by

ȳ =
n

∑

i=1

yi/n, ȳ1 =

n1
∑

i=1

yi/n1, ȳ2 =

n2
∑

i=1

yi/n2, and ȳr(2) =
r

∑

i=1

yi/r

s2
y =

n
∑

i=1

(yi − ȳ)2/(n − 1), s2
y(1) =

n1
∑

i=1

(yi − ȳ(1))
2/(n1 − 1),

s2
y(2) =

n2
∑

i=1

(yi − ȳ2)
2/(n2 − 1), and s2

yr(2) =

r
∑

i=1

(yi − ȳr2)
2/(r − 1)

The population mean Ȳ can also be discussed as

Ȳ = W1Ȳ1 + W2Ȳ2

where W1 = N1/N and W2 = N2/N are the proportions of responding and non re-

sponding units in the population U . The stratum sizes N1 and N2 can be estimated

by N̂1 = (n1/n)N and N̂2 = (n2/n)N , respectively.

Hansen and Hurwitz (1946) proposed an unbiased estimator for the population mean

Ȳ which is extensively used by researchers, defined by

(1.1) ȳ∗ =
n1

n
ȳ1 +

n2

n
ȳr2.
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The variance of the estimator ȳ∗ is given by

(1.2) V (ȳ∗) = Ȳ 2
[

φC2
y + φ′C2

y(2)

]

where φ = (N − n)/nN , φ′ = W2(k − 1)/n. Here, Cy = Sy

Ȳ
and Cy(2) =

Sy(2)

Ȳ
are the

coefficient of variations of whole population and non-response group, respectively.

Similarly, Hansen and Hurwitz’s (1946) estimator for auxiliary variable x in order to

improve the precision of estimates is given by

(1.3) x̄∗ =
n1

n
x̄1 +

n2

n
x̄r2

where x̄1 =
∑n1

i=1 yi/n1 and x̄r(2) =
∑r

i=1 yi/r.

The variance of the estimator x̄∗ is given by

(1.4) V (x̄∗) = X̄2
[

φC2
x + φ′C2

x(2)

]

where X̄ =
∑N

i=1 xi/N , Cx = Sx

X̄
and Cx(2) =

Sx(2)

X̄
. We also define Syx =

∑N

i=1(yi −

Ȳ )(xi − X̄)/(N − 1), Syx(2) =
∑N2

i=1(yi − Ȳ )(xi − X̄)/(N2 − 1), Cyx = Syx

Ȳ X̄
and

Cyx(2) =
Syx(2)

Ȳ X̄
. It is to be mentioned that S2

x and S2
x(2) are the variances of auxiliary

variable based on N and N2 units.

The goal of this paper is to develop an improved family of estimators of popula-

tion mean using the single auxiliary variable in two different cases of non response.

Expressions for the bias and mean squared error (MSE) of the proposed class of esti-

mators are obtained up to first-order approximation. It has been empirically shown

that the proposed family of exponential estimators in each case are better than usual

unbiased estimator, traditional ratio and product estimator, classical ratio-type and

product-type exponential estimator. The paper in distinct cases of non response is

organized as follows: In Section 2 some ratio and product type estimators have been

discussed along with the bias and MSE expressions. In Section 3 we provide theoret-

ical comparisons to asses the performance of proposed and existing estimators. An

empirical study is conducted in support of present study in Section 4. The concluding
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remarks are given in Section 6.

2. Ratio and Product Type Estimators

In this section, we have discussed usual ratio and product estimators and classical

ratio and product-type exponential estimators in two different cases of non response

given in Case I and Case II, respectively.

2.1. Case I(Non-Response occurred on study variable as well as auxiliary variable):

We assume that the non-response occurred on both study variable y as well as aux-

iliary variable x and the population mean X̄ is already known. In this situation, we

define the error terms as

ε0 =
ȳ∗ − Ȳ

Ȳ
, ε1 =

x̄∗ − X̄

X̄

then

E(ε0) = E(ε1) = 0

To obtain the bias and mean square error (MSE) of the proposed class of estimators,

we need the following lemma.

Lemma 2.1: The variance of the error terms ε0 and ε1 are given by

V (ε0) = E(ε2
0) = [φC2

y + φ′C2
y(2)],

and

V (ε1) = E(ε2
1) = [φC2

x + φ′C2
x(2)].

