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ASYMPTOTIC PROPERTIES OF THE CONDITIONAL HAZARD

FUNCTION AND ITS MAXIMUM ESTIMATION UNDER

RIGHT-CENSORING AND LEFT-TRUNCATION

AGBOKOU KOMI(1) AND GNEYOU KOSSI ESSONA(2)

Abstract. Gneyou[6, 7] considered the estimation of the maximum hazard rate

under random censorship with covariate random and established strong representa-

tion and strong uniform consistency with rate of the estimate. Then he studied the

asymptotic normality of his estimator. Agbokou et al.[2] generalize this work to the

case of right censored and left truncated data with covariate and established strong

representation and strong uniform consistency with rate of the estimate of the said

estimator and of a non-parametric estimator of its maximum value. The aim of

this paper is to study the asymptotic normality result of the two non-parametric

estimators.

1. Introduction

Survival analysis is a widely used method in a variety of disciplines to assess the

properties of durations between specific events. Important examples of durations are

unemployment spells, life times, and durations between subsequent transactions in

a financial security. A useful tool in survival analysis is the so-called hazard rate,

which reflects the instantaneous probability that a duration will end in the next

time instant. An increasing hazard rate indicates that the probability that a spell
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will be completed is increasing with the duration of the event; this is called positive

duration dependence. Similarly, a decreasing hazard rate reflects negative duration

dependence. Parametric, semi-parametric, and non-parametric methods have been

proposed to estimate hazard rates. Parametric methods impose an explicit para-

metric structure on the hazard rate, such as an exponential, Weibull, or lognormal

distribution and have different degrees of flexibility with respect to duration depen-

dence. For instance, the exponential distribution has a constant hazard rate, the

Weibull hazard is either monotonically increasing or decreasing, and the lognormal

hazard rate is non-monotonic. All parametric and semi-parametric estimation tech-

niques impose certain restrictions on the functional form of the hazard rate, which are

often too restrictive. Non-parametric methods are more flexible and allow for hazard

rate estimation without strong parametric assumptions. Surveys of non-parametric

kernel rate estimation are provided by Singpurwalla and Wong[11], as well as Hassani

and al.[8].

In practice, the hazard rate will often depend on certain covariates. For instance,

the survival time of a patient will be affected by characteristics such as age and

gender. A frequently used semi-parametric method to estimate a conditional hazard

rate is Coxs proportional hazards model. This model assumes that the conditional

hazard rate is a multiplicative function of time (the so-called baseline hazard) and a

vector of covariates. An attractive feature of this method is that can be estimated by

means of Coxs partial likelihood method without specification of the baseline hazard.

However, this semi-parametric method imposes proportionality on the hazard rate.

Unfortunately, in many cases the proportional hazards model is too restrictive. Often

other semi-parametric models such as the accelerated lifetime model are not flexible

enough either. When parametric and semi-parametric models fail, non-parametric

hazard rate models are more appropriate.
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In this paper we focus on the investigation of the maximum hazard rate with

covariate. More precisely, we consider a sample (Ti)i=1,··· ,n of non-negative variables,

and a sample (Ci)i=1,··· ,n of non-negative censoring times. Then we observe a sample

(Yi, δi)i=1,··· ,n with: Yi = min(Ti, Ci), δi = 1{Ti6Ci}, where 1A denotes the indicator

function of the event A. So δi = 1 indicates that the ith subject’s observed time is

not censored.

The hazard conditional rate λ(t|x) of T given X = x is defined by

λ(t|x) = lim
δt→0

P[T 6 t + δt|T > t, X = x]

δt

=
f(t|x)

1 − F (t|x)
, F (t|x) < 1, ∀ (t, x),

where f(t|x) and F (t|x) = P[T 6 t|X = x] denote the density and the unknown

continuous distribution function of T . Denote by σ the time in an interval [ax, bx] ∈
R+ corresponding to the maximum of the conditional hazard rate function, that is,

(1.1) σ(x) = Arg maxt∈[ax,bx]λ(t|x).

We consider lifetime data with covariates which are subject to both left truncation

and right censorship. In this context, it is interesting to study the conditional hazard

function of the lifetime and its corresponding maximum value. Many biomedical

studies are interested in predicting the survival time of a patient for a given vector of

covariates of this individual (age, sex, cholesterol, etc.). Frequently, in works where

the survival time is the variable of interest, two different problem appear: the first

one, when a subject is not included in the study because its lifetime origin precedes

the starting time of the study dying before this moment (for instance a short period of

illness), these subjects are referred to as left truncated (LT); on the other hand, when

a patient is into the study but its lifetime may not be completely observed due to

different causes (death for a reason unrelated to the study or change of address), these

subjects are called right censored (RC). More specifically, let (Y, T, C) be a random
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vector, where Y is the lifetime, T is the random left truncation time and C denotes

the random right censoring time. In addition Y is assumed to be independent of

(T, C). In a random LTRC (left truncation and right censorship) model one observes

(Z, T, δ) if Z > T , where Z = min(Y, C) and δ = 1{Y 6C}. When Z < T nothing is

observed. Take α = P[T 6 Z], then necessarily, we assume α > 0. Finally, we work

with non-negative variables as is usual in survival analysis.

