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ON CLASSIFICATION OF FACTORABLE SURFACES IN
GALILEAN 3-SPACE G3

P. BANSAL AND M. H. SHAHID

Abstract. In this paper, we study factorable surfaces in Galilean 3-space G3.

Then we describe, up to a congruence, factorable surfaces and the several results in

this respect are obtained. In particular, factorable surfaces in terms of an isomet-

ric immersion, finite type Gauss map and the pointwise 1-type Gauss map of the

surfaces are considered and the characterization results on the factorable surfaces

with respect to these conditions are obtained.

1. Introduction

Let M be a connected n-dimensional submanifold of m-dimensional Euclidean space

Em, equipped with the induced metric. Then, whenever the position vector x of M

in Em can be decomposed as a finite sum of Em- valued eigenfunctions of ∆, we say

that M is of finite type, where ∆ is the Laplacian of M with respect to the induced

metric. Now, M is said to be of k-type if the position vector x of M in Em can be

expressed in the following form [1]:

x = x0 + xi1 + ... + xik ,
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where x0 is a constant vector, and xij (j = 1, ..., k) are non-constant Em-valued

functions on M satisfying

∆Xij = λijXij , λij ∈ R, λi1 < ... < λik .(1.1)

We can consider a submanifold M of Em whose coordinate functions are eigenfunctions

of the Laplacian of M, that is,

∆Xi = λiXi.

Such submanifold is said to be a coordinate finite type submanifold [11]. Bekkar et

al. [9] and Baba-Hamed et al. [4] studied respectively, coordinate finite type surfaces

of revolution and translation surfaces in a 3-dimensional Minkowski space E3
1. In

[11], Garay proved that coordinate finite type hypersurfaces are minimal in Em and

an open pieces of either round hyperspheres or generalized right spherical cylinders.

Moreover, he studied the hypersurfaces in an m-dimensional Euclidean space which

satisfy the condition

∆X = AX +B, A : Rm → Rm is an endomorphism, B ∈ Rm×1.

Later, Chen and Piccinni [2] gave the idea of Gauss map U on submanifolds in

Euclidean space. Dillen et al. [6], Baikoussi and Blair [3] respectively studied surfaces

of revolution and ruled surfaces in Euclidean 3-space such that their Gauss map U

satisfies

∆U = AU.

On the other hand, Aydin et al. found some geometric properties concerning fac-

torable surface in pseudo-galilean space [8] and Šipuš et al. studied some constant

curvature properties in [14]. Yoon studied classification of translation surfaces in

Galilean 3-space [5]. Also in ([7], [13]), authors studied ruled surfaces and factorable

surfaces in Minkoswki space. Furthermore, one can note that the Laplacian of the
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Gauss map of some known surfaces, a helicoid, a catenoid, a right cone in Euclidean

3-space take the form, namely

∆U = φ(U + C),

for a smooth function φ and a constant vector C. These surfaces satisfying above

equation are said to have pointwise 1-type Gauss map. In particular, a pointwise

1-type Gauss map is said to be of the first kind if C = 0, otherwise, it is said to be

of the second kind. On the other hand, if a function φ is constant, the Gauss map of

surface is called of 1-type.

In this paper, we obtain characterization theorems on factorable surfaces satisfying

Laplacian with respect to the first fundamental form (or with respect to the induced

metric) in terms of an isometric immersion, finite type Gauss map and the pointwise

1-type Gauss map of the surface.

2. Preliminaries

The Galilean space G3 is a Cayley-Klein space defined from a 3-dimensional projective

space P (R3) with the absolute figure that consists of an ordered triple ω, f, I, where

ω is the ideal (absolute) plane, f the line (absolute line) in ω and I the fixed elliptic

involution of points of f . We discuss homogenous coordinates in G3 in such a way

that the absolute plane ω is given by x0 = 0, the absolute line f by x0 = x1 = 0 and

the elliptic involution by (x0 : x1 : x2 : x3)(0 : 0 : x3 : −x2). In affine coordinates

defined by (x0 : x1 : x2 : x3) = (1 : x : y : z), the distance between the points

Pi = (xi, yi, zi), i = 1, 2 is defined by

d(P1, P2) =

 |x2 − x1|, if x1 6= x2√
(y2 − y1)2 + (z2 − z1)2, if x1 = x2.