The covariance between ε0 and ε1 is given by

Cov(ε0ε1) = E(ε0ε1) = [φCyx + φ′Cyx(2)].



598 G. N. SINGH AND M. USMAN

Proof. The variance of ε0 can be derived as

V (ε0) = E[ε0 − E(ε0)]
2

= E(ε0)
2 = E

(

ȳ∗ − Ȳ

Ȳ

)2

=
1

Ȳ 2
V (ȳ∗)

Similarly

V (ε1) =
1

X̄2
V (x̄∗)

Then we have the required variances of ε0 and ε1.

and

Cov(ε0ε1) = E[ε0 − E(ε0)][ε1 − E(ε1)]

= E(ε0)ε1) = E

(

ȳ∗ − Ȳ

Ȳ

x̄∗ − X̄

X̄

)

=
1

Ȳ X̄
Cov(ȳ∗x̄∗)

Then we have the required covariance between ε0 and ε1. Hence the lemma.

The traditional ratio and product estimators and classical ratio and product-type

exponential estimators for population mean Ȳ are respectively defined by

(2.1) t∗R = ȳ∗
X̄

x̄∗

(2.2) t∗P = ȳ∗
x̄∗

X̄

(2.3) t∗Re = ȳ∗exp

(

X̄ − x̄∗

X̄ + x̄∗

)

(2.4) t∗Pe = ȳ∗exp

(

x̄∗ − X̄

x̄∗ + X̄

)

We note that t∗R is due to Cochran (1977) and t∗Re, t∗Pe are owing to Singh et al.

(2009).
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The biases and MSE of the estimators in (2.1)-(2.4) to the first degree of approxima-

tion are discussed in the following theorems.

Theorem 2.1: The bias and MSE of the estimator in (2.1) are given by

B(t∗R) = Ȳ
[

φC2
x(1 − C) + φ′C2

x(2)(1 − C(2))
]

= Ȳ
[

φC2
x + φ′C2

x(2)

]

(1 − λ∗)
(2.5)

and

MSE(t∗R) = Ȳ 2
[

φ{C2
y + C2

x(1 − 2C)} + φ′{C2
y(2) + C2

x(2)(1 − 2C(2))}
]

= Ȳ 2
[

(φC2
y + φ′C2

y(2)) + (φC2
x + φ′C2

x(2))(1 − 2λ∗)
]

(2.6)

where C = ρyx
Cy

Cx

, C(2) = ρyx(2)
Cy(2)

Cx(2)
and λ∗ = (

φCC2
x
+φ′C(2)C

2
x(2)

φC2
x+φ′C2

x(2)
). Here, ρyx and ρyx(2)

are the correlation coefficients between y and x of the whole population and non

response class.

Proof. Expressing (2.1) in terms ε′is (i = 0, 1), we get

(2.7) t∗R = Ȳ (1 + ε0)(1 + ε1)
−1

We assume that |ε1| < 1, so that (1 + ε1)
−1 is expandable in terms of ε1. Expanding

the right hand side (r.h.s.) of (2.7) and neglecting the terms having the power of ε′s

greater than two, we have

(2.8) t∗R − Ȳ = Ȳ (ε0 − ε1 + ε2
1 − ε0ε1)

or

(2.9) (t∗R − Ȳ )2 ≈ Ȳ 2(ε2
0 − ε2

1 − 2ε0ε1)

Now, taking the expectations of (2.8) and (2.9), we have the results in (2.5) and (2.6)

respectively. Hence, the theorem.
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Theorem 2.2: The bias and MSE of the estimator in (2.2) are given by

B(t∗P ) = Ȳ
[

φCC2
x + φ′C(2)C

2
x(2)

]

= Ȳ
[

φC2
x + φ′C2

x(2)

]

λ∗

(2.10)

and

MSE(t∗P ) = Ȳ 2
[

φ{C2
y + C2

x(1 + 2C)} + φ′{C2
y(2) + C2

x(2)(1 + 2C(2))}
]

= Ȳ 2
[

(φC2
y + φ′C2

y(2)) + (φC2
x + φ′C2

x(2))(1 + 2λ∗)
]