Non-parametric estimation of the hazard rate function was first introduce in the

statistical literature by Watson and Leadbetter[14] and Watson[15]. The topic was

developed by other authors among Singpurwalla and Wong[11], Tanner and Wong[12].

The conditional case was considered later by Van Keilegom and Veraverbeke[13] and

by Ferraty et al.[5].

Concerning the maximum hazard rate estimation, Quintela-del-R̀ıo[10] consid-

ered a non-parametric estimator under dependence conditions in uncensored case.

Gneyou[7] and Agbokou and al.[1] considered a kernel-type estimator in the model of

right censored data with covariate and establish strong uniform consistency results

and Gneyou[6] established a basic almost sure asymptotic representation for the max-

imum value of the hazard rate function estimator which leaded to some main results

such as weak convergence and asymptotic normality.

The aim of this paper is to address the asymptotic normality results of the non-

parametric estimator of Agbokou et al.[2] as in Gneyou[6] in the case of right-censoring

and left truncation data. The paper is organized as follows. In the next section we

recall the definitions of the non-parametric estimator of the conditional hazard rate

function λ̂n and the corresponding estimator of its maximum value σ̂n and we state

the assumptions under which the results will be derived. Section 3 describes the main

results and detailed proofs are given in Section 4.
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2. Notations, definitions and assumptions

Let (X; Y ; T ; C) be a random vector, where Y is the lifetime, T is the random left

truncation time, C denotes the random right censoring time and X is a covariate

related with Y , Z = min {Y ; C} and δ = 1{Y 6C}. It is assumed that Y and (T, C)

are conditionally independent given X = x and α(x) = P (T 6 Z|X = x) > 0. In

this model, one observes (X; Z; T ; δ) if Z > T . When Z < T nothing is observed.

Let (Xi; Zi; Ti; δi), i = 1; · · · ; n, be an i.i.d. random sample from (X; Z; T ; δ)

which one observes (then Ti 6 Zi, for all i). F (t|x) = P(Y 6 t|X = x) denotes the

conditional distribution function of Y given X = x.

Let us introduce some notations.

2.1. Notations.

(a) M(x) = P (X 6 x), represents the distribution function of the covariate X.

(b) L(t|x) = P (T 6 t|X = x), is the conditional distribution function of T given

X = x.

(c) H(t|x) = P (Z 6 t|X = x), is the conditional distribution function of Z given

X = x.

(d) H1(t|x) = P (Z 6 t, δ = 1|X = x), is the conditional sub-distribution function

of the uncensored observation (when Z = Y and δ = 1) of Z given X = x.

(e) C(t|x) = P (T 6 t 6 Z|X = x).

(f) The conditional cumulative hazard function of Y given X = x, is defined by:

(2.1) Λ(t|x) =

∫ t

−∞

dF (s|x)

1 − F (s|x)
.

and notice that Λ(t|x) uniquely determines the unknown conditional distri-

bution F (t|x).

(g) Recall that F (t|x) = P (Y 6 t|X = x), is the conditional distribution function

of Y given X = x, and
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(h) α(x) = P (T 6 Z|X = x), is the conditional probability of absence of trunca-

tion given X = x.

Moreover, for any positive random variable η with distribution function W (t) =

P (η 6 t), we denote the left and right support endpoints by aW = inf{t : W (t) > 0}
and bW = inf{t : W (t) = 1}, respectively. Specifically, we will use the notation:

aL(.|x), aH(.|x), bL(.|x) and bH(.|x) for the support endpoints of functions L(t|x) and

H(t|x), considering L and H as functions of the variable t for a fixed x value. Finally,

we define W #(t) = P (η 6 t|T 6 Z). So, we set:

(i) M#(x) = P (X 6 x|T 6 Z)

(j) H
#
1 (t|x) = P (Z 6 t, δ = 1|X = x, T 6 Z).

2.2. Definitions. The conditional cumulative hazard function of Y given X = x is

denoted by

(2.2) Λ(t|x) =

∫ t

0

λ(s|x)ds.

Define

H
#
1 (t|x) = P(Z 6 t, δ = 1 |X = x, T 6 Z),

the conditional sub-distribution function of the uncensored observation (Z, δ = 1).

and

C(t|x) = P(T 6 t 6 Z|X = x, T 6 Z).

