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NONUNIQUE FIXED POINT THEOREMS ON b-METRIC SPACES

VIA SIMULATION FUNCTIONS

H. AYDI (1), E. KARAPINAR (2) AND V. RAKOČCEVIĆ (3)

Abstract. Based on the concepts of α-orbital admissibility given by Popescu in

[29] and simulation functions introduced by Khojasteh in [25], we introduce in this

paper different types of contractive mappings. We also provide some nonunique

fixed point results for such contractive mappings in the class of orbital complete

b-metric spaces. Some consequences on known results in literature are also given

in support of our obtained results.

1. Introduction and Preliminaries

As a generalization of metric spaces, the concept of a b-metric was introduced by

Bakhtin [12] and Bourbaki [19] (see also [21]).

Definition 1.1 (Czerwik [21]). Let X be a nonempty set and d : X × X → [0,∞)

be a function satisfying the following conditions:

(b1) d(x, y) = 0 if and only if x = y;

(b2) d(x, y) = d(y, x) for all x, y ∈ X;

(b3) d(x, y) ≤ s[d(x, z) + d(z, y)] for all x, y, z ∈ X, where s ≥ 1.

The function d is called a b-metric and the space (X, d) is called a b-metric space, in

short, bMS.
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Note that for s = 1, the b-metric becomes a usual metric.

For (common) fixed point results on b-metric spaces, see [2, 3, 4, 6, 7, 9, 10, 11, 15,

16, 17, 18, 24, 26, 27]. On the other hand, the case of Ćirić type [20], Karapınar type

[23], Achari type [1] and Pachpatte type [32] contractions are considered in variant

(generalized ) metric spaces where the existence of nonunique fixed points has been

proved. The aim of this paper is to establish some nonunique fixed point results by

generalizing above type contractions using the concepts of α-orbital admissibility and

simulation functions in the class of orbital complete b-metric spaces.

Example 1.1. Let X = R. Define

(1.1) d(x, y) = |x− y|p

for p > 1. Then d is a b-metric on R. Clearly, the first two conditions hold. Since

|x− y|p ≤ 2p−1[|x− z|p + |z − y|p],

the third condition holds with s = 2p−1. Thus, (R, d) is a b-metric space with a

constant s = 2p−1.

Example 1.2. For p ∈ (0, 1), take

X = lp(R) =

{

x = {xn} ⊂ R :

∞
∑

n=1

|xn|
p <∞

}

.

Define

d(x, y) =

(

∞
∑

n=1

|xn − yn|
p

)1/p

.

Then (X, d) is a b-metric space with s = 21/p.

Example 1.3. Let E be a Banach space and 0E be the zero vector of E. Let P be a

cone in E with int(P ) 6= ∅ and � be a partial ordering with respect to P . Let X be

a non-empty set. Suppose the mapping d : X ×X → E satisfies:
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(M1) 0 � d(x, y) for all x, y ∈ X;

(M2) d(x, y) = 0 if and only if x = y;

(M3) d(x, y) � d(x, z) + d(z, y), for all x, y ∈ X;

(M4) d(x, y) = d(y, x) for all x, y ∈ X.

Then d is called a cone metric on X, and the pair (X, d) is called a cone metric space

(CMS).

Let E be a Banach space and P be a normal cone in E with the coefficient of

normality denoted by K. Let D : X ×X → [0,∞) be defined by D(x, y) = ||d(x, y)||,

where d : X ×X → E is a cone metric space. Then (X,D) is a b-metric space with

a constant s := K ≥ 1.

The notion of comparison functions is defined by Rus [31] and it has been ex-

tensively studied by a number of authors to get more general forms of contractive

mappings.

Definition 1.2. [14, 31] A function φ : [0,∞) → [0,∞) is called a comparison

function if it is increasing and φn(t) → 0 as n→ ∞ for every t ∈ [0,∞), where φn is

the n-th iterate of φ.

Properties and examples of comparison functions can be found in [14, 31]. An

important property of comparison functions is given by the following Lemma.

