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ANALYSIS OF BIVARIATE SURVIVAL DATA USING SHARED

ADDITIVE HAZARD GAMMA FRAILTY MODELS

ARVIND PANDEY (1), LALPAWIMAWHA (2), PRAVEEN KUMAR MISRA (3) AND R.

LALAWMPUII (4)

Abstract. In this article, we propose additive hazard shared gamma frailty model

with generalized Pareto, generalized Rayleigh and xgamma distributions as baseline

distribution to analyze the bivariate survival data set of McGilchrist and Aisbett

[16]. Assumption of the model is that frailty acts additively to hazard rate. The

Bayesian approach of Markov Chain Monte Carlo technique was employed to es-

timate the parameters involved in the models. We present a simulation study to

compare the true values of the parameters with the estimated values. Additive

hazard shared gamma frailty model with generalized Pareto baseline distribution

fits better than other propose models for kidney infection data.

1. Introduction

The bivariate survival data are said to be related if the person encounters two

events or repeated events. This relationship may be due to a few other unnoticed

covariates, which surreptitiously plays critical parts in investigation of survival data,

which is shared by an individuals in a cluster of groups. A few illustration of bivariate

survival data are - the survival times of pair of testis in the study of testicular cancer,

which may be due to undescended testis, family history of the illness or past history of

2000 Mathematics Subject Classification. 62F15,62N01,62P10.

Key words and phrases. Additive hazard, Bayesian method, gamma frailty, generalized Pareto

distribution, generalized Rayleigh distribution, xgamma distribution.

Copyright c© Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

Received: April 13, 2018 Accepted: Aug. 1, 2018 .

329



330 ARVIND PANDEY , LALPAWIMAWHA , PRAVEEN KUMAR MISRA AND R. LALAWMPUII

the testicular cancer, the breakdown times of two motors of aeroplane, damages times

of a pair of shoe soles, repeats times of specific cancer and so on. To examine such

information, it is fundamental to present other random component, which account

for within-subject reliance, inconspicuous random variable is term as frailty. Clayton

[3] suggested random effect model to fit such sort of issue emerge in genuine life

circumstance. The term “frailty” was first given by Vaupel et al. [21] in the study of

the survival analysis.

The most used frailty distribution is gamma distribution. Gamma and inverse

Gaussian distribution are more attractive because of the unconditional survival and

hazard function can be expressed as simple closed form. Gamma distributions have

been utilized for numerous a long times to create blends in exponential and Poisson

models. From a computational point of view, they fit exceptionally well to survival

models, since it is simple to determine the equations for any number of events. This is

due to the effortlessness of the derivatives of the Laplace transform. This is moreover

the reason why this distribution has been connected in most of the applications

published until presently. The shared gamma frailty models were recommended by

Clayton [3] for the examination of the relationship between clustered survival times in

hereditary the study of disease transmission. An advantage is that without covariates

its scientific properties are helpful for estimation [18]. Be that as it may, when

adjusting for environmental risk components the examination of the clustering is

more troublesome [19]. The gamma model has the advantage that choice is as it were

alter of the scale of the frailty distribution.

The frailty approach of modeling has gained more attention from the past few

years due to the unique features of the frailty parameters [15]. Keyfitz and Littman

[13] showed that neglecting individual heterogeneity results in the wrong conclusions.

Generally, a multiplicative effect of frailty on the baseline hazard function is assessed

in the shared frailty models [10]. But sometimes the random effect acts additively
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on the baseline hazard function has more reality in model fitting. Aalen [1,2] first

suggested additive hazard model by adding covariate term in the baseline hazard

functions for a lifetime of an individual t and is given as

m(t/X) = mo(t) + X ′β(1.1)