The that T; Y and C are independent conditionally on X, Λ(t|x) can be written in

the following form

Λ(t|x) =

∫ t

−∞

dH
#
1 (s|x)

C(s|x)
(2.3)

Let (Zi, Ti, Xi, δi)16i6n be a sample of n i.i.d. random variables, K and N be the

kernels on R, (hn) and (an), (n ∈ N) be two sequences of positive non increasing real
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numbers which will be connected with the smoothing parameters of the estimators.

Set for all x ∈ R, h > 0 and a > 0, Kh(x) =
1

h
K

(x

h

)

, and Na(x) =
1

a
N

(x

a

)

. By the

relation (2.3), we can write Λ(t|x) as a function of empirically estimable expressions,

we have:

Λn(t|x) =

∫ t

−∞

dH
#
1n(s|x)

Cn(s|x)
, for t 6 bH(.|x)

where

H
#
1n(t|x) =

n∑

i=1

1{Zi6t, δi=1}Bi(x, hn)

and

Cn(t|x) =

n∑

i=1

1{Ti6t 6Zi}Bi(x, hn)

where for i = 1, · · · , n

Bi(x, hn) =
Khn

(x − Xi)
∑n

i=1 Khn
(x − Xi)

.

For simplicity set Bi(x, hn) = Bni(x). The Bni(x) are the so-called Nadaraya-Watson

weights and H1n(t|x) and Cn(t|x) are respectively the kernel estimators of Iglesias-

Prez and González-Manteiga[9] of H1(t|x) and C(t|x), deduced from estimators of

Watson[15] and Watson-Leadbetter[14], obtained by regression.

and the following non-parametric estimator of the conditional hazard rate function

λ(t|x) and its maximum value estimator for right censoring and left truncated data,

deduced from (2.2), are defined by

(2.4) λ̂n(t|x) =

n∑

i=1

Bni(x)δiNan
(t − Zi)

∑n
j=1 1{Tj6Zi 6Zj}Bnj(x)

.

and

(2.5) σ̂n(x) = Argmaxt∈[ax,bx]λ̂n(t|x).

The hypotheses which will be needed to prove the results are the same as those

Agbokou et al.[2] and Gneyou[6] used to derive theirs results.
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2.3. Assumptions. Let m denotes the density of X, and M# the conditional dis-

tribution function of X when T 6 Z, with density m#, then

m#(x) = m(x)i(x)

where i(x) =
α(x)

α
is an index of truncation in x with α = P(T 6 Z). We need to

consider x values with i(x) 6= 0.

A1 : X, Y , T and C are absolutely continuous random variables and random vari-

ables Y , T , C are conditionally independent at X = x.

A2 :

A2(a). The random variable X takes values in an interval I = [x1, x2] contained

in the support of m#, such that

0 < γ = inf[m#(x) : x ∈ Iε] < sup[m#(x) : x ∈ Iε] = Γ < ∞,

where Iε = [x1 − ε, x2 + ε] with ε > 0 and 0 < εΓ < 1.

A2(b). Moreover, as regards the random variables Y ; T and C, we consider:

(i) aL(.|x) 6 aH(.|x), for all x ∈ Iε.

(ii) The random variable Y moves in an interval [a; b] such that

inf[α−1(x)(1 − H(b|x))L(a|x) : x ∈ Iε] > θ > 0.

Note that, if aL(.|x) < y < aH(.|x) then C(t|x) = α−1(x)(1−H(t|x))L(t|x) >

0, therefore condition (ii) says C(t|x) > θ > 0 in [a, b] × Iε.

A3 : a < aH(.|x), for all x ∈ Iε.

A4 : The corresponding (improper) densities of the distribution (sub-distributions)

functions L(t), H(t) and H1(t) are bounded away from 0 in [a, b].

F1 : The first derivatives of functions m(x) and α(x) exist and are continuous in

x ∈ Iε and the first derivatives with respect to x of functions L(t|x), H(t|x)

et H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞[×Iε.
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F2 : The second derivatives of functions m(x) and α(x) exist and are continuous

in x ∈ Iε and the second derivatives with respect to x of functions L(t|x),

H(t|x) et H1(t|x) exist and are continuous and bounded in (t, x) ∈ [0,∞[×Iε.

F3 : The first derivatives with respect to t of functions L(t|x), H(t|x) and H1(t|x)

exist and are continuous in (t, x) ∈ [a, b] × Iε.

F4 : The second derivatives with respect to t of functions L(t|x), H(t|x) and

H1(t|x) exist and are continuous in (t, x) ∈ [a, b] × Iε.

F5 : The second derivatives with respect to x and with respect to t of functions

L(t|x), H(t|x) and H1(t|x) exist and are continuous in (t, x) ∈ [a, b] × Iε.