Lemma 1.1. ([14, 31]) If φ : [0,∞) → [0,∞) is a comparison function, then

(1) each iterate φk of φ, k ≥ 1 is also a comparison function;

(2) φ is continuous at 0;

(3) φ(t) < t for all t > 0.
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Definition 1.3. [13] Let s ≥ 1 be a real number. A function φ : [0,∞) → [0,∞) is

called a (b)-comparison function if

(1) φ is increasing;

(2) there exist k0 ∈ N, a ∈ [0, 1) and a convergent nonnegative series
∞
∑

k=1

vk such

that sk+1φk+1(t) ≤ askφk(t) + vk, for k ≥ k0 and any t ≥ 0.

The collection of all (b)-comparison functions will be denoted by Ψ. In the litera-

ture, a (b)-comparison function is called (c)-comparison functions when s = 1. It can

be shown that a (c)-comparison function is a comparison function, but the converse

is not true in general. Berinde [13] also proved the following important property of

(b)-comparison functions.

Lemma 1.2. [13] Let φ : [0,∞) → [0,∞) be a (b)-comparison function. Then

(1) the series

∞
∑

k=0

skφk(t) converges for any t ∈ [0,∞);

(2) the function bs : [0,∞) → [0,∞) defined as bs =
∞
∑

k=0

skφk(t) is increasing and

is continuous at t = 0.

Remark 1. Any (b)-comparison function φ satisfies φ(t) < t and limn→∞ φn(t) = 0 for

each t > 0.

In order to unify several existing fixed point results in the literature, Khojasteh et

al. [25] introduced the notion of simulation functions and investigate the existence

and uniqueness of a fixed point for different types of contractive mappings.

Definition 1.4. A simulation function is a mapping ζ : [0,∞)×[0,∞) → R satisfying

the following conditions:

(ζ1): ζ(t, s) < s− t for all t, s > 0;



NONUNIQUE FIXED POINT THEOREMS VIA SIMULATION FUNCTIONS 269

(ζ2): if {tn}, {sn} are sequences in (0,∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

(1.2) lim sup
n→∞

ζ(tn, sn) < 0.

In [25], the condition ζ(0, 0) = 0 was added, but Argoubi et al. [8] dropped it. Let Z

denote the family of all simulation functions ζ : [0,∞)×[0,∞) → R, that is, verifying

(ζ1) and (ζ2).

Due to the axiom (ζ1), we have

(1.3) ζ(t, t) < 0 for all t > 0.

The following example is derived from [5, 25, 30].

Example 1.4. Let φi : [0,∞) → [0,∞) be continuous functions such that φi(t) = 0 if

and only if, t = 0. For i = 1, 2, 3, 4, 5, 6, we define the mappings ζi : [0,∞)×[0,∞) →

R, as follows

(i): ζ1(t, s) = φ1(s) − φ2(t) for all t, s ∈ [0,∞), where φ1, φ2 : [0,∞) → [0,∞)

are two continuous functions such that φ1(t) = φ2(t) = 0 if and only if t = 0

and φ1(t) < t ≤ φ2(t) for all t > 0.

(ii): ζ2(t, s) = s −
f(t, s)

g(t, s)
t for all t, s ∈ [0,∞), where f, g : [0,∞)2 → (0,∞)

are two continuous functions with respect to each variable such that f(t, s) >

g(t, s) for all t, s > 0.

(iii): ζ3(t, s) = s− φ3(s) − t for all t, s ∈ [0,∞).

(iv): ζ4(t, s) = s ϕ(s) − t for all s, t ∈ [0,∞), where ϕ : [0,∞) → [0, 1) is a

function such that lim sup
t→r+

ϕ(t) < 1 for all r > 0.

(v): ζ5(t, s) = η(s)− t for all s, t ∈ [0,∞), where η : [0,∞) → [0,∞) is an upper

semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0.

(vi): ζ6(t, s) = s−
∫ t

0
φ(u)du for all s, t ∈ [0,∞), where φ : [0,∞) → [0,∞) is a

function such that
∫ ε

0
φ(u)du exists and

∫ ε

0
φ(u)du > ε, for each ε > 0.