Different way of expressing additive hazard model is given by

m(t/X) = mo(t) + eX′β(1.2)

where mo(t) is a baseline hazard function at time t > 0, X is the row vector of

covariates, and β is column vector of regression coefficients. Assuming that the

frailties are acting additively on the baseline hazard for a given frailty variable W=w

at time t > 0 is

m(t/X) = mo(t) + eX′β+W ′βw(1.3)

which can express as

m(t/X) = mo(t) + veX′β, v > 0,−∞ < v < ∞(1.4)

where v = eW ′βw . Then the cumulative hazard function is

M(t/X) = Mo(t) + vteX′β(1.5)

where H0(t) is the cumulative baseline hazard function at time t > 0. The conditional

survival function for given frailty at time t > 0 is

S(t/v) = e−[M0(t)+vteX′β ](1.6)

The marginal survival function is obtained by integrating out V having the probability

density f(v) and is given by

S(t) = S0(t)Lz[te
X′β](1.7)
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where Lv(.) is the Laplace transformation of the distribution of V and S0(t) is the

baseline survival function. Once we get the survival function at time t > 0, of life

time random variable for an individual, we can obtain probability structure and make

their inferences based on it.

In this manuscript, we consider right censored data with gamma distribution as the

frailty distribution and we propose different baseline distributions such as generalized

Pareto distribution, generalized Rayleigh and xgamma distributions as the baseline

distribution to explore the salient features of the shared gamma frailty models based

on additive hazard. Here the dependence between survival times is due to gamma

distribution. When frailty distribution has zero variance, it is said to have degenerate

distribution and when the distribution of frailty variable is not degenerate, positive

dependence occurred. The heterogeneity of the population is determined by the value

of the estimated frailty distribution parameter. The three distributions are so chosen

as baseline distribution to compare due to in the univariate case, the p-values of

KS-test are very large to say that the data are from generalized Pareto, generalized

Rayleigh and xgamma distributions, which is also applicable in the bivariate case and

all have increasing hazard rate, which is common in real life distribution.

The two common methods for estimation of parameters are maximum likelihood

estimation and Bayesian method of estimation. Bayesian method have advantages in

computational and analytical point of view. Thus, we employed Bayesian approach

of Markov Chain Monte Carlo technique to estimate the parameters involved in the

models. MCMC method can derive different features of the posterior distributions

by combining information obtained from prior distribution and likelihood function.

Model choice criteria can also be formulated according to posterior predictive loss [6].

Further a simulation study also presented to check the performance of the models.

All the estimation procedure and models are illustrated with bivariate survival data

of McGilchist and Aisbett [16] related to kidney infection data. Comparison of the
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proposed models was done by the use of Bayesian comparison technique such as AIC,

DIC, BIC and Bayes factor. The least values of AIC, BIC, DIC indicates better the

model for consider data.

The remaining sections are as follows - in section 2, the introduction of general

shared frailty model was provided and in section 3, an gamma shared frailty model

based on additive hazard was also discussed. In section 4, we introduce baseline

distributions. Different proposed models are given in section 5. An outline of model

fitting, using Bayesian approach is presented in section 6. Section 7 is devoted to

simulation study and analysis of kidney infection data respectively. Finally, section

8 consists of the discussion of the results.

2. General Shared Frailty Model

In the study it is assumed that there are n individuals, let (t1j , t2j) be the first

and second failure times for a person, Xkj (k = 1,2,. . . ,a) be the found covariate for

the jth person. Here it is accepted that the two failure times share the same sort of

covariates. Let Vj be the shared frailty for the jth person, accepting that the frailties

are acting additively on the baseline hazard function. The two survival times of a

person are conditionally independent for given shared frailty. Under these conditions,

the conditional hazard function and conditional survival function for the j th person

at ith (i=1,2) survival times tij for given frailty gets to be

m(tij/vj, X) = m0(tij) + vjηj(2.1)

S(tij/vj, X) = e−[M0(tij)+vj tijηj ](2.2)

where m0(tij) and M0(tij) are respectively hazard function and cumulative hazard

function at time tij > 0, ηj = eXjβ and β is a vector of order a, of regression

coefficients.
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Under the assumption of independence, the bivariate survival function for the given

frailty Vj = vj at time t1j > 0 and t2j > 0 is

S(t1j, t2j/vj, Xj) = e−[(M01(t1j )+M02(t2j ))+vj(t1j+t2j)ηj ](2.3)