K1 : The kernel function K is a symmetrical density vanishing outside (−1, 1) and

the total variation of K is less than some µ < +∞. Moreover

(i)
∫

R
K(x)dx = 1,

(ii)
∫

R
xK(x)dx = 0,

(iii)
∫

R
x2K(x)dx = α(K) > 0,

K2 : N is a symmetric Kernel of bounded variation on R vanishing outside the

interval [−M, +M ] for some M > 0 and satisfying

(i)
∫

R
N(u)du = 1,

(ii)
∫

R
uN(u)du = 0,

(iii)
∫

R
u2N(u)du = α(N) > 0,

(iv) N is twice differentiable, the derivative N ′ is of bounded variation and

satisfies
∫

R
N ′2(u)du < ∞.

H1 : The bandwidth parameter (hn)n∈N is a non increasing sequence of positive

real numbers such that:

(i) hn −→ 0,

(ii) nhn −→ ∞
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(iii)
log n

nhn

−→ 0,

(iv)
nh5

log n
= O(1)

H2 : The bandwidth parameter (an)n∈N is a non increasing sequence of positive

real numbers such that:

(i) an −→ 0 (therefore a2
n −→ 0),

(ii)
log n

na
β
nhn

−→ 0, for all β ∈ [1, 8|3].

H3 (i) nanhn −→ +∞, na3
nhn −→ +∞ and nanh5

n −→ 0.

(ii)
log2 n

nanhn

−→ 0,
log3 n

na2
nhn

−→ 0 and na5
nhn −→ 0.

Remark 1. Based on the above assumptions, it is followed that the first and the second

derivatives with respect to t of λ(t|x) exist and are continuous in (t, x) ∈ [a, b] × Iε.

We denote these derivatives as λ′(t|x) and λ′′(t|x), respectively.

This leads us to the following hypotheses:

F6 : There exists an interval [ax, bx] ⊂ [a, b], with unique σ = σ(x) satisfying

λ(σ|x) = sup
ax6t6bx

λ(t|x).

F7 : The function t 7−→ λ(t|x) is of class C2 with respect (w.r.) to t such that

(i) λ′(σ|x) = 0;

(ii) dx = inf
ax6t6bx

|λ′′(t|x)| > 0.

The assumptions A1−A4, F1−F5, K1 and H1 are quite standard. A1−A2(a), F4−
F5, K1 and H1 insure the strong uniform convergence of the estimators H1n(t|x) and

Cn(t|x) to H1(t|x) and C(t|x) respectively as in Iglesias-Prez and González-Manteiga[9]

while K2 andH2 ensure the almost sure representation and the strong uniform consis-

tency of λ̂n(t|x) to λ(t|x), when F6−F7 make sure of the strong uniform convergence

of σ̂n(x) to σ(x). The hypotheses H3 and K ensure the asymptotic normality of the

both estimators λ̂n(t|x) and σ̂n(x).
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3. Main results

Agbokou et al.[2] proved the strong uniform convergence of the conditional hazard

rate function and its maximum location estimators λ̂n(t|x) and σ̂n(x). This lead us

to the investigation on the asymptotic normality results. We need to consider the

process

(3.1) ξ(Z, T, δ, t, x) =
1{Z6t, δ=1}

C(Z|x)
−

∫ t

0

1{T6u6Z}

C2(u|x)
dH

#
1 (u|x).

ξ(Z, T, δ, t, x) is a centred random process which play a major role in our investigation.

The following theorem offers the asymptotic normality of the estimator λ̂n(t|x). After

we enforce it to pull the asymptotic normality of σ̂n(x).

Theorem 3.1. Assume that the assumptions A1−A4, F1−F5, K1−K2 and H1−H3

hold. Then for all x ∈ I and t ∈ [ax, bx], we have:

(3.2)
√

nanhn[λ̂n(t|x) − λ(t|x)]
D−→ N (0, s2(t|x))

with

(3.3) s2(t|x) =

λ(t|x)

(∫

R

K2(z)dz

) (∫

R

N2(v)dv

)

C(t|x)m#(x)
.

The proofs of the Theorem 3.1 and its corollaries below are given in the next

section. As a consequence of Theorem 3.1, we get the following asymptotic normality

result for the estimator σ̂n.

Corollary 3.1. Under the assumptions of Theorem 3.1, we assume that the hypothe-

ses F6 − F7 are hold, for all x ∈ I, we have

(3.4)
√

na3
nhn[σ̂n(x) − σ(x)]

D−→ N (0, s2(σ|x))
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with

(3.5) s2(σ|x) =

λ(σ|x)

(∫

R

K2(z)dz

) (∫

R

N ′2(v)dv

)

λ′′2(σ|x)C(σ|x)m#(x)

4. Proofs

The asymptotic normality of the conditional hazard rate estimator given in Theo-

rem 3.1 is based on the following lemmas:

4.1. Proofs of the lemmas.

Lemma 4.1. Define for all x ∈ I and t ∈ [ax, bx],

χi(t|x) =
1

an

∫

R

ξi(t − anu|x)dN(u),

then

(4.1) E[χi(t|x)|X = x] = 0

and if the assumptions K2 and H1 − i are satisfied then

(4.2) Var[χi(t|x)|X = x] =
1

an

[

λ#(t|x)