(2.11)

Theorem 2.3: The bias and MSE of the estimator in (2.3) are given by

B(t∗Re) = Ȳ

[

φC2
x

(

3

8
−

C

2

)

+ φ′C2
x(2)

(

3

8
−

C(2)

2

)]

= Ȳ
[

φC2
x + φ′C2

x(2)

]

(

3

8
−

λ∗

2

)
(2.12)

and

MSE(t∗Re) = Ȳ 2

[

φ{C2
y + C2

x(
1

4
− C)} + φ′{C2

y(2) + C2
x(

1

4
− C)}

]

= Ȳ 2

[

(φC2
y + φ′C2

y(2)) + (φC2
x + φ′C2

x(2))

(

1

4
− λ∗

)]
(2.13)

Theorem 2.4: The bias and MSE of the estimator in (2.4) are given by

B(t∗Pe) = Ȳ

[

φC2
x

(

C

2
−

1

8

)

+ φ′C2
x(2)

(

C(2)

2
−

1

8

)]

= Ȳ
[

φC2
x + φ′C2

x(2)

]

(

λ∗

2
−

1

2

)
(2.14)

and

MSE(t∗Pe) = Ȳ 2

[

φ{C2
y + C2

x(
1

4
+ C)} + φ′{C2

y(2) + C2
x(

1

4
+ C)}

]

= Ȳ 2

[

(φC2
y + φ′C2

y(2)) + (φC2
x + φ′C2

x(2))

(

1

4
+ λ∗

)]
(2.15)

It is easy to prove the Theorems 2.2, 2.3 and 2.4 by following the proof steps of

Theorem 2.1.



RATIO-TO-PRODUCT EXPONENTIAL-TYPE ESTIMATORS UNDER NON-RESPONSE 601

Theorem 2.5: The estimators t∗R, t∗P , t∗Re and t∗Pe are more efficient than the esti-

mator ȳ∗, respectively if

(2.16) [C > (1/2) and C(2) > (1/2)] or λ∗ > (1/2)

(2.17) [C < −(1/2) and C(2) < −(1/2)] or λ∗ < −(1/2)

(2.18) [C > (1/4) and C(2) > (1/4)] or λ∗ > (1/4)

and

(2.19) [C < −(1/4) and C(2) < −(1/4)] or λ∗ < −(1/4)

Proof. From (1.2) and (2.6), we have

V (ȳ∗) − MSE(t∗R) ≈ Ȳ 2
[

φC2
x(2C − 1) + φ′C2

x(2)(2C(2) − 1)
]

≈ Ȳ 2
[

φC2
x + φ′C2

x(2)

]

(2λ∗ − 1)

It is clear that V (ȳ∗) > MSE(t∗R) if the condition (2.16) is satisfied.

Similarly, from (1.2), (2.11), (2.13) and (2.15), the conditions (2.17), (2.18) and (2.19)

can be proved. Hence the theorem.

2.2. Case II(Non-Response occurred only on study variable): Now, suppose that the

non response only on the study variate y while complete response is obtained for

auxiliary variate x and the population mean X̄ thereto is known. In this situation,

the error terms are defined as

ε0 =
ȳ∗ − Ȳ

Ȳ
, ε2 =

x̄ − X̄

X̄

then

E(ε0) = E(ε2) = 0
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To obtain the bias and MSE of the proposed class of estimators under this case, we

need the following lemma.

Lemma 2.2: The variance of the error terms ε0 and ε2 are given by

V (ε0) = E(ε2
0) = [φC2

y + φ′C2
y(2)],

and

V (ε2) = E(ε2
2) = φC2

x.

The covariance between ε0 and ε2 is given by

Cov(ε0ε2) = E(ε0ε2) = φCyx.

Proof. It follows the proof of Lemma 2.1.

The traditional ratio and product estimators and classical ratio and product-type

exponential estimators for population mean Ȳ are defined as

(2.20) tR = ȳ∗
X̄

x̄

(2.21) tP = ȳ∗
x̄

X̄

(2.22) tRe = ȳ∗exp

(

X̄ − x̄

X̄ + x̄

)

(2.23) tPe = ȳ∗exp

(

x̄ − X̄

x̄ + X̄

)

To the first order approximation the bias and MSE of the estimators in (2.20)-(2.23)

are, respectively, given in the following theorems.