The group of motions of G3 is a six-parameter group given (in affine coordinates) by

([10], [15])

x̄ = a+ x
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ȳ = b+ cx+ y cosϕ+ z sinϕ

z̄ = d+ ex− y sinϕ+ z cosϕ,

where a, b, c, d, e, ϕ ∈ R.

With respect to the absolute figure, there are two types of lines in the Galilean space,

isotropic lines which intersect the absolute line f and non-isotropic lines which do

not. A plane is called Euclidean if it contains f , otherwise it is called isotropic. In

the given affine coordinates, isotropic vectors are of the form (0, y, z). For further

study about this Galilean geometry in detail (see [12]).

A Cr-surface M(r ≥ 1), immersed in the Galilean space G3 and Cr-mapping

X : S ⊂ R2 → G3, satisfying M = X(S) which is regularly parameterized by

X(u, v) = (x(u, v), y(u, v), z(u, v)),

has the following first fundamental form

(2.1) I = (g1du+ g2dv)2 + ε(h11du
2 + 2h12dudv + h22dv

2),

where the symbols gi = xi, hij = X̃i.X̃j stands for derivatives of the first coordinate

function x(u, v) with respect to u, v and for the Euclidean scalar product of the

projections X̃k of vectors Xk onto the yz-plane, respectively. Furthermore,

ε =

 0, if direction du : dv is nonisotropic;

1, if direction du : dv is isotropic.

A surface is called admissible if it has no Euclidean tangent planes. Therefore, for an

admissible surface either g1 6= 0 or g2 6= 0 holds. An admissible surface can always

locally be expressed as

z = f(x, y).

The Gaussian curvature K and the Mean curvature H are defined by [15]

K = LN − M2

W 2 and H =
g22L − 2g1g2M + g21N

2W 2 ,

where
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Lij =
x1Xij − xijX1

x1
.U, x1 = g1 6= 0.

We use Lij(i, j = 1, 2) for L, M, N ahead and U define the Gauss map of the

surface by

U = 1
W

(0, −x2z1 + z2x1, x2y1 − y2x1),

where W 2 = (x2X1 − x1X2)
2. Let X = (x, y, z) and Y = (x̃, ỹ, z̃) be vectors in

Galilean space G3. A vector X is called isotropic if x = 0, otherwise it is called

non-isotropic. The Galilean scalar product of X and Y is defined by [10]

〈X, Y 〉 =

 xx̃, if x 6= 0 or x̃ 6= 0

yỹ + zz̃, if x = 0 and x̃ = 0.

From this, the Galilean norm of a vector X in G3 is given by ‖X‖ =
√
〈X, X〉 and

all unit non-isotropic vectors are the form (1, y, z).

The Galilean cross product of X and Y on G3 defined by [10]

X × Y =

∣∣∣∣∣∣∣∣∣
0 e2 e3

x y z

x̃ ỹ z̃

∣∣∣∣∣∣∣∣∣ ,
where e2 = (0, 1, 0) and e3 = (0, 0, 1).

Let u1(= u), u2(= v) be a local coordinate system of M. For the components gij(i, j =

1, 2) of the first fundamental form I on M , we denote by (gij) (respectively D) the

inverse (respectively the determinant) of the matrix (gij). The Laplacian operator ∆

of the first fundamental form I on M is defined by

∆ = − 1√
D

2∑
i=1

∂
∂ui

(√
Dgij ∂

∂uj

)
.

3. Factorable surfaces in G3

Suppose the factorable surface M in Galilean space G3 admits the parametric

representation

(3.1) X(u, v) = (u, v, f(u)g(v)),
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where f(u) and g(v) are smooth functions.

Then, we have the frame Xu, Xv given by

Xu = (1, 0, f ′(u)g(v)) and Xv = (0, 1, f(u)g′(v)),

where f ′ = df
du

and g′ = dg
dv

.

Next, the Gauss map U is given by

U = 1√
1+f2g′2

(0,−fg′, 1).