∫

R

N2(u)du

]

+ o(1)

where

λ#(t|x) =
λ(t|x)

C(t|x)

Proof of Lemma 4.1 By Fubini Theorem, it is easily seen that

E[χi(t|x)|X = y] =
1

an

∫

R

E[ξi(t − anu|x)|T 6 Z, X = y]dN(u),

with

E[ξi(t − anu|x)|T 6 Z, X = y] =

∫ t−anu

0

dH
#
1 (s|y)

C(s|x)
−

∫ t−anu

0

C(s|y)

C2(s|x)
dH

#
1 (s|x),
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so we have:

E[ξi(t − anu|x)|T 6 Z, X = x] =

∫ t−anu

0

dH
#
1 (s|x)

C(s|x)
−

∫ t−anu

0

C(s|x)

C2(s|x)
dH

#
1 (s|x)

= 0

hence

E[χi(t|x)|X = x] = 0

Thus the first part (4.1) of the lemma is proved. For the second part (4.2), we have

as well by Fubini Theorem for all t, t′ ∈ [ax, bx] and x ∈ I

Cov[χi(t|x), χi(t
′|x)] =

1

a2
n

∫

R

∫

R

E[ξi(t − anu|x)ξi(t
′ − anv|x)|T 6 Z, X = x]dN(u)dN(v),

so

Var[χi(t|x)|X = x] = Cov[χi(t|x), χi(t
′|x)]|t′=t,

=
1

a2
n

∫

R

∫

R

E[ξi(t − anu|x)ξi(t − anv|x)|T 6 Z, X = x]dN(u)dN(v),

with

ξi(t − anu|x)ξi(t − anv|x) =

[
1{Z6t−anu}

C(Z|x)
−

∫ t−anu

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

]

×
[
1{Z6t−anv}

C(Z|x)
−

∫ t−anv

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

]

,

=
1{Z6(t−anu)∧(t−anv)}

C2(Z|x)
︸ ︷︷ ︸

A(x)

+

(∫ t−anu

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

) (∫ t−anv

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

)

︸ ︷︷ ︸

B(x)
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−
(

1{Z6t−anu}

C(Z|x)

) (∫ t−anv

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

)

︸ ︷︷ ︸

C(x)

−
(

1{Z6t−anv}

C(Z|x)

) (∫ t−anu

0

1{T6s6Z}

C2(s|x)
dH

#
1 (s|x)

)

︸ ︷︷ ︸

D(x)

.

Moreover, by Fubini theorem and by straightforward calculations we check that

E[B(x) − C(x) − D(x)|T 6 Z, X = x] = 0.

Thus

E[ξi(t − anu|x)ξi(t − anv|x)|T 6 Z, X = x] = E[A(x)|T 6 Z, X = x]

= E

[
1{Z6(t−anu)∧(t−anv)}

C2(Z|x)
|T 6 Z, X = x

]

,

=

∫ (t−anu)∧(t−anv)

0

dH
#
1 (s|x)

C2(s|x)
,

=

∫ (t−anu)∧(t−anv)

0

λ(s|x)

C(s|x)
ds.

Let us,

Λ#(t|x) =

∫ t

0

λ(s|x)

C(s|x)
ds,

=

∫ t

0

λ#(s|x)ds,

so finally we have

E[ξi(t − anu|x)ξi(t − anv|x)|T 6 Z, X = x] = Λ#((t − anu) ∧ (t − anv)|x).

Thus by integrating by parts under the assumptions K2, we can write

Var[χi(t|x)|X = x] =
1

a2
n

∫

R

∫

R

Λ#((t − anu) ∧ (t − anv)|x)dN(u)dN(v),

=
1

a2
n

∫

R

∫

u>v

Λ#(t − anu|x)dN(u)dN(v)
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+
1

a2
n

∫

R

∫

u<v

Λ#(t − anv|x)dN(u)dN(v),

=
1

an

∫

R

∫ M

v

λ#(t − anu|x)N(u)dudN(v),

=
1

an

∫

R

λ#(t − anv|x)N2(v)dv,

where M is the upper boundary of the support of the kenel N. A Taylor’s expansion

of the function λ#(t − anv|x) in order one at a neighbourhood of t yields

Var[χi(t|x)|X = x] =
1

an

λ#(t|x)

∫

R

N2(v)dv + o(1)

which ends the proof of the Lemma 4.1.

Lemma 4.2. Under the assumptions of the Theorem 3.1, then for all x ∈ I and

t ∈ [ax, bx], we have

λ̂′
n(t|x) − λ′(t|x) = −

n∑

i=1

Bni(x)ζi(t|x) + Υn(t|x) + O
(
a2

n

)
a.s.,

with

ζi(t|x) = ζ(Ti, Zi, δi, t, x) =
1

a2
n

∫

R

ξi(t − anu|x)N ′(u)du,

and

sup
t∈[ax,bx]

|Υn(t|x)| −→ 0 a.s. quand n −→ +∞.