The unconditional survival function is obtained by integrating the conditional survival

function with respect to frailty variable Vj having the probability density function

f(vj), for the jth individual

S(t1j , t2j | Xj) =

∫

Vj

e−[(M01(t1j )+M02(t2j )+vj (t1j+t2j )ηj)]fv(vj)dvj

= e−(M01(t1j )+M02(t2j ))LVj
[(t1j + t2j)ηj](2.4)

whereLVj
(.) is the Laplace transform of the frailty variable of Vj for jth individual.

Here onwards S(t1j , t2j/Xj) expressed as S(t1j , t2j).

3. Shared Gamma Frailty

A continuous random variable V is said to follow gamma distribution with

parameters ζ and ξ, if its probability density function is

f(v) =



















1
ξ

1
ξ

Γ1
ξ

v
1
ξ
−1

e
−z
ξ ; v > 0, ξ > 0

0 ; otherwise,

(3.1)

For the identifiability of the distribution, the expected value of the distribution is

assumed to be one and having finite variance. By using Laplace transformation, the

unconditional bivariate survival function for the j th individual becomes

S (t1j , t2j) = e−(M01(t1j )+M02(t2j ))[1 + ηjξ(t1j + t2j)]
−1/ξ(3.2)
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where M01(t1j) and M02(t2j) are the cumulative baseline hazard functions of the

lifetime T1j and T2j .

4. Baseline distributions

Here, generalized Pareto distribution is considered as the first baseline distribu-

tion; Haktanir [9] utilized Pareto distribution to analyse the yearly optimum series

for the unregulated stream in Anatolia. Davison and Smith [5] mentioned that the

generalized Pareto might frame the premise of a wide modeling approach to high-level

exceedances. Davison [4] modeled defilement due to the long-range are transport of

radionuclides. Van Monfort and Otten [20] connected the generalized Pareto distri-

bution to show the crests over an edge stream flow and downpour sequence. Smith

[23] connected it to analyse inundation frequencies and wave statures.

If a continuous random variable T follows the three-parameter generalized Pareto

distribution, then the cumulative distribution function, hazard function, and cumu-

lative hazard function are, respectively,

S(t) = e−γt
(

1 + t
λ

)

−α
, t > 0, λ > 0, γ > 0, α ≥ −λγ(4.1)

m(t) =
f(t)

S(t)
= γ + α

t+λ
, t > 0

M(t) = −lnS(t) = γt + αln
(

1 + t
λ

)

, t > 0(4.2)

Where λ, α and γ are the parameters of the generalized Pareto distribution. The

failure rate of the generalized Pareto distribution is increasing when α > 0, decreasing

if α < 0 and constant for α = 0.

A generalized Rayleigh distribution is considered as the second baseline distribu-

tion. Surles and Padgett [24] presented two-parameter Burr type X distribution and

called it as generalized Rayleigh distribution. It is moreover an uncommon case of

the generalized Weibull distribution, initially proposed by Mudholkar and Srivastava

[17]. Kundu and Raqab [14] mentioned that the probability density function of the
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generalized Pareto distribution is increasing if the shape ≤ 0.5 and decreasing if the

shape parameter > 0.5. The two-parameter generalized Rayleigh distribution can be

utilized viably in modeling data and moreover in modeling general lifetime data.

A continuous random variable T is said to follow the generalized Rayleigh distri-

bution if its survival function is

S(t) = 1 −
(

1 − e−(λt)2
)α

; t > 0, α > 0, λ > 0(4.3)

And the hazard function and cumulative hazard function are respectively

m(t) =
2αλ2te

−(λt)2(1 − e−(λt)2)α−1

1 − (1 − e−(λ)2)α
; t > 0, α > 0, λ > 0

M(t) = −lnS(t) = −log
[

1 − (1 − e−(λt)2)α
]

(4.4)

where α and λ are the shape and scale parameters of the distribution. The hazard

function is bathtub shape if the parameter α ≤ 1/2 and increasing if the parameter

α > 1/2

The third baseline distribution considered here is xgamma distribution. Xgamma

distribution is determined from the blend of exponential and gamma distributions.