Accordingly, we also have the coefficients of the first and second fundamental form

on M by

E = 1, F = 0 and G = 1 + f 2g′2 = W,(3.2)

L = f ′′g√
W
, M = f ′g′√

W
and N = fg′′√

W
,

where we put EG− F 2 = 1 + f 2g′2 = W .

Then, the Gaussian and the Mean curvature are given by

K = ff ′′gg′′ − (f ′2g′2)
W 2 and H = fg′′

2W 3/2

respectively.

4. Finite type Factorable surfaces in G3

In this section, we explore the classification of factorable surfaces in G3 satisfying

(4.1) ∆Xi = λiXi, λi ∈ R.

Now using (3.2) and the frame Xu, Xv, one can get the Laplacian

(4.2) ∆X = − 1

W 2


ff ′g′2W

−f 2g′g′′

W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′


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Now using (4.2), the relation (4.1) is found to be equivalent to the following system

of ordinary differential equations,

−ff ′g′2 = λ1uW,(4.3)

f 2g′g′′ = λ2vW
2,(4.4)

(4.5) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = −λ3fgW 2.

Now the problem of classifying the factorable surface M in G3 which satisfy equation

(3.1) is reduced to the integration of the above system of ODE’s. Next, we study this

system of ODE’s by concerning values to (eigenvalues) λi (i = 1, 2, 3).

case 1 : We assume that M satisfies the condition ∆X = 0. We call such sur-

face, a harmonic surface. In this case, (4.3), (4.4), (4.5) reduces to

f ′g′ = 0 ,(4.6)

g′g′′ = 0 and(4.7)

(4.8) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = 0.

subcase (1.1) : Let f = constant and g = constant. Thus, the coefficients of second

fundamental form vanish. Hence, the surface is totally geodesic with parabolic points

and is given by X(u, v) = (u, v, c1), c1 ∈ R.

subcase (1.2) : Let f = constant. Consequently, g is linear function of v with

g′ 6= 0. Also, the coefficients of second fundamental form vanish. Then the surface is

totally geodesic with parabolic points and given by X(u, v) = (u, v, c1v + c2),

c1, c2 ∈ R.

subcase (1.3) : Let g = constant. Consequently, f is linear function with f ′ 6= 0.

Thus, the coefficients of second fundamental form vanish. Hence, again the surface
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is totally geodesic with parabolic points and is given by X(u, v) = (u, v, c1u+ c2),

c1, c2 ∈ R.

Thus, we have the following theorem.

Theorem 4.1. Let M be a harmonic factorable surface in Galilean 3-space given by

(3.1). Then M is totally geodesic with parabolic points and is congruent to an open

part of plane of one of the following types :

(1) X(u, v) = (u, v, c1)

(2) X(u, v) = (u, v, c1v + c2)

(3) X(u, v) = (u, v, c1u+ c2), where ci ∈ R(i = 1, 2).

Figure 1 Figure 2 Figure 3

Harmonic Factorable Surfaces with parabolic points

subcase (1.4) : Let f and g are linear functions of u and v resp. with f ′ 6= 0, g′ 6= 0.

Then relation (4.8) yields f ′g′ = 0, which is not possible. This shows that there

doesn’t exist harmonic factorable surface of type X(u, v) = (u, v, (c1u+c2)(c3v+c4)),

where ci ∈ R(i = 1, 2, 3, 4).
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Then, we have

Theorem 4.2. There is no non-flat minimal harmonic factorable surface without

parabolic points of type X(u, v) = (u, v, (c1u + c2)(c3v + c4)), ci ∈ R (i = 1, 2, 3, 4)

in Galilean 3- space.

Next, we distinguish the non-harmonic factorable surface :

case 2 : Let λ2 = 0, λ1 = λ3 = λ 6= 0. Then, we have

−ff ′g′2 = λuW,(4.9)

g′g′′ = 0 and(4.10)

(4.11) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = −λfgW 2.