Theorem 2.6: The bias and MSE of the estimator in (2.20) are given by

(2.24) B(tR) = Ȳ
[

φC2
x(1 − C)

]
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and

(2.25) MSE(tR) = Ȳ 2
[

φ{C2
y + C2

x(1 − 2C)} + φ′C2
y(2)

]

Proof. Expressing (2.20) in terms ε′is (i = 0, 2), we get

(2.26) tR = Ȳ (1 + ε0)(1 + ε2)
−1

We assume that |ε2| < 1, so that (1 + ε2)
−1 is expandable in terms of ε1. Expanding

the r.h.s. of (2.26) and neglecting the terms having the power of ε′s greater than two,

we have

(2.27) tR − Ȳ = Ȳ (ε0 − ε2 + ε2
2 − ε0ε2)

or

(2.28) (tR − Ȳ )2 ≈ Ȳ 2(ε2
0 − ε2

2 − 2ε0ε2)

Now, taking the expectations of (2.27) and (2.28), we have (2.5) and (2.6) respectively.

Hence, the theorem.

Theorem 2.7: The bias and MSE of the estimator (2.21) are given by

(2.29) B(tP ) = Ȳ φCC2
x

and

(2.30) MSE(tP ) = Ȳ 2
[

φ{C2
y + C2

x(1 + 2C)} + φ′C2
y(2)

]

Theorem 2.8: The bias and MSE of the estimator (2.22) are given by

(2.31) B(tRe) = Ȳ

[

φC2
x

(

3

8
−

C

2

)]

and

(2.32) MSE(tRe) = Ȳ 2

[

φ{C2
y + C2

x(
1

4
− C)} + φ′C2

y(2)

]
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Theorem 2.9: The bias and MSE of the estimator in (2.23) are given by

(2.33) B(tPe) = Ȳ

[

φC2
x

(

C

2
−

1

8

)]

and

(2.34) MSE(tPe) = Ȳ 2

[

φ{C2
y + C2

x(
1

4
+ C)} + φ′C2

y(2)

]

Theorems 2.7, 2.8 and 2.9 can be easily proved following the proof steps of Theorem

2.6.

Theorem 2.10: The estimators tR, tP , tRe and tPe are more efficient than the

estimator ȳ∗, respectively if

(2.35) C > (1/2)

(2.36) C < −(1/2)

(2.37) C > (1/4)

and

(2.38) C < −(1/4)

Proof. Comparing (2.25), (2.30), (2.32) and (2.34) with (1.2), we have (2.35)-(2.38)

respectively. Hence the theorem.

3. The Proposed Family of Exponential Estimators

Motivated by Srivastava (1967), using the information on a single auxiliary vari-

able x with known population mean X̄, we have proposed a family of estimators of

population mean Ȳ in two well defined cases of non response which are as follows.

3.1. Case I(Non-Response occurred on study variable as well as auxiliary variable):

Suppose the non response observed on the n2 < (n) units for study variable y as well

as for auxiliary variable x in the sample and the population means X̄ is known from
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the previous census. In this situation, using Hansen and Hurwitz (1946) technique

of sub-sample to deal with the group of non response, we have proposed a class of

estimators for population mean Ȳ of the study variable y which is defined as

(3.1) t∗RP = ȳ∗

(

X̄

x̄∗

)θ

exp

(

a
X̄ − x̄∗

X̄ + x̄∗

)

where θ is an arbitrary constant whose optimum value is determined later. Here a is

a fixed constant which takes the values 1, -1, 0.

Some special members of the proposed class of Estimators t∗RP

In (3.1), if we set

(i) (θ, a)=(0, 0), we get usual unbiased estimator ȳ∗.

(ii) (θ, a)=(1, 0) we get traditional ratio estimator t∗R.

(iii)(θ, a)=(-1, 0) we get traditional product estimator t∗P .

(iv)(θ, a)=(0, 1) we get classical ratio-type exponential estimator t∗Re.

(v)(θ, a)=(0,-1) we get classical product-type exponential estimator t∗Pe.