Proof

The Theorem 4.1 of Agbokou and al.[2] allow us to write

λ̂n(t|x) − λ(t|x) =
1

an

∫

R

N

(
t − s

an

)

d(Λn(s|x) − Λ(s|x)) + O
(
a2

n

)
.
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Using the theorem of differentiability (under the integral sign) and an integration by

parts, we have

λ̂′
n(t|x) − λ′(t|x) = +

1

a2
n

∫

R

N ′

(
t − s

an

)

d(Λn(s|x) − Λ(s|x)) + O
(
a2

n

)

= − 1

a2
n

∫

R

(Λn(t − anu|x) − Λ(t − anu|x))dN ′(u) + O
(
a2

n

)
,

= − 1

a2
n

∫

R

An(t − anu|x)dN ′(u)

− 1

a2
n

∫

R

Rn(t − anu|x)dN ′(u) + O
(
a2

n

)
,

where

An(t − anu|x) =

n∑

i=1

Bni(x)ξi(t − anu|x).

By integrating each member, we obtain

− 1

a2
n

∫

R

An(t − anu|x)dN ′(u) = − 1

a2
n

∫

R

n∑

i=1

Bni(x)ξi(t − anu|x)dN ′(u)

= −
n∑

i=1

Bni(x)ζi(t|x).

We have

Υn(t|x) = − 1

a2
n

∫

R

Rn(t − anu|x)dN ′(u),

= − 1

a2
n

∫

R

Rn1(t − anu|x)dN ′(u) − 1

a2
n

∫

R

Rn2(t − anu|x)dN ′(u),

= Ωn1(t|x) + Ωn2(t|x),

with

Ωn1(t|x) = − 1

a2
n

∫

R

∫ t−anu

0

(C(s|x) − Cn(s|x))2

Cn(s|x)C2(s|x)
dH

#
1 (s|x)dN ′(u),

and

Ωn2(t|x) = − 1

a2
n

∫

R

∫ t−anu

0

(
1

Cn(s|x)
− 1

C(s|x)

)

d(H#
1 (s|x) − H

#
1 (s|x))dN ′(u).
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We prove, on the basis of the proof of the Theorem 4.1 of Agbokou et al.[2], that

sup
t∈[ax,bx]

|Ωn1(t|x)| −→ 0 p.s. quand n −→ +∞,

and

sup
t∈[ax,bx]

|Ωn2(t|x)| −→ 0 p.s. quand n −→ +∞.

Hence,

sup
t∈[ax,bx]

|Υn(t|x)| 6 sup
t∈[ax,bx]

|Ωn1(t|x)| + sup
t∈[ax,bx]

|Ωn2(t|x)| −→ 0 p.s. quand n −→ +∞.

This completes the proof of this lemma.

4.2. Proofs of the main results.

Proof of the Theorem 3.1

According to the Theorem 4.1 of Agbokou et al.[2], we have

λ̂n(t|x) − λ(t|x) =
n∑

i=1

Bni(x)χi(t|x) + rn(t|x),

this allow us to write

√

nanhn

n∑

i=1

Bni(x)χi(t|x) =

√
nanhn

n∑

i=1

1

nhn

K

(
x − Xi

h

)

χi(t|x)

m
#
n (x)

,

where m#
n (x) is the Parzen-Rosenblatt estimator of the conditional density of X when

T 6 Z. Using that m#
n (x) converges in probability to m#(x) together with Theorem

5.1 in Billingsley[3], we have only to study the limiting distribution of

√

nanhn

n∑

i=1

1

nhn

K

(
x − X

h

)

χi(t|x) =
√

nanhn

n∑

i=1

1

nhn

×
{

K

(
x − Xi

h

)

χi(t|x) − E

[

K

(
x − Xi

h

)

χi(t|x)

]}

+
√

nanhn

n∑

i=1

1

nhn

E

[

K

(
x − Xi

h

)

χi(t|x)

]

,

= J1n(t|x) + J2n(t|x),
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where

J2n(t|x) =
√

nanhn

n∑

i=1

1

nhn

E

[

K

(
x − Xi

h

)

χi(t|x)

]

,

=
√

nanhnE

[
1

hn

K

(
x − Xi

h

)

χi(t|x)

]

,

=
√

nanhnE

{
1

hn

K

(
x − Xi

h

)

E[χi(t|x)|T 6 Z, X = x]

}

,

with

E

{
1

hn

K

(
x − X

h

)

E[χi(t|x)|T 6 Z, X = x]

}

=

∫

R

1

hn

K

(
x − u

h

)

E[χi(t|x)|T 6 Z, X = u]m#(u)du,

=

∫

R

1

hn

K

(
x − u

h

)

β(u)m#(u)du,

=

∫

R

K(v)β(x − vhn)m#(u)du,

where

β(u) = E[χi(t|x)|T 6 Z, X = u].