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.
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Definition 1.5. [29] Let T : X → X be a mapping and α : X × X → [0,∞) be a

function. We say that T is α-orbital admissible if

α(x, Tx) ≥ 1 ⇒ α(Tx, T 2x) ≥ 1.

Definition 1.6. [28, 29] Let (X, d) be a bMS and x ∈ X. A self-mapping T on X

is said to be orbital continuous if lim
i→∞

T ni(x) = z implies that lim
i→∞

T (T ni(x)) = Tz.

A bMS (X, d) is called T -orbitally complete if every Cauchy sequence of the form

{T ni(x)}∞i=1, converges in (X, d).

Remark 2. It is evident that orbital continuity of T yields orbital continuity of Tm

for any m ∈ N.

In this paper, we establish some nonunique fixed point results for different type of

contractions using the concepts of α-orbital admissibility and simulation functions in

the class of orbital complete b-metric spaces.

2. Nonunique fixed points on b-metric spaces

2.1. Results on (α− ψ)-Ćirić type simulated mappings.

Definition 2.1. Let (X, d) be a bMS. The self-mapping T : X → X is called (α−ψ)-

Ćirić type simulated if there exist ψ ∈ Ψ, ζ ∈ Z and α : X ×X → [0,∞) such that

(2.1) ζ(mT (x, y), ψ(d(x, y)) ≥ 0

for all x, y ∈ X, where

mT (x, y) := α(x, y) min{d(Tx, Ty), d(x, Tx), d(y, Ty)}− min{d(x, Ty), d(Tx, y)}.

Lemma 2.1. Let X be a non-empty set. Suppose that α : X × X → [0,∞) is a

function and T : X → X is an α-orbital admissible mapping. If there exists x0 ∈ X

such that α(x0, Tx0) ≥ 1, and xn = Txn−1 for n = 1, 2, . . . , then

(2.2) α(xn, xn+1) ≥ 1, for each n = 0, 1, . . . .
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Proof. On account of the assumptions of the theorem, there exists x0 ∈ X such that

α(x0, Tx0) ≥ 1. Owing to the fact that T is α-orbital admissible, we find

α(x0, x1) = α(x0, Tx0) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.

By iterating the above inequality, we derive that

α(xn, xn+1) = α(Txn−1, Txn) ≥ 1, for each n = 1, 2, . . . .

�

Theorem 2.1. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Assume that

(i) T is an α-orbital admissible mapping;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is (α− ψ)-Ćirić type simulated.

Then the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. By condition (ii), there exists x0 ∈ X such that α(x0, Tx0) ≥ 1.Consider the

iterative sequence {xn} defined by

(2.3) x0 := x and xn = Txn−1 for all n ∈ N.

We suppose that

(2.4) xn 6= xn−1 for all n ∈ N.

Indeed, if for some n ∈ N we have xn = Txn−1 = xn−1, then the proof is completed.

By Lemma 2.1, we have

(2.5) α(xn, xn+1) ≥ 1, for each n = 0, 1, . . . .

Substituting x = xn−1 and y = xn in (2.1), we derive that

0 ≤ ζ(mT (xn−1, xn), ψ(d(xn−1, xn)) < ψ(d(xn−1, xn) −mT (xn−1, xn)
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where

mT (xn−1, xn) := α(xn−1, xn) min{d(Txn−1, Txn), d(xn−1, Txn−1), d(xn, Txn)}

−min{d(xn−1, Txn), d(Txn−1, xn)}.

Using (2.5), we have

(2.6)

min{d(xn, xn−1), d(xn, xn+1)}

−min{d(xn−1, Txn), d(Txn−1, xn)}

= min{d(Txn−1, Txn), d(xn−1, Txn−1), d(xn, Txn)}

−min{d(xn−1, Txn), d(Txn−1, xn)}

≤ α(xn−1, xn) min{d(Txn−1, Txn), d(xn−1, Txn−1), d(xn, Txn)}

−min{d(xn−1, Txn), d(Txn−1, xn)}

≤ ψ(d(xn−1, xn)).

It implies that

(2.7) min{d(xn, xn+1), d(xn, xn−1)} ≤ ψ(d(xn−1, xn)).