Theorem 3.1: The bias and MSE of the estimator in (3.1) to the first order approx-

imation is given by

(3.2)

B(t∗RP ) = Ȳ

[{

3a

4
+

a2

8
+ θ(θ + 1)

}

(φC2
x + φ′C2

x(2)) −
(a

2
+ θ

)

(φCyx + φ′Cyx(2))

]

and

(3.3)

MSE(t∗RP ) = Ȳ 2
[

φC2
y + φ′C2

y(2) +
(a

2
+ θ

) {

φC2
x

(a

2
+ θ − 2C

)

+ φ′C2
x(2)

(a

2
+ θ − 2C(2)

)}]

Proof. Expressing (3.1) in terms of ε′is(i = 0, 1), we have

(3.4) t∗RP = Ȳ

[

1 + ε0(1 + ε1)
−θexp

(

−aε1

2 + ε1

)]

We know that (1 + ε1)
−θ is expandable in terms of ε1. Expanding the r.h.s. of (3.4)

binomially and exponentially and neglecting the terms having the power of ε′s greater
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than two, we get

(3.5) (t∗RP − Ȳ ) = Ȳ

[

ε0 −

(

1

2
+ θ

)

ε1 +

{

3a

4
+

a2

8
+ θ(θ + 1)

}

ε2
1 −

(a

2
+ θ

)

ε0ε1

]

or

(3.6) (t∗RP − Ȳ )2 ≈ Ȳ 2

[

ε2
0 +

(a

2
+ θ

)2

ε2
1 − 2

(a

2
+ θ

)

ε0ε1

]

Taking the expectation of both sides of (3.5) and (3.6), we have (3.2) and (3.3)

respectively. Hence the theorem.

Theorem 3.2: The minimum MSE of the estimator (3.1) is given by

min.MSE(t∗RP ) = V (ȳ∗) − Ȳ 2 (φCyx + φ′Cyx(2))
2

(φC2
x + φ′C2

x(2))

= Ȳ 2(φC2
x + φ′C2

x(2))λ
∗2

(3.7)

at the optimum value

(3.8) θ =

[

(φCyx + φ′Cyx(2))

(φC2
x + φ′C2

x(2))
−

a

2

]

= θ0(say).

Proof. Differentiating (3.3) with respect to θ, equating to zero and solving, we get

(3.8). By putting (3.8) in (3.3) we have (3.7). Hence the theorem.

3.2. Case II(Non-Response occurred only on study variable): Let there is complete

response obtained on n units for the auxiliary variable x while n2 units are observed

as non-respondents for study variable y, that is, the non response occurs only on

study variable y. In this situation, we have proposed a class of exponential type

estimators using Hansen and Hurwitz (1946) technique when the population means

X̄ is known defined as

(3.9) tRP = ȳ∗

(

X̄

x̄

)θ∗

exp

(

a
X̄ − x̄

X̄ + x̄

)

where θ∗ is a suitably chosen constant whose optimum value is determined later in

(3.16) and a is same as described above in (3.1). It is easy to see that the estimators

ȳ∗, tR, tP , tRe and tPe are the special members of
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the proposed class of estimators tRP .

Theorem 3.3: The bias and MSE of the estimator in (3.9) to the first order approx-

imation is given by

(3.10) B(tRP ) = Ȳ

[{

3a

4
+

a2

8
+ θ∗(θ∗ + 1)

}

(φC2
x) −

(a

2
+ θ∗

)

(φCyx)

]

(3.11) MSE(tRP ) = Ȳ 2

[

φC2
y + φ′C2

y(2) +
(a

2
+ θ∗

)2

φC2
x − 2

(a

2
+ θ∗

)

φCyx

]

Proof. Expressing (3.9) in terms of errors, we have

(3.12) tRP = Ȳ

[

1 + ε0(1 + ε2)
−θ∗exp

(

−aε2

2 + ε2

)]

Expanding the r.h.s. of (3.12) and neglecting the terms of ε′s having the power

greater than two, we get

(3.13)

(tRP − Ȳ ) = Ȳ

[

ε0 −
(a

2
+ θ∗

)

ε2 +

{

3a

4
+

a2

8
+ θ∗(θ∗ + 1)

}

ε2
2 −

(a

2
+ θ∗

)

ε0ε2

]

or

(3.14) (tRP − Ȳ )2 ≈ Ȳ 2

[

ε2
0 +

(a

2
+ θ∗

)2

ε2
2 − 2

(

1

2
+ θ∗

)

ε0ε2

]

Taking expectation of both sides of (3.13) and (3.14), we respectively have (3.10) and

(3.11). Hence the theorem.