It is moreover utilized to analyse the alleviation times to understand the need for

pain-relieving treatment.

A continuous random variable T is said to follow the xgamma distribution if its

survival function is

S(t) =

(

1 + α + αt + α2t2

2

)

1 + α
e−αt; t > 0; α > 0(4.5)
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And the hazard and cumulative hazard functions are respectively

m(t) =
α2
(

1 + αt2

2

)

(

1 + α + αt + α2t2

2

)

M(t) = −lnS(t) = αt − log

(

1 + α + αt + α2t2

2

1 + α

)

(4.6)

The hazard function of the xgamma distribution is increasing in t and α with α2

1+α
<

m(t) < α.

5. Proposed Models

The unconditional survival function is obtained by replacing the cumulative

hazard function of generalized Pareto distribution, generalized Rayleigh distribution

and xgamma distribution in equation (3.2). Then,

S(t1j , t2j) = exp[−{(γ1t1j + α1ln(1 +
t1j

λ1

) + γ2t2j + α2ln(1 +
t2j

λ2

))}]

[1 + ξηj(t1j + t1j)]
−1/ξ(5.1)

S(t1j , t2j) = exp[−{−log(1 − (1 − e−(λ1t1j)2)α1) − log(1 − (1 − e−(λ2t2j)2)α2)}]

[1 + ξηj(t1j + t1j)]
−1/ξ(5.2)

S(t1j , t2j) = exp[−{α1t1j − log(
1+α1+α1t1j+

α2

1
t2
1j

2
1+α1

) + α2t2j

−log(
1 + α2 + α2t2j +

α2

2
t2j

2

1 + α2
)}][1 + ξηj(t1j + t1j)]

−1/ξ(5.3)

The equations (5.1), (5.2), and (5.3) are additive hazard shared gamma frailty models

with generalized Pareto distribution, generalized Rayleigh distribution, and xgamma

distribution as the baseline distributions and called as model-I, model-II, and model-

III respectively.
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6. Bayesian Approach to parameters estimation and Model Fitting

The likelihood function obtained by blending the failure times of the j th in-

dividuals (j = 1,2,3,. . . , n) and censoring times by assuming independence between

censoring scheme and individuals lifetimes is given by

L(Ψ, β, ξ) =

n1
∏

j=1

f1(t1j , t2j)

n2
∏

j=1

f2(t1j , d2j)

n3
∏

j=1

f3(d1j , t2j)

n4
∏

j=1

f4(d1j , d2j)(6.1)

where ξ, Ψ and β are vectors of baseline parameters, regression coefficient and frailty

distribution parameter. The likelihood function for without frailty is given as

L(Ψ, β) =

n1
∏

j=1

f1(t1j , t2j)

n2
∏

j=1

f2(t1j , d2j)

n3
∏

j=1

f3(d1j, t2j)

n4
∏

j=1

f4(d1j, d2j)(6.2)

where n1, n2, n3 and n4 are the random number of observations observed to lie

in the range (t1j , t2j) lie in the ranges t1j < d1j , t2j < d2j ; t1j < d1j, t2j > d2j;

t1j > d1j , t2j < d2j and t1j > d1j, t2j > d2j respectively and the contribution of the

jth individual in the likelihood function as

f1(t1j , t2j) =
∂2S(t1j , t2j)

∂t1j∂t2j

f2(t1j , d2j) = −
∂S(t1j , d2j)

∂t1j

f3(d1j , t2j) = −
∂S(d1j , t2j)

∂t2j

f4(d1j, d2j) = S(d1j, d2j)(6.3)

Substituting the unconditional survival function in equation (6.3) for different pro-

posed baseline distributions and differentiating, we get the likelihood function given

in equation (6.1). Similarly, we can obtain the likelihood function for without frailty.