Since ψ(t) < t for all t > 0, the case d(xn, xn−1) ≤ ψ(d(xn−1, xn)) is impossible. Thus,

we have

(2.8) d(xn, xn+1) ≤ ψ(d(xn−1, xn)).

Applying (2.8) repeatedly, we have

(2.9) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

Since ψ ∈ Ψ, by Remark 1, we have limn→∞ ψn(d(x0, x1)) = 0, so

(2.10) lim
n→∞

d(xn, xn+1) = 0.
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In what follow, we shall prove that the sequence {xn} is Cauchy. By using the

triangle inequality (b3), we get

(2.11)

d(xn, xn+k) ≤ s[d(xn, xn+1) + d(xn+1, xn+k)]

≤ sd(xn, xn+1) + s{s[d(xn+1, xn+2) + d(xn+2, xn+k)]}

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xn+k)
...

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .

+ sk−1d(xn+k−2, xn+k−1) + sk−1d(xn+k−1, xn+k)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + . . .

+ sk−1d(xn+k−2, xn+k−1) + skd(xn+k−1, xn+k),

since s ≥ 1. Combining (2.9) and (2.11), we derive that

(2.12)

d(xn, xn+k) ≤ sψn(d(x0, x1)) + s2ψn+1d(x0, x1) + . . .

+ sk−1ψn+k−2(d(x0, x1)) + skψn+k−1(d(x0, x1))

=
1

sn−1
[snψn(d(x0, x1)) + sn+1ψn+1d(x0, x1) + . . .

+ sn+k−2ψn+k−2(d(x0, x1)) + sn+k−1ψn+k−1(d(x0, x1))].

Consequently, we have

(2.13) d(xn, xn+k) ≤
1

sn−1
[Pn+k−1 − Pn−1] , n ≥ 1, k ≥ 1,

where Pn =
n
∑

j=0

sjψj(d(x0, x1)), n ≥ 1. From Lemma 1.2, the series
∞
∑

j=0

sjψj(d(x0, x1))

is convergent and since s ≥ 1, upon taking limit n→ ∞ in (2.13), we get

(2.14) lim
n→∞

d(xn, xn+k) ≤ lim
n→∞

1

sn−1
[Pn+k−1 − Pn−1] = 0.

We conclude that the sequence {xn} is Cauchy in (X, d).

Owing to the construction xn = T nx0 and the fact that (X, d) is T -orbitally com-

plete, there exists z ∈ X such that xn → z. Due to the orbital continuity of T, we

conclude that xn → Tz. Hence z = Tz. �
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Now, we give some consequences in b-metric spaces.

Corollary 2.1. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d) and ψ ∈ Ψ. Suppose that

(2.15) ζ(nT (x, y), ψ(d(x, y)) ≥ 0

for all x, y ∈ X, where

nT (x, y) := min{d(Tx, Ty), d(x, Tx), d(y, Ty)}− min{d(x, Ty), d(Tx, y)}.

Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. It is sufficient to take α(x, y) = 1 in Theorem 2.1. �

Corollary 2.2. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Suppose there exists k ∈ [0, 1
s
) such that

(2.16) min{d(Tx, Ty), d(x, Tx), d(y, Ty)}− min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈ X. Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed

point of T .

Proof. It is sufficient to take in Corollary 2.1, ζ(s, t) = ν(s) − t with ν(t) = at and

ψ(s) = k′s where a ∈ [0, 1) and k′ ∈ [0, 1
s
). Note that k = sk′ ∈ [0, 1

s
). �

If we take s = 1 in the previous corollary, we get the famous nonunique fixed point

theorem of Ćirić [20].

Corollary 2.3. [nonunique fixed point theorem of Ćirić [20]] Let T be an orbitally

continuous self-map on the T -orbitally complete standard metric space (X, d). Sup-

pose there is k ∈ [0, 1) such that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)}

≤ kd(x, y),
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for all x, y ∈ X. Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed

point of T .

Remark 3. Regarding Example 1.3, we deduce that the analog of Ćirić nonunique

fixed point theorem in the setting of cone metric spaces with a normal cone is still

valid (see [23]) (It corresponds to Corollary 2.3).

