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ON VARIETAL FUZZY SUBGROUPS

A. JAVADI (1) AND A. GHOLAMI (2)

Abstract. Varieties of groups and fuzzy subgroups are two important concepts in

mathematics. In this paper, after presenting concepts of verbal and marginal fuzzy

subgroups and discussing some of their most important characteristics of these

concepts, we define variety of fuzzy subgroups and study the complete structure of

this. At the end , we devote isologism of fuzzy subgroups.

1. Introduction

As in [2] let F (X) be free group over X. Let T = {i ∈ [0, 1]| i ∈ I} and let t ∈ [0, 1]

be such that t ≥ ∨{s| s ∈ T}. The fuzzy subset f(X; T, t) of F (X) is called fuzzy

subgroup of F (X), where for all y ∈ F (X),

f(X; T, t)(y) = ∨{∧{t ∧ ti| i ∈ I(w)}| w ∈ y}.

We call (F (X), f(X; T, t)) the free fuzzy subgroup. It is easy to see that every

subgroup is homomorphic image of a free fuzzy subgroup. (See also [2] )

A fuzzy subset of a set X is a mapping µ : X → [0, 1] and the fuzzy power set of X

is denoted by FP (X).

Fuzzy subset µ of a group G is called a fuzzy subgroup if

(a) µ(x, y) > µ(x) ∧ µ(y) ∀x, y ∈ G
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(b) µ(x−1) ≥ µ(x) ∀x ∈ G

The set of all fuzzy subgroups of G denoted by F(G).

Let µ ∈ F(G), then we set

µ∗ = {x ∈ G| µ(X) = µ(e)},

µ∗ = {x ∈ G| µ(X) ≥ 0}

where µ∗ and µ∗ are subgroups of G, µ∗ is called the support of µ and (G, µ) is called

an Abelian fuzzy subgroup of (G,F(G)).

Let µ ∈ FP (G) and

Z(µ) = {x ∈ G| µ(xy) = µ(yx) and µ(xyz) = µ(yxz) ∀y, z ∈ G}.

µ is called commutative in G if Z(µ) = G. It is easy to see that

Z(µ) = {x ∈ G| µ[x, y] = µ(e) ∀y ∈ G}.

The following are some of the properties used in the paper.

Lemma 1.1. ([2, Lemma 1.2.5 ]) Let µ ∈ F(G) then for all x ∈ G we have,