Theorem 3.4: The minimum MSE of the estimator in (3.9) is given by

(3.15) min.MSE(tRP ) = V (ȳ∗) − Ȳ 2
φC2

yx

C2
x

at the optimum value

(3.16) θ∗ =

[

Cyx

C2
x

−
a

2

]

= θ∗0(say).

Proof. Differentiating (3.11) with respect to θ∗, equating to zero and solving, we get

(3.16). By putting (3.16) in (3.11) we have (3.15). Hence the theorem.
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4. Efficiency Comparison

In this section, we compare the proposed class of estimators t∗RP and tRP with

other considered estimators in both well defined cases of non response. We have

discussed the optimal condition and the general condition of the estimators t∗RP and

tRP , respectively, given in Case-I and Case-II.

4.1. Case-I (Non-Response on both y and x):

Theorem 4.1: At the optimum value θ = θ0, the proposed class of estimators t∗RP

is always better than the estimators ȳ∗, t∗R, t∗P , t∗Re and t∗Pe.

Proof. Comparing (1.2), (2.6), (2.11), (2.13) and (2.15) with (3.7), we respectively

have

(4.1) MSE(ȳ∗) − min.MSE(t∗RP ) = Ȳ 2[φC2
x + φ′C2

x(2)]λ
∗2 > 0,

(4.2) MSE(t∗R) − min.MSE(t∗RP ) = Ȳ 2[φC2
x + φ′C2

x(2)](1 − λ∗)2 > 0,

(4.3) MSE(t∗P ) − min.MSE(t∗RP ) = Ȳ 2[φC2
x + φ′C2

x(2)](1 + λ∗)2 > 0,

(4.4) MSE(t∗Re) − min.MSE(t∗RP ) = Ȳ 2[φC2
x + φ′C2

x(2)]

(

1

2
− λ∗

)2

> 0,

and

(4.5) MSE(t∗Pe) − min.MSE(t∗RP ) = Ȳ 2[φC2
x + φ′C2

x(2)]

(

1

2
+ λ∗

)2

> 0

Observing (4.1)-(4.5) carefully, we have the required theorem.

If the value of θ does not coincide exactly with it’s optimum value i.e.; θ 6= θ0 then

we state the following theorems.

Theorem 4.2: The proposed estimator t∗RP is better than unbiased estimator ȳ∗ if

−(a/2) < θ < (2C − a/2) and − (a/2) < θ < (2C(2) − a/2)

or − (a/2) > θ > (2C − a/2) and − (a/2) > θ > (2C(2) − a/2).
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Theorem 4.3: The estimator t∗RP is better than the estimator t∗R if

{1 − a/2} < θ < {2C − (1 + a/2)} and {1 − a/2} < θ < {2C(2) − (1 + a/2)}

or {1−a/2} > θ > {2C−(1+a/2)} and {1−a/2} > θ > {2C(2)−(1+a/2)}.

Theorem 4.4: t∗RP is better than t∗P if

−{1 + a/2} < θ < {2C + (1 − a/2)} and − {1 + a/2} < θ < {2C(2) + (1 − a/2)}

or −{1 + a/2} > θ > {2C + (1− a/2)} and −{1 + a/2} > θ > {2C(2) + (1− a/2)}.

Theorem 4.5: t∗RP is better than t∗Re if

−1/2{1− a} < θ < {2C − 1/2(1 + a)} and − 1/2{1− a} < θ < {2C2 − 1/2(1 + a)}

or −1/2{1−a} > θ > {2C−1/2(1+a)} and −1/2{1−a} > θ > {2C2−1/2(1+a)}.

Theorem 4.6: t∗RP is better than t∗Pe if

−1/2{1 + a} < θ < {2C − 1/2(1− a)} and − 1/2{1 + a} < θ < {2C2 + 1/2(1− a)}

or −1/2{1+a} > θ > {2C−1/2(1−a)} and −1/2{1+a} > θ > {2C2 +1/2(1−a)}.