The expression of the likelihood function in equation (6.1) is not easy to solve

by using Newton Raphson method. MLEs fail to converge as it involves the large

dimensional optimization problem. Therefore, Bayesian approach was utilized to



ANALYSIS OF BIVARIATE SURVIVAL DATA USING SHARED ... 339

estimate the parameters involved in the models, which does not endure any such

kind of troubles.

The joint posterior density of the parameters given failure times is given as

π(α1, λ1, γ1, α2, λ2, γ2, ξ, β) ∝ L(α1, λ1, γ1, α2, λ2, γ2, ξ, β)

×g1(α1)g2(λ1)g3(γ1)g4(α2)g5(λ2)g6(γ2)g7(ξ)

5
∏

i=1

pi(βi
)

where gi(.) (i = 1, 2, · · · , 7) indicates the prior density function with known hyper

parameters of corresponding arguments for baseline parameters and frailty variance;

pi(.) is prior density function for regression coefficient βi; β
i

represents a vector of

regression coefficients except βi, i = 1, 2, . . . , a and likelihood function L(.) is given by

equation (6.1) or (6.2). Here it is assumed that all the parameters are independently

distributed.

Prior distributions are used as follows - gamma distribution with mean one and

large variance, say Γ(Ψ, Ψ) is used as prior distribution for frailty parameter with

a small choice of Ψ, where Ψ is the parameter of the gamma distribution. Normal

distribution with mean zero and large variance is used as prior for the regression coef-

ficient, say ϕ2. The same type of prior distributions considered in Ibrahim et al. [11]

and Sahu et al. [22] and non-informative prior assumed as the baseline parameters

since we do not have any information about the baseline parameters. The two non-

informative prior distributions considered are Γ(a1, b1) and U(a2, b2). All the hyper-

parameters Ψ, ϕ, a1, a2, b1 and b2 are assumed to be known. Here Γ(a1, b1) represent

gamma distribution with shape parameter a1 and scale parameter b1 and U(a2, b2)

is the uniform distribution over the interval a2 to b2. We set hyper-parameters as

Ψ = 0.0001, ϕ2 = 1, 000, a1 = 1, b1 = 0.0001, a2 = 0, and b2 = 100. To estimate the

parameters in the models fitted with the above prior density function and likelihood
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equation, Metropolis Hasting Algorithm and Gibbs Sampler was utilized. The con-

vergence of the Markov chain to a stationary distribution is also observed by Geweke

test and Gelman-Rubin Statistics as suggested by Geweke [8] and Gelman and Rubin

[7]. To check the behavior of the chain, to decide burn-in period and autocorrela-

tion lag, we used trace plots, coupling from the past plots and sample autocorrelation

plots respectively. Trace plots describe whether or not the chain is compounding well.

Nevertheless, if the chain does not converge to a stationary distribution there would

be a resultant longer burn-in period. Burn-in period removes the beginning portion

of the Markov chain sample to minimize the effect of the initial values of the poste-

rior illation and chain converges to distinctive stationary distribution. Running mean

plots were also used to observe the convergence of the parameter values to a posterior

mean of the parameters. Bayesian Information Criteria (BIC), Akaike Information

Criteria (AIC), and Deviance Information Criteria (DIC) are utilized to compare the

proposed models. Bayes factor also employed for comparison of Model Mr against

Model Mv. Markov Chain Monte Carlo approach is considered to compute Bayes

factor as given by Kass and Raftery [12].

7. Simulation Study and Data Analysis

To evaluate the performance of the Bayesian estimation procedure we carried out

a simulation study, considering it as one covariate X1 for the simulation purpose. X1

was assumed to take normal distribution. As the Bayesian strategies are time ex-

pending, fifty sets of lifetimes were generated utilizing inverse transform procedure.