2.2. Results on (α− ψ)-Karapinar type simulated mappings.

Definition 2.2. Let (X, d) be a bMS. The mapping T : X → X is said (α − ψ)-

Karapinar type simulated if there exist ψ ∈ Ψ, ζ ∈ Z, α : X ×X → [0,∞) and real

numbers a1, a2, a3, a4, a5 with

(2.17) 0 ≤ s
a4 − a2

a1 + a2

< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5

such that

(2.18) ζ(p(x, y), ψ(l(x, y))) ≥ 0,

for all x, y ∈ X, where

p(x, y) = a1d(Tx, Ty) + a2

[

d(x, Tx) + d(y, Ty)
]

+ a3[d(y, Tx) + d(x, Ty)],

and

l(x, y) = a4d(x, y) + a5d(x, T
2x).

Theorem 2.2. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Assume that

(i) T is an α-orbital admissible mapping;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is (α− ψ)-Karapinar type simulated.

Then for such x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .
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Proof. Starting with the element x0, we shall construct an iterative sequence {xn} as

follows:

(2.19) x0 := x and xn = Txn−1 for all n ∈ N.

We suppose that

(2.20) xn 6= xn−1 for all n ∈ N.

Indeed, if for some n ∈ N we have xn = Txn−1 = xn−1, then the proof is completed.

By Lemma 2.1, we have

(2.21) α(xn, xn+1) ≥ 1, for each n = 0, 1, . . . .

By substituting x = xn and y = xn+1 in (2.18), we derive that

(2.22) 0 ≤ ζ(p(xn, xn+1), ψ(l(xn, xn+1))) < ψ(l(xn, xn+1)) − p(xn, xn+1),

where

p(xn, xn+1) = a1d(Txn, Txn+1) + a2

[

d(xn, Txn) + d(xn+1, Txn+1)
]

+a3[d(xn+1, Txn) + d(xn, Txn+1)],

and

l(xn, xn+1) = a4d(xn, xn+1) + a5d(xn, T
2xn).

Replacing these identities in (2.22), we get

(2.23)

a1d(Txn, Txn+1) + a2

[

d(xn, Txn) + d(xn+1, Txn+1)
]

+ a3[d(xn+1, Txn) + d(xn, Txn+1)]

≤ ψ(a4d(xn, xn+1) + a5d(xn, T
2xn))

≤ a4d(xn, xn+1) + a5d(xn, T
2xn)
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for all a1, a2, a3, a4, a5 satisfying (2.17). One writes,

(2.24)

a1d(xn+1, xn+2) + a2

[

d(xn, xn+1) + d(xn+1, xn+2)
]

+ a3[d(xn+1, xn+1) + d(xn, xn+2)]

≤ a4d(xn, xn+1) + a5d(xn, xn+2).

By a simple calculation, one can get

(2.25) (a1 + a2)d(xn+1, xn+2) + (a3 − a5)d(xn, xn+2) ≤ (a4 − a2)d(xn, xn+1)

which implies

(2.26) d(xn+1, xn+2) ≤ kd(xn, xn+1)

where k = a4−a2

a1+a2
. Due to (2.17), we have 0 ≤ sk < 1. Taking account of (2.26), we

get inductively

(2.27) d(xn, xn+1) ≤ kd(xn−1, xn) ≤ k2d(xn−2, xn−1) ≤ · · · ≤ knd(x0, x1).

We shall prove that {xn}n∈N is a Cauchy sequence. We have

d(xn, xn+p) ≤ s · d(xn, xn+1) + s2 · d(xn+1, xn+2) + . . .+ sp−2 · d(xn+p−3, xn+p−2)+

+ sp−1 · d(xn+p−2, xn+p−1) + sp · d(xn+p−1, xn+p)

≤ s · kn · d(x0, x1) + s2 · kn+1 · d(x0, x1) + . . .+

+ sp−2 · kn+p−3 · d(x0, x1) + sp−1 · kn+p−2 · d(x0, x1)+

+ sp · kn+p−1 · d(x0, x1)
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=
1

sn · k
·
[

sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p−1 · kn+p−1 · d(x0, x1)+

+sn+p · kn+p · d(x0, x1)
]

≤
1

sn · k
·
[

sn+1 · kn+1 · d(x0, x1) + . . .+ sn+p · kn+p · d(x0, x1)
]

=
1

sn · k
·

n+p
∑

i=n+1

si · ki · d(x0, x1)

<
1

snk
·

∞
∑

i=n+1

si · ki · d(x0, x1) −→ 0 as n −→ ∞,

since sk < 1. Thus, {xn}n∈N is a Cauchy sequence.