Comparing (1.2), (2.6), (2.11), (2.13) and (2.15) with (3.3), the Theorems 4.2-4.6 can

be easily proved.

4.2. Case-II(Non-Response only on y):

Theorem 4.7: At the optimum value θ∗ = θ∗0, the proposed estimator tRP is always

better than ȳ∗, tR, tP , tRe and tPe.

Proof. It can be proved by comparing (1.2), (2.25), (2.30), (2.32) and (2.34) with

(3.15).

If θ 6= θ0(ie; optimum value) then we have the following theorems.

Theorem 4.8: The estimator tRP is better than estimator ȳ∗ if

−(a/2) < θ < (2C − a/2) or − (a/2) > θ > (2C − a/2).
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Theorem 4.9: tRP is better than tR if

{1 − a/2} < θ < {2C − (1 + a/2)} or {1 − a/2} > θ > {2C − (1 + a/2)}

Theorem 4.10: tRP is better than tP if

−{1 + a/2} < θ < {2C + (1 − a/2)} or − {1 + a/2} > θ > {2C + (1 − a/2)}

Theorem 4.11: tRP is better than tRe if

−1/2{1 − a} < θ < {2C − 1/2(1 + a)}

or − 1/2{1 − a} > θ > {2C − 1/2(1 + a)}

Theorem 4.12: the usual unbiased estimator tPe if

−1/2{1 + a} < θ < {2C − 1/2(1 − a)}

or − 1/2{1 + a} > θ > {2C − 1/2(1 − a)}

Theorems 4.8-4.12 can be proved by comparing (1.2), (2.25), (2.30), (2.32), (2.34)

with (3.11).

5. Empirical Study

To demonstrate the results numerically regarding the proposed class of estimators

t∗RP and tRP in Case-I and Case-II, we have taken four (4) data sets as Data Set-1,

Data Set-2, Data Set-3 and Data Set-4. These are exemplified as follows.

Data Set-1: [Sinha and Kumar (2017)]: Let y be total population of the village

and x be the area of the village. The desription of the parameters for this data

are: N = 109, n = 35, Ȳ = 485.92, X̄ = 255.97, W2 = 0.2, S2
y = 101593.31,

S2
x = 23881.57, ρ = 0.857, S2

y(2) = 127050.35, S2
x(2) = 31172.04, ρ2 = 0.834.

Data Set-2: [Sinha and Kumar (2017)]: Let y be total population of the village and
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x be the agricultural labours of the village. The description of the parameters for

this data are: N = 109, n = 35, Ȳ = 485.92, X̄ = 41.24, W2 = 0.2, S2
y = 101593.31,

S2
x = 2156.05 ρ = 0.451, S2

y(2) = 54070.78, S2
x(2) = 2314.59 ρ2 = 0.714.

Data Set-3: [Khare and Rehman (2014)]: Let y be The number of agricultural labors

in the village and x be the area (in hectares) of the village. The description of the pa-

rameters for this data are: N = 96, n = 40, Ȳ = 137.9271, X̄ = 144.8720, W2 = 0.25,

S2
y = 33306.69, S2

x = 13821.21, ρ = 0.773, S2
y(2) = 82610.37, S2

x(2) = 18353.53,

ρ2 = 0.724.

Data Set-4: [Khare and Kumar (2011)]: Let y be the average value of products sold

($ thousand) and x be the average size of farms (hundred of acres). The description of

the parameters for this data are: N = 56, n = 15, Ȳ = 61.59, X̄ = 75.79, W2 = 0.2,

S2
y = 577.4409, S2

x = 155.5009, ρ = −0.508, S2
y(2) = 193.4881, S2

x(2) = 110.25,

ρ2 = −0.379.

We have computed the percentage relative efficiencies (PREs) of various estima-

tors of population mean Ȳ with respect to unbiased estimator ȳ∗ using above four

data sets (1 to 4) at different values of k using the following formulas.

PRE(•) =
MSE(•)

MSE(ȳ∗)
× 100

Findings in Case-I and Case-II are clearly presented in Table 1.
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TABLE 1. PRE of the various estimators with respect to unbiased estimator ȳ∗ for

different values of k in Case-I and Case-II.