Both the chains were iterated for 100000 times. Trace plots exhibited zigzag design

indicating that parameters are moving freely and fittingly. GelmanRubin scale re-

duction factor values are very close to one and Geweke test values are quite small

and corresponding p-values are large enough to say that the chain attains stationary

distribution. Further the convergence rate was not enormously diverse. There was no
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impact of prior distribution on posterior summaries because estimates of parameters

were about the same. For both the chains the results were to some degree compar-

ative so the analysis was displayed as one chain with Γ(a1, b1) as prior to baseline

distribution for all the models. From the above conditions, we can said that the mod-

els satisfy necessary conditions to apply the propose models in the data. Table 1,

2, and 3 present the posterior summaries of generalized Pareto, generalized Rayleigh

and xgamma distributions as baseline distribution. It provides estimates (posterior

means), standard error and upper and lower credible limits.

Parameter Estimate Standard Lower Upper Geweke p Gelman

( value) Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 5000; autocorrelation lag = 240

α1 (0.0020) 0.0020 0.0003 0.0014 0.0026 -0.0043 0.4982 1.0002

α2 (0.0019) 0.0020 0.0005 0.0010 0.0029 0.0173 0.5069 1.0025

λ1 (57.120) 57.118 0.5784 56.151 58.035 0.0035 0.5014 1.0095

λ2 (55.100) 55.084 0.5763 54.150 56.049 0.0029 0.5011 1.0004

γ1 (0.0059) 0.0060 0.0005 0.0050 0.0069 0.0064 0.5025 1.0019

γ2 (0.0070) 0.0070 0.0005 0.0060 0.0079 0.0147 0.5058 1.0015

ξ (2.6290) 2.6302 0.0059 2.6203 2.6394 0.0005 0.5002 2.6394

β (-0.0608) -0.0606 0.0007 -0.0619 -0.0595 0.0159 0.5063 1.0089

Table 1: Gamma frailty with generalized Pareto distribution as baseline (Simulation

for model-I)

Parameter Estimate Standard Lower Upper Geweke p Gelman

( value) Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 7900; autocorrelation lag = 163

α1 (6.2997) 6.2998 0.0324 6.2348 6.3631 -0.0045 0.4981 1.0001

α2 (1.0040) 1.0040 0.0522 0.9055 1.0922 -0.0037 0.4984 1.0017

λ1 (0.0031) 0.0031 0.0004 0.0022 0.0039 0.0013 0.5005 1.0003

λ2 (0.0028) 0.0028 0.0020 0.0037 0.0046 -0.0106 0.4957 1.0000
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ξ (1.9080) 1.9102 0.0044 1.9014 1.9189 -0.0062 0.4975 1.0001

β (-0.0516) -0.0516 0.0030 -0.0581 -0.0464 0.0033 0.5013 1.0014

Table 2: Gamma frailty with generalized Rayleigh distribution as baseline (Simulation

for model-II)

Parameter Estimate Standard Lower Upper Geweke p Gelman

( value) Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 8000; autocorrelation lag = 155

α1 (0.0102) 0.0102 0.0018 0.0066 0.0140 -0.0021 0.4991 0.9999

α2 (0.0110) 0.0109 0.0027 0.0063 0.0165 0.0007 0.5002 1.0000

ξ (2.9920) 2.9931 0.0516 2.8987 3.0820 -0.0045 0.4981 1.0000

β (-0.0730) -0.0735 0.0044 -0.0798 -0.0631 -0.0002 0.4998 1.0045

Table 3: Gamma frailty with xgamma distribution as baseline (Simulation for model-

III)

The applicability of the models was also checked by applying them to the kidney

infection data. The urinary organ infection knowledge has appeared in McGilchrist

and Aisbett [16]. It is associated with return time to infection during the course of

insertion of the tube for thirty-eight urinary organ patients due to mistreatment with

portable dialysis instrument. For every patient, initial and second return times (in

days) of infection attributable to infection from the time of insertion of the tube till it

is to be removed are recorded. The tube ought to be removed for reasons apart from

urinary organ infection, and this will be regarded as censoring. Therefore survival

times for a patient given in the study is also first or second infection time or censoring

time. The value zero is employed for censoring and one is employed for the incidence

of infection. Once the incidence or censoring of the primary infection occurred, decent

time (10 weeks interval) was allowed for the infection to be cured before the tube was

inserted for the second time. So, the primary and second return times will be thought

of as independent except the common frailty element. The information comprises 3
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risk variables - age, sex, and disease type- GN, AN, and PKD, where GN, AN, and

PKD are brief forms of Glomerulo Nephritis’s, Acute Nephritis’s, and Polycyatic

Kidney Disease. The infection times of every patient share an equivalent value of the

covariates. Let T1 and T2 be representing first and second recurrences of infection.