Under the assumption K1, developing the function β(x − vhn) by Taylor’s theorem

in order two at a neighbourhood of x yields,

E

{
1

hn

K

(
x − Xi

h

)

E[χi(t|x)|T 6 Z, X = x]

}

= β(x)m#(x) +
h2

n

2

(∫

R

v2K(v)

) [

β(x)m#”(x) + 2β ′(x)m#′

(x) + β”(x)m#(x)
]

+ o(h2
n).

The hypotheses F1 − F5 and K2v prove that the function β has bounded first and

second derivatives, because it can be write as a function of H1(t|x) and C(t|x) which
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have bounded first and second derivatives functions. Moreover, under the first part

of the Lemma 4.1, we get β(x) = 0, so have under the assumption H2iii

J2n(t|x) =
√

nanhn

h2
n

2
α(K)

[

2β ′(x)m#′

(x) + β”(x)m#(x)
]

+ o(h2
n),

= O
(
(nanhn)1|2h2

)
= O

(
(nanh5

n)1|2
)
,

= o (1) .

Thus the asymptotic normality distribution of J1n(t|x) and J2n(t|x) is the same as

that J1n(t|x). We have now

J1n(t|x) =
√

nanhn

n∑

i=1

1

nhn

{

K

(
x − Xi

h

)

χi(t|x) − E

[

K

(
x − Xi

h

)

χi(t|x)

]}

,

=

n∑

i=1

√
an

nhn

{

K

(
x − Xi

h

)

χi(t|x) − E

[

K

(
x − Xi

h

)

χi(t|x)

]}

,

=
n∑

i=1

ηi,n(t|x),

with

ηi,n(t|x) =

√
an

nhn

{

K

(
x − Xi

h

)

χi(t|x) − E

[

K

(
x − Xi

h

)

χi(t|x)

]}

,

where for each i = 1, · · · , n, ηi,n(t|x) are n independent random variable with mean

equal to 0. Now we will show that the random variable {χi(t|x)}n
i=1 satisfies Linden-

berg’s Central Limit Theorem, which states that:

suppose that X1, · · · , Xn are independent random variables such that E(Xi) = µi and

V ar(Xi) = σ2
i < ∞ for all i = 1, · · · , n. Define

Yi = Xi − µi, Tn =
n∑

i=1

Yi, s2
n = V ar(Tn) =

n∑

i=1

σ2
i .

The sufficient condition that ensure
Tn

sn

d−→ N (0, 1) according to Lindenberg is:

for every ε > 0,
1

s2
n

n∑

i=1

E
[
Y 2

i 1{|Yi|>εsn}

]
−→ 0 asn −→ ∞.
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Now we will see that the variance is finite. Proceeding as in (4.2), we obtain that

Var[ηi,n(t|x)] =
an

n
Var

[
1√
hn

K

(
x − Xi

h

)

χi(t|x)

]

=
an

n

(∫

R

K2(z)dz

)

Var[χi(t|x)|T 6 Z, X = x]m#(x) + O
(
h2

n

)
.(4.3)

With the part two of the Lemma 4.1, the result (4.3) lead to

σ2
n(t|x) =

n∑

i=1

Var[ηi,n(t|x)],

=

(∫

R

K2(z)dz

) [

λ#(t|x)

∫

R

N2(u)du

]

m#(x) + o(1),

= σ2(t|x) + o(1) < ∞,

this prove the finiteness of the variance σ2
n(t|x). So we go now to satisfy the Linde-

berg’s theorem. Let us for all ε > 0,

δi,n = 1{|ηi,n(t|x)|>εσn} = 1{η2

i,n
(t|x)>ε2σ2

n}

= 1





an

nhn

[

K

(
x − Xi

h

)

χi(t|x) − E

[

K

(
x − Xi

h

)

χi(t|x)

]]2

> ε2σ2
n







,

= 1





1

nanhn

[

K

(
x − Xi

h

) ∫

R

ξi(t − anu|x)dN(u) − W

]2

> ε2σ2
n







,

where

W = E

(

K

(
x − Xi

h

) ∫

R

ξi(t − anu|x)dN(u)

)

.

Under the assumption H3, (nanhn)−1 −→ 0, moreover the functions K, N and ξ are

bounded under assumptions A2, F3 and K1 − K2, then we obtain lim
n−→+∞

δi,n = 0.
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The fact that σ2
n(x) < ∞, this last equality implies

lim
n−→∞

1

σ2
n(x)

E

[
n∑

i=1

η2
i,n(t|x)δi,n

]

= lim
n−→∞

1

σ2
n(x)

n∑

i=1

E
[
η2

i,n(t|x)δi,n

]
= 0.