Then (4.10) yields either g′ = 0 or g′′ = 0 but (4.9) with g′ = 0 gives a contradiction

as we assumed that λ 6= 0. Thus, we obtain g′′ = 0 which vanishes the Mean curvature

i.e. surface is minimal. Now, by the virtue of g′′ = 0 together with (4.9), (4.11) gives

(4.12) f ′′ = λ(uf ′ − f)

Hence, we get that the surface is minimal and is given by X(u, v) = (u, v, f(u)(c1v+

c2)), where f is solution of f ′′ = λ(uf ′ − f) and c1 ∈ R− {0}, c2 ∈ R.

case 3 : Let λ1 = 0, λ2 = λ3 = λ 6= 0. Then, we get

f ′g′ = 0 ,(4.13)

f 2g′g′′ = λvW 2 and(4.14)

(4.15) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = −λfgW 2,
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where (4.13) yields either f ′ = 0 or g′ = 0. But g′ = 0 gives a contradiction to our

assumption that λ 6= 0. Thus, we get f = constant = a 6= 0 (say) which vanishes the

Gaussian curvature. Now, using f = a and combining with (4.14), (4.15) yields

−gg′
v

= 1
a2

.

On solving above relation, we have g(v) =
√
c1 − v2

a2
, where c1 ∈ R with c1a

2 > v2.

Hence surface is flat and is given by X(u, v) = (u, v,
√
c1a2 − v2).

case 4 : Let λ1 = λ2 = 0, λ3 6= 0. Then, we have the system

f ′g′ = 0 ,(4.16)

g′g′′ = 0 and(4.17)

(4.18) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = −λ3fgW 2.

Now, (4.16) and (4.17) gives three possibilities either f ′ = 0 and g′ = 0, f ′ =

0 and g′′ = 0 or g′ = 0. But, if we take first of the two possibilities together with

(4.18) we get λ3 = 0 which contradicts our assumption. So, we have only the case

g′ = 0 (which vanishes the mean curvature) which further on combining with (4.18)

yields f ′′ + λ3f = 0, a second order ordinary differential equation which gives

f(u) =

 c1 cos(
√
λ3u) + c2 sin(

√
λ3u), λ3 > 0;

c1e
√
λ3ui + c2e

−
√
λ3ui, λ3 < 0.

, where ci ∈ R (i = 1, 2).

Hence the surface is minimal and is given by

X(u, v) =

 (u, v, c1 cos(
√
λ3u) + c2 sin(

√
λ3u)), λ3 > 0;

(u, v, c1e
√
λ3ui + c2e

−
√
λ3ui), λ3 < 0.

,

where ci ∈ R (i = 1, 2).
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case 5 : Let λ2 = λ3 = 0, λ1 6= 0. Then, system is reduced equivalently to

−ff ′g′2 = λ1uW ,(4.19)

g′g′′ = 0 and(4.20)

(4.21) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = 0.

Now (4.20) gives either g′ = 0 or g′′ = 0. But, g′ = 0 together with (4.19) immidietely

yields λ1 = 0, which is a contradiction. So, we have g′′ = 0 which further on combining

with (4.19) and (4.21) gives f ′′ − λ1uf ′ = 0, from which we obtain f by

f(u) = c1
∫
e
λ1u

2

2 du+ c2, where ci ∈ R, (i = 1, 2).

Thus, surface is X(u, v) = (u, v, (c1
∫
e
λ1u

2

2 du + c2)(c3v + c4)), where ci ∈ R, (i =

1, 2, 3, 4) .

Now, we summarize all of the above discussion in the following theorem

Theorem 4.3. (Classification Theorem) Let M be non-harmonic factorable sur-

face given by (3.1) satisfying ∆Xi = λiXi in G3. Then M is an open part of one of

the following :

(1) M is minimal and is given by X(u, v) = (u, v, f(u)(c1v + c2)), where f is

solution of f ′′ = λ(uf ′ − f), , c1, c2 ∈ R

(2) M is flat and is given by

X(u, v) = (u, v,
√
c1a2 − v2, where c1 ∈ R with c1a

2 > v2

(3) M is minimal and is given by

X(u, v) =

 (u, v, c1 cos(
√
λ3u) + c2 sin(

√
λ3u)), λ3 > 0;

(u, v, c1e
√
λ3ui + c2e

−
√
λ3ui), λ3 < 0.

,

where ci ∈ R(i = 1, 2, 3, 4)
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(4) M is minimal and is given by X(u, v) = (u, v, (c1
∫
e
λ1u

2

2 du + c2)(c3v + c4)),

where ci ∈ R (i = 1, 2, 3, 4).