Five covariates age, sex, and presence or absence of disease type GN, AN and PKD

are portrayed by X1, X2, X3, X4, and X5.

Recurrence time

Distribution first second

Generalized Pareto 0.1398 0.1230

Generalized Rayleigh 0.9024 0.7912

Xgamma 0.2628 0.2221

Table 4: p-values of K-S Statistics for goodness of fit test for Kidney Infection data

set

First, we check the goodness of fit for the kidney infection data by considering

Kolmogorov Smirnov test. The p-values obtained for the first and second recurrences

are large enough to say that there is no reason to reject the hypothesis that the

first and second recurrence time to follow one of the distributions with the survival

function as given in equations (4.1), (4.3) and (4.5). The corresponding p-values are

given in Table 1. Trace plot (Figure 1(a)) shows zigzag design, it indicates that the

parameters are more move freely. Coupling from the past plot and running mean

plot also shows that the two chains are mixing well.

Parameter Estimate Standard Lower Upper Geweke p Gelman

Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 6800; autocorrelation lag = 270

α1 0.0020 0.0003 0.0013 0.0027 0.0126 0.5050 1.0001
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λ1 57.238 0.5871 56.220 58.148 0.0070 0.5028 0.9999

γ1 0.0060 0.0005 0.0050 0.0069 0.0010 0.5004 1.0032

α2 0.0020 0.0005 0.0010 0.0029 -0.0043 0.4982 1.0018

λ2 55.031 0.5832 54.075 56.000 -0.0019 0.4992 1.0045

γ2 0.0068 0.0005 0.0060 0.0078 0.0085 0.5034 1.0000

ξ 2.9686 0.0505 2.8808 3.0588 0.0014 0.5005 1.0022

β1 -0.1264 0.0198 -0.1673 -0.0891 0.0053 0.5021 0.9999

β2 -4.6359 0.5679 -5.4667 -3.3278 -0.0019 0.5021 1.0072

β3 3.3682 0.5222 2.5480 4.4146 -0.0037 0.4985 1.0021

β4 2.6786 0.5181 1.7705 3.6208 0.0032 0.5013 1.0009

β5 0.0021 0.0005 0.0013 0.0031 -0.0046 0.4981 1.0005

Table 5: Posterior results for the Kidney infection data set(model-I)

Parameter Estimate Standard Lower Upper Geweke p Gelman

Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 6100; autocorrelation lag = 345

α1 6.3201 0.0348 6.2402 6.3919 -0.0020 0.4991 1.0001

λ1 0.0032 0.0003 0.0024 0.0039 -0.0071 0.4971 1.0001

α2 0.9998 0.0556 0.9053 1.0935 0.0006 0.5002 1.0000

λ2 0.0029 0.0004 0.0020 0.0038 0.0009 0.5003 1.0000

ξ 1.8738 0.0517 1.7821 1.9624 0.0003 0.5001 1.0071

β1 -0.0228 0.0051 -0.0297 -0.0104 0.0029 0.5011 1.0038

β2 -4.1923 0.3997 -5.0179 -3.4107 -0.0005 0.5011 1.0009

β3 -0.0485 0.0061 -0.0592 -0.0368 0.0078 0.5031 1.0000
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β4 0.8769 0.0510 0.7877 0.9674 -0.0078 0.4968 0.9999

β5 -0.0492 0.0057 -0.0584 -0.0377 -0.0030 0.4987 1.0027

Table 6: Posterior results for the Kidney infection data set(model-II)