Finally, we have the Lindeberg’s condition which is satisfied. This ends the proof of

the Theorem 3.1.

Proof of the Corollary 3.1

Note that by definition of σ et de σ̂n, we have λ′(σ|x) = λ̂′
n(σ̂n|x) = 0, λ′′(σ|x) < 0

and λ̂′′
n(σ̂n|x) < 0. A Taylor’s expansion of λ̂′

n(.|x) in the neighbourhood of σ, gives

λ̂′
n(σ̂n|x) − λ̂′

n(σ|x) = (σ̂n − σ)λ̂′′
n(σ#|x),

where σ#
n is between σ and σ̂n. This means that

σ̂n − σ = − λ̂′
n(σ|x)

λ̂′′
n(σ#

n |x)
,

= − 1

λ̂′′
n(σ#

n |x)
(λ̂′

n(σ|x) − 0),

= − 1

λ̂′′
n(σ#

n |x)
(λ̂′

n(σ|x) − λ′(σ|x)),

with the Lemma 4.2, we have finally

(4.4) σ̂n − σ =
1

λ̂′′
n(σ#

n |x)

n∑

i=1

Bni(x)ζi(σ|x) + Υ̃n(σ|x) + O
(
a2

n

)
,

where

Υ̃n(t|x) = − 1

λ̂′′
n(σ#|x)

Υn(t|x),

with

ζi(t|x) =
1

a2
n

∫

R

ξ(t − anu|x)(t|x)dN ′(u).
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We have

(4.5)

√
na3

nhn

λ̂n(σ#
n |x)

n∑

i=1

Bni(x)ζi(σ|x) =

√

na3
nhn

n∑

i=1

1

nh
K

(
x − Xi

hn

)

ζi(t|x)

λ̂′′
n(σ#

n |x)m#
n (x)

.

Arguing as in the proof of the Lemma 4.1, we get

(4.6) E[ζi(t|x)|T 6 Z, X = x] = 0,

and

(4.7) Var[ζi(t|x)|T 6 Z, X = x] =
1

a3
n

[(

λ#(t|x)

∫

R

N ′2(u)du

)

+ o(1)

]

.

By imitating the proof of Theorem 3.1, we arrive at the following result:

s2
n(σ|x) =

(∫

R

K2(z)dz

) [

λ#(σ|x)

∫

R

N ′2(u)du

]

m#(x) + o(1),

= s2
0(σ|x) + o(1) < ∞.

Taking into account that λ̂′′
n(σ#

n |x) −→ λ′′(σ|x) when n → +∞, we deduce that the

denominator of (4.5) tends to λ′′(σ|x)m#(x) when n → +∞. Hence we obtain the

asymptotic normality of σ̂n from the Lindeberg’s theorem given by

√

na3
nhn[σ̂n(x) − σ(x)]

D−→ N (0, s2(σ|x)),

with

s2(σ|x) =

λ(σ|x)

(∫

R

K2(z)dz

) (∫

R

N ′2(v)dv

)

λ′′2(σ|x)C(σ|x)m#(x)
.

Acknowledgement

We would like to thank the editor and the referees



ASYMPTOTIC PROPERTIES OF THE CONDITIONAL HAZARD FUNCTION AND... 373

References

[1] Agbokou, K., Gneyou, K., 2017. On the strong convergence of the hazard rate and its

maximum risk point estimators in presence of censorship and functional explanatory covariate

. Afrika Statistika, Vol. 12 (3), 2017, pages 1397-1416..

[2] Agbokou, K., Gneyou, K., Dme, El H., 2018. Almost sure representations of the condi-

tional hazard function and its maximum estimation under right-censoring and left-truncation.

Far East J. Theor. Stat., Vol 54, Number 2, 2018, Pages 141-173.

[3] Billingsley, P., 1968. Convergence of probability measures. Wiley, New York.

[4] Dupuy, J.-F., Gneyou, K., 2011. A wavelet estimator of the intensity function with censored

data. Qual. Technol. Quant. Manage. 8(4): 401-410.

[5] Ferraty, F., Rabhi, A., Vieu, P., 2008. Estimation de la fonction de hasard avec variable

explicative fonctionnelle. Rev. Roumaine Math. Pures Appl., 53(1): 1-18.

[6] Gneyou, K. E., 2013. A central limit theorem for a nonparametric maximum conditional

hazard rate in presence of right censoring. Int. J. Stat. Probab. 2(3): 110-124.

[7] Gneyou, K. E., 2014. A strong linear representation for the maximum conditional hazard

rate estimator in survival analysis. Journal of Multivariate Analysis. 128: 10-18.

[8] Hassani, S., Sarda, P., and Vieu, P., 1986. Approche non-paramtrique en thorie de la

fiabilit: revue bibliographique. Rev. Statist. Appl., 35: 27-41.
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