Figure 4. Theorem(4.3)-(2) surface

Figure

5. Theorem(4.3-

(3)first surface

Figure 6. Theorem(4.3)-(3)second surface
Figure

7. Theorem(4.3)-

(4) surface
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case 6 : Let λ1 = λ3 = 0, λ2 6= 0. Then, system reduces to

f ′g′ = 0,(4.22)

f 2g′g′′ = λ2vW
2 and(4.23)

(4.24) W (ff ′2gg′2 + f ′′g + f 2f ′′gg′2) + fg′′ = 0.

Now, from (4.22) we may have f ′ = 0 or g′ = 0. Now, taking both of the possibilities

into account (4.23) and (4.24), we obtain λ2 = 0, which again contradict our assump-

tion.

Thus, we conclude

Proposition 4.1. There is no non-harmonic factorable surfaces satisfying ∆Xi =

λiXi in G3 of the following kinds:

(1) X(u, v) = (u, v, c1g(v))

(2) X(u, v) = (u, v, c1f(u))

(3) X(u, v) = (u, v, c1), where c1 ∈ R.

5. Factorable surfaces in G3 with finite type Gauss map

This section is devoted to classify the factorable surfaces given by (3.1) in G3 that

satisfy

(5.1) ∆U = λiU, λi ∈ R, (i = 1, 2, 3).

Now, by using first fundamental form, one can show that

(5.2)

∆U =
−1

W 7/2


0

−f ′′g′W 2 + (2ff ′2g′3 − fg′′′)W + 4f 3g′g′′2

(−f ′2g′2 − ff ′′g′2)W 2 + (2f 2f ′2g′4 − f 2g′′2 − f 2g′g′′′)W + 4f 4g′2g′′2


which further on combining with (5.1), give rise the following equations
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−f ′′g′W 2 + (2ff ′2g′3 − fg′′′)W + 4f 3g′g′′2 = λ2fg
′W 3

and

(−f ′2g′2 − ff ′′g′2)W 2 + (2f 2f ′2g′4 − f 2g′′2 − f 2g′g′′′)W + 4f 4g′2g′′2 = −λ3W 3.

On account of above equations we are left with this equation

(5.3) f 2g′2λ2 + λ3 =
f ′2g′2W + f 2g′′2

W 2
.

Now, we first characterize the surface by taking the case of harmonic Gauss map of

surface (that is, λi = 0, (i = 1, 2, 3)).

case 1 : Assume that λ2 = λ3 = 0. Then (5.3) reduces to

f ′2g′2 = −f2g′′2
W

,

or, equivalent to

f ′2g′2 = −4H2W 2.

Then, the Mean curvature vanishes (i.e. g′′ = 0) if and only if either f ′ = 0 or g′ = 0

or f ′ = 0 and g′ = 0.

Here, we conclude the following theorem

Theorem 5.1. Let the factorable surface M has harmonic Gauss map with parabolic

points in G3 given by (3.1). Then the surface is minimal if and only if it is isometric

to one of the following types of surface

(1) X(u, v) = (u, v, c1v + c2)

(2) X(u, v) = (u, v, c1f(u))

(3) X(u, v) = (u, v, c1), where ci ∈ R (i = 1, 2).

Next, we consider the cases of non-harmonic Gauss map of the surface :

case 2 : We assume λ2 = 0, λ3 6= 0. Then, (5.3) reduces to

(5.4) λ3 =
f ′2g′2W + f 2g′′2

W 2
.
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subcase 2.1 : Assume g is linear function of v (that is, g = c1v+c2) with g′ = c1 6= 0

that is, M has zero Mean curvature. Then, (5.4) becomes

λ3 = f ′2g′2

W
,

or

λ3
g′2

= f ′2 − λ3f 2 = b(say).