As in the proof of previous theorem, regarding the construction xn = T nx0 together

with the fact that (X, d) is T -orbitally complete, there exists z ∈ X such that xn → z.

Again by the orbital continuity of T, we deduce that xn → Tz. Hence z = Tz. �

Corollary 2.4. (See [22]) Let T be an orbitally continuous self-map on the T -

orbitally complete standard metric space (X, d). Assume there exist real numbers

a1, a2, a3, a4, a5 such that

(2.28) 0 ≤
a4 − a2

a1 + a2
< 1, a1 + a2 6= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5.

Suppose that

(2.29)

a1d(Tx, Ty)+a2

[

d(x, Tx)+d(y, Ty)
]

+a3[d(y, Tx)+d(x, Ty)] ≤ a4d(x, y)+a5d(x, T
2x)

for all x, y ∈ X. Then T has at least one fixed point.

Remark 4. As we discussed in Remark 3, we obtain the analog of Theorem 2.2 in the

context of cone metric spaces. More precisely, again taking Example 1.3 into account,

one can derive that Corollary 2.4 is also still fulfilled in the setting of cone metric

spaces with a normal cone ([22]).
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2.3. Results on the (α− ψ)-Achari type mappings.

Definition 2.3. Let (X, d) be a bMS. The self-mapping T : X → X is said (α− ψ)-

Achari type simulated if there exist ψ ∈ Ψ, ζ ∈ Z and α : X × X → [0,∞) such

that

(2.30) ζ(α(x,y)P (x,y)−Q(x,y)
R(x,y)

, ψ(d(x, y))) ≥ 0,

for all x, y ∈ X with R(x, y) 6= 0, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},

Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},

R(x, y) = min{d(x, Tx), d(y, Ty)}.

Theorem 2.3. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Assume that

(i) T is an α-orbital admissible mapping;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is (α− ψ)-Achari type simulated.

Then for such x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. As in the proof of Theorem 2.1, we shall construct an iterative sequence {xn}:

for an arbitrary initial value x ∈ X, take

(2.31) x0 := x and xn = Txn−1 for all n ∈ N.

Also, by condition (i) and as (2.5), we have α(xn−1, xn) ≥ 1 for all n ≥ 1. As it is

discussed in the proof of Theorem 2.1, from now on assume that

(2.32) xn 6= xn−1 for all n ∈ N.
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By substituting x = xn−1 and y = xn in the inequality (2.30), we derive that

(2.33)
0 ≤ ζ(α(xn−1,xn)P (xn−1,xn)−Q(xn−1,xn)

R(xn−1,xn)
, ψ(d(xn−1, xn)))

< ψ(d(xn−1, xn)) − α(xn−1,xn)P (xn−1,xn)−Q(xn−1,xn)
R(xn−1 ,xn)

,

where

P (xn−1, xn) = min{d(Txn−1, Txn)d(xn−1, xn), d(xn−1, Txn−1)d(xn, Txn)},

Q(xn−1, xn) = min{d(xn−1, Txn−1)d(xn−1, Txn), d(xn, Txn)d(Txn−1, xn)},

R(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn)}.