Parameter Estimate Standard Lower Upper Geweke p Gelman

Error Credible Credible values values & Rubin

Limit Limit values

burn in period = 8200; autocorrelation lag = 180

α1 0.0117 0.0019 0.0081 0.0153 -0.0163 0.4934 1.0001

α2 0.0127 0.0030 0.0075 0.0189 -0.0083 0.4966 1.0002

ξ 2.9690 0.0511 2.8774 3.0592 -0.0075 0.4970 1.0008

β1 -0.0317 0.0053 -0.0394 -0.0211 0.0034 0.5013 1.0000

β2 -5.0794 0.4604 -5.9323 -4.1939 0.0127 0.4940 1.0008

β3 -0.1037 0.0503 -0.1932 -0.0061 0.0019 0.5007 1.0041

β4 2.7863 0.0500 2.6961 2.8812 -0.0156 0.4937 0.4937

β5 0.4986 0.0495 0.4135 0.5886 -0.0120 0.4951 1.0014

Table 7: Posterior results for the Kidney infection data set(model-III)

The comparison between the proposed models is done by utilizing AIC, BIC, and

DIC. Though the values of model-I is less than other model-II and model-III, the dis-

tinction between AIC, BIC, and DIC values for the proposed models are exceptionally

little, so AIC, BIC, and DIC values are not commendable to take a choice between

the models. Presently we consider Bayes factor Drv for comparing the models r and

v. For two models of substantive interest, Mr and Mv, twice the log of the Bayes

factor is approximately equal to the difference in their BIC approximations.
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Model No. AIC BIC DIC log-likelihood

Model I 692.0086 711.6596 671.5694 -334.0043

Model II 705.3641 721.7400 689.7909 -342.6821

Model III 701.0399 714.1406 689.9846 -342.5200

Table 8: AIC, BIC and DIC values for six models

numerator model Brv = 2loge(Drv) range Evidence against

against denominator model model in denominator

MI against MII 16.7886 > 10 Very strong positive

MI against MIII 18.8892 > 10 Very strong positive

MII against MIII 2.1005 ≥ 2 and ≤ 6 Positive

Table 9: Bayes factor values and decision for test of significance for frailty fitted to

Kidney Infection Data Set
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Figure 1. Figure-Graph of (a)Trace plot, (b) Coupling from past plot,

(c) ACF plot and (d) Running mean plot for model-I
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Brv for the model-I against model-II is 16.7886; for model-I against model-III is

18.8892; for model-II against model-III is 2.1005. In comparison to model-I, model-II,

model-III, for model-I, B12, and B13 both are much higher than 10 which recommend

that model-II and model-III are not better than model-I which affirm our earlier

result given in Table 5. Hence from all the demonstrate comparison criteria we can

say model-I is better than model-II, model-III for modeling kidney infection data.

8. Discussion

In this study, we examine the additive hazard shared gamma frailty model

with three baseline distributions such as generalized Pareto, generalized Rayleigh

and xgamma distributions and without frailty models based on the same baseline

distributions.

The Metropolis-Hastings and Gibbs sampler was utilized to fit all the proposed

models. Kidney infection data was analyzed using the proposed models and the

finest model is suggested. We have utilized self-composed programs in R statistical

software have been utilized to perform the analysis.

All the demonstrated comparison criteria exhibits that additive hazard shared

gamma frailty demonstrated with generalized Pareto baseline is better for model-

ing of kidney infection data rather than generalized Rayleigh and xgamma baselines.

The estimates of frailty parameters are high in all three models which are 2.9686,

1.8738 and 2.9690 for generalized Pareto, generalized Rayleigh and xgamma baseline

models respectively. This demonstrates that there is a strong evidence of high degree

of heterogeneity in the population of patients. A few patients are anticipated to be

exceptionally inclined to infection compared to others with the same covariate values.

We can further establish that there is a strong positive relationship between the two

infection times for the same patient. Now, we are in a position to say that we have
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a new additive hazard shared gamma frailty model with generalized Pareto baseline

distribution for analysis of the kidney infection data.
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