Thus, we get f ′2−λ3f 2 = b, b ∈ R−{0} (we are taking here b = 0 otherwise, it gives

λ3 = 0, a contradiction) and the third eigenvalue is given by λ3 = bc21 ∈ R− {0}.

subcase 2.2 : Assume f ′ = 0 or f = c1 ∈ R − {0} (that is, M is flat) then we get

W 2λ3 = c21g
′′2.

case 3 : If we assume λ2 6= 0, λ3 = 0. Then, (5.3) reduces to f 2g′2λ2 = f ′2g′2W+f2g′′2

W 2 .

subcase 3.1 : Assume f ′ = 0 which implies M is flat then from above equation we

get g′′2 − λ2g′2W 2 = 0.

subcase 3.2 : Assume g is linear function of v with g′ 6= 0. Thus, M is minimal as its

Mean curvature vanishes. Now, using our assumption g′′ = 0 we get f ′2−λ2f 2W = 0.

Now, we have the theorem

Theorem 5.2. Let M be factorable surface in Galilean 3- space given by (3.1) satis-

fying ∆U = λiU. Then the following holds true

(1) M is minimal iff it is isometric to X(u, v) = (u, v, f(u)(c1v+ c2)), where either

f is solution of f ′2 − λ3f 2 = b with λ3 = bc21 ∈ R − {0} and λ2 = 0 or f is solution

of f ′2 − λ2f 2W = 0 with λ2 6= 0 and λ3 = 0.

(2)M is flat iff it is congruent to X(u, v) = (u, v, c1f(u)), where either g is solution

of c1g
′′2 − λ3W 2 = 0 with λ2 = 0 and λ3 6= 0 or g is solution of g′′2 − λ2g′2W 2 =

0 with λ2 6= 0 and λ3 = 0 where c1 ∈ R− {0}, c2 ∈ R.
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6. Factorable surfaces in G3 with pointwise 1-type Gauss map of

first kind

Let M be a factorable surface given by (3.1) in G3 that satisfy

(6.1) ∆U = φU,

where φ denotes the non-zero smooth function.

Remark : For φ to be a zero function, we get a condition of harmonic Gauss map

which we had already discussed in previous section.

Thus, by direct computation of above equation using (5.2) we get

−f ′′g′W 2 + (2ff ′2g′3 − fg′′′)W + 4f 3g′g′′2 = φfg′W 3

and

(−f ′2g′2 − ff ′′g′2)W 2 + (2f 2f ′2g′4 − f 2g′′2 − f 2g′g′′′)W + 4f 4g′2g′′2 = φW 3.

On combining above two equations, we are left with

f ′2g′2W + f 2g′′2 = φW 3,

which is equivalent to

(6.2) φ =
f ′2g′2

W 2
+ 4H2

and can also be expressed as

φ = 4H2 + 2Hf ′′g√
W
−K.

Now, we may have the possibilities on functions f and g :

case 1 : If f ′ = 0 or f = c1 ∈ R − {0}, then M has zero Gaussian curvature (i.e.

M is flat). Using f ′ = 0 in (6.2), we get φ is function of v and is given by φ = 4H2.

Now, if we assume φ = 4H2 then (6.2) arises f ′g′ = 0. So, either f ′ = 0 or g′ = 0.

But g′ = 0 vanishes φ, which is a contradiction. Thus, we have f ′ = 0.

case 2 : If g′′ = 0 with g′ 6= 0 then H = 0 (i.e. M is minimal). In fact, by the virtue

of g′′ = 0 (6.2) gives φ is function of u and is given by φ = f ′2g′2

W 2 . Conversely, if φ
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= f ′2g′2

W 2 then (6.2) reduces to H = 0 (or M is minimal) or g′′ = 0.

Thus, we can state the following proposition and theorem.

Proposition 6.1. If a factorable surface M in galilean 3-space G3 given by (3.1)

satisfies ∆U = φ U, where φ is non-zero smooth function. Then

φ = 4H2 + 2Hf ′′g√
W
−K,

where H and K are the Mean and the Gaussian curvature of M respectively.

Theorem 6.1. Let M be a factorable surface in galilean 3-space G3 given by (3.1)

satisfying ∆U = φU, where φ is non-zero smooth function. Then the following holds

(1) φ is only dependent on v and is given by φ = 4H2 iff M is flat surface parame-

terized by X(u, v) = (u, v, c1g(v))

(2) φ is only dependent on u and is given by φ =
c21f

′2

(1+c21f
2)3

iff M is minimal surface

parameterized by X(u, v) = (u, v, f(u)(c1v + c2)), where c1 ∈ R− {0} and c2 ∈ R.
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