By (2.33), we have

α(xn−1, xn)P (xn−1, xn) −Q(xn−1, xn)

R(xn−1, xn)
≤ ψ(d(xn−1, xn)),

for all n ≥ 1. Using α(xn−1, xn) ≥ 1, we have

(2.34) P (xn−1,xn)−Q(xn−1,xn)
R(xn−1,xn)

≤ α(xn−1,xn)P (xn−1,xn)−Q(xn−1,xn)
R(xn−1 ,xn)

≤ ψ(d(xn−1, xn)),

for all n ≥ 1. Note that

P (xn−1, xn) = min{d(Txn−1, Txn)d(xn−1, xn), d(xn−1, Txn−1)d(xn, Txn)}

= d(xn, xn+1)d(xn−1, xn),

Q(xn−1, xn) = min{d(xn−1, Txn−1)d(xn−1, Txn), d(xn, Txn)d(Txn−1, xn)} = 0,

R(xn−1, xn) = min{d(xn−1, Txn−1), d(xn, Txn)} = min{d(xn−1, xn), d(xn, xn+1).

Using these above identities in (2.34), we get

(2.35)

P (xn−1,xn)−Q(xn−1,xn)
R(xn−1 ,xn)

= d(xn,xn+1)d(xn−1 ,xn)
min{d(xn−1 ,xn),d(xn,xn+1)}

≤ ψ(d(xn−1, xn)) for all n ≥ 1.

If for some n, R(xn−1, xn) = d(xn, xn+1), then the inequality (2.35) turns into

(2.36) d(xn−1, xn) ≤ ψ(d(xn−1, xn)) < d(xn−1, xn),

which is a contradiction. Accordingly, we deduce that

(2.37) d(xn, xn+1) ≤ ψ(d(xn−1, xn)), for all n ≥ 1.
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Using (2.37) repeatedly, we obtain

(2.38) d(xn, xn+1) ≤ ψ(d(xn−1, xn)) ≤ ψ2(d(xn−2, xn−1)) ≤ · · · ≤ ψn(d(x0, x1)).

By Lemma 1.2, we deduce that

(2.39) lim
n→∞

d(xn+1, xn) = 0.

The rest of the proof is a verbatim repetition of the related lines in the proof of

Theorem 2.1.

�

Corollary 2.5. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Suppose that

(2.40) P (x,y)−Q(x,y)
R(x,y)

≤ η(ψ(d(x, y))),

for all x, y ∈ X with R(x, y) 6= 0, where ψ ∈ Ψ and η : [0,∞) → [0,∞) is an upper

semi-continuous mapping such that η(t) < t for all t > 0 and η(0) = 0.

Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. It is sufficient to take ζ(t, s) = η(s) − t and α(x, y) = 1 for all x, y ∈ X in

Theorem 2.3. �

Corollary 2.6. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Suppose that there exists k ∈ [0, 1
s
) such that

(2.41) P (x,y)−Q(x,y)
R(x,y)

≤ kd(x, y),

for all x, y ∈ X, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},

Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},

R(x, y) = min{d(x, Tx), d(y, Ty)}.



282 H. AYDI , E. KARAPINAR AND V. RAKOČCEVIĆ

with R(x, y) 6= 0. Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed

point of T .

Proof. We choose η(t) = at and ψ(t) = k′t where a ∈ [0, 1) and k′ ∈ [0, 1
s
) in Corollary

2.5. We consider k = ak′. �

Corollary 2.7 (Nonunique fixed point of Achari [1]). Let T be an orbitally continuous

self-map on the T -orbitally complete standard metric space (X, d). Suppose that there

exists k ∈ [0, 1) such that

(2.42) P (x,y)−Q(x,y)
R(x,y)

≤ kd(x, y),

for all x, y ∈ X with R(x, y) 6= 0, where

P (x, y) = min{d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)},

Q(x, y) = min{d(x, Tx)d(x, Ty), d(y, Ty)d(Tx, y)},

R(x, y) = min{d(x, Tx), d(y, Ty)}.

Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

2.4. Results on (α− ψ)-Pachpatte type mappings.

Definition 2.4. Let (X, d) be a complete bMS. The mapping T : X → X is said

(α−ψ)-Pachpatte type simulated if there exist ψ ∈ Ψ, ζ ∈ Z and α : X×X → [0,∞)

such that

(2.43) ζ(α(x, y)m(x, y)− p(x, y), ψ(d(x, Tx)d(y, Ty))) ≥ 0,

for all x, y ∈ X, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},

p(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}.