Case-I Case-II

Estimators Estimators

Data

Sets

1/k ȳ∗ t∗R t∗P t∗Re t∗Pe t∗RP ȳ∗ tR tP tRe tPe tRP

1 1/5 100.00 333.89 ***** 231.50 ***** 343.47 100.00 134.59 ***** 125.47 ***** 135.00

1/4 100.00 337.43 ***** 232.00 ***** 346.59 100.00 144.23 ***** 131.97 ***** 145.00

1/3 100.00 342.81 ***** 232.75 ***** 351.34 100.00 161.34 ***** 142.93 ***** 162.00

1/2 100.00 351.95 ***** 233.99 ***** 359.48 100.00 200.04 ***** 165.30 ***** 201.15

2 1/5 100.00 34.890 ***** 115.34 ***** 150.85 100.00 56.063 ***** 102.15 ***** 112.86

1/4 100.00 35.817 ***** 113.38 ***** 146.18 100.00 53.179 ***** 102.42 ***** 114.69

1/3 100.00 37.069 ***** 110.95 ***** 140.61 100.00 49.890 ***** 102.77 ***** 117.11

1/2 100.00 38.874 ***** 107.89 ***** 133.86 100.00 46.104 ***** 103.24 ***** 120.49

3 1/5 100.00 189.80 ***** 141.99 ***** 213.79 100.00 112.22 ***** 107.80 ***** 113.00

1/4 100.00 191.95 ***** 143.01 ***** 215.04 100.00 115.81 ***** 109.97 ***** 116.63

1/3 100.00 195.68 ***** 144.76 ***** 217.41 100.00 122.39 ***** 113.84 ***** 123.63

1/2 100.00 203.70 ***** 148.45 ***** 223.15 100.00 138.36 ***** 122.58 ***** 140.77

4 1/5 100.00 ***** 126.13 ***** 119.24 127.23 100.00 ***** 122.46 ***** 114.19 123.28

1/4 100.00 ***** 127.50 ***** 119.47 128.51 100.00 ***** 124.47 ***** 115.36 125.39

1/3 100.00 ***** 129.12 ***** 119.74 130.18 100.00 ***** 126.87 ***** 116.75 127.89

1/2 100.00 ***** 131.06 ***** 120.06 132.46 100.00 ***** 129.80 ***** 118.42 130.96

From Table 1, it is observed

• in Data set-1 and Data Set-3, that the PRE of the estimators t∗R, t∗Re, t∗RP and

tR, tRe, tRP are increasing as the value of 1/k increasing in both Case-I and

Case-II.

• in Data Set-2 that
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(a) the ratio estimators t∗R and tR are less efficient than unbiased estimator ȳ∗ in both

cases of non response because of it is well known condition [see (1.16) and (1.32)] in

both cases.

(b) the PRE of the classical ratio-type exponential estimator t∗Re decreases as the

value of 1/k increases in Case-I while in Case-II it is completely inverted.

(c) the PRE of the estimators t∗RP in Case-I and tRP in Case-II are increasing as the

value of 1/k is increasing.

• in Data set-4, that the PRE of the estimators t∗P , t∗Pe, t∗RP and tP , tPe, tRP are

increasing as the value of 1/k increasing in the Case-I and Case-II.

• that the proposed class of estimators t∗RP and tRP are more efficient than the

estimators ȳ∗, t∗R, t∗P , t∗Re, t∗Pe, t∗RP and tR, tP , tRe, tPe, tRP in case-I and case-II,

respectively.

Thus, the proposed class of estimators t∗RP and tRP are most efficient estimators

than other considered estimators in each case of non response.

6. Conclusions

We have proposed a general family of exponential type estimators using an auxiliary

variable in two well defined cases of non response. In the efficiency comparison, it

has been found that the minimum MSE of proposed class of estimators t∗RP and tRP

are always less than the MSEs of the usual unbiased estimator, traditional ratio and

product estimators, classical ratio-type and product type exponential estimators in

each case ie; Case-I and Case-II. The results obtained in empirical study also advocate

our theoretical statement. Thus, the proposed class of estimators are preferable in

estimating the population mean Ȳ under any amount of correlation.
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