Theorem 2.4. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Assume that
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(i) T is an α-orbital admissible mapping;

(ii) there exists an element x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iii) T is (α− ψ)-Pachpatte type simulated;

(iv) ψ(ab) ≤ aψ(b) for all a, b > 0.

Then for such x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. By following the lines in the proof of Theorem 2.1, we shall formulate an

recursive sequence {xn}, for an arbitrary initial value x ∈ X:

(2.44) x0 := x and xn = Txn−1 for all n ∈ N.

We assume that

(2.45) xn 6= xn−1 for all n ∈ N.

By replacing x = xn−1 and y = xn in the inequality (2.43), we observe that

(2.46)

0 ≤ ζ(α(xn−1, xn)m(xn−1, xn) − p(xn−1, xn), ψ(d(xn−1, Txn−1)d(xn, Txn)))

< ψ(d(xn−1, Txn−1)d(xn, Txn)) − α(xn−1, xn)m(xn−1, xn) − p(xn−1, xn),

for all n ≥ 1, where

m(xn−1, xn) = min{[d(Txn−1, Txn)]
2, d(xn−1, xn)d(Txn−1, Txn), [d(xn, Txn)]2},

p(xn−1, xn) = min{d(xn−1, Txn−1)d(xn, Txn), d(xn−1, Txn)d(xn, Txn−1)} = 0.

It yields that

(2.47)

m(xn−1, xn) ≤ α(xn−1, xn)m(xn−1, xn) ≤ ψ(d(xn−1, xn)d(xn, xn+1)), for all n ≥ 1.

Since Txn−1 = xn, we have

m(xn−1, xn) =min{[d(xn, xn+1)]
2, d(xn−1, xn)d(xn, xn+1), [d(xn, xn+1)]

2}

=min{[d(xn, xn+1)]
2, d(xn−1, xn)d(xn, xn+1)}.
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Using the above identity and the fact that ψ(t) < t (for all t > 0) in (2.47), we obtain

that

min{[d(xn, xn+1)]
2, d(xn−1, xn)d(xn, xn+1)} ≤ ψ(d(xn−1, xn)d(xn, xn+1))

< d(xn−1, xn)d(xn, xn+1).
(2.48)

If for some n, m(xn−1, xn) = d(xn−1, xn)d(xn, xn+1)(> 0), we get a contradiction with

respect to (2.48). We deduce that

(2.49) 0 < [d(xn, xn+1)]
2 ≤ ψ(d(xn−1, xn)d(xn, xn+1)).

By condition (iv), we get

(2.50) d(xn, xn+1) ≤ ψ(d(xn−1, xn)), for all n ≥ 1.

Recurrently, we find that

(2.51) d(xn, xn+1) ≤ ψn(d(x0, x1)).

The rest of the proof is a verbatim repetition of the related lines in the proof of

Theorem 2.1. �

Corollary 2.8. Let T be an orbitally continuous self-map on the T -orbitally complete

bMS (X, d). Suppose that there exists k ∈ [0, 1
s
) such that

(2.52) m(x, y) − p(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈ X, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},

p(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}.

Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Proof. It is sufficient to take α(x, y) = 1 for all x, y ∈ X in Theorem 2.4. Also, we

choose ζ(t, s) = η(s)− t with η(t) = at and ψ(t) = k′t where a ∈ [0, 1) and k′ ∈ [0, 1
s
).

We consider k = ak′. �
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Corollary 2.8 is still valid in the context of standard metric spaces.

Corollary 2.9 (Nonunique fixed point of Pachpatte [32]). Let T be an orbitally con-

tinuous self-map on the T -orbitally complete standard metric space (X, d). Suppose

that there exists k ∈ [0, 1) such that

(2.53) m(x, y) − p(x, y) ≤ kd(x, Tx)d(y, Ty),

for all x, y ∈ X, where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},

p(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}.

Then for each x0 ∈ X, the sequence {T nx0}n∈N converges to a fixed point of T .

Remark 5. One can deduce the analog of Corollary 2.8 in the context of cone metric

spaces as it mentioned in Remark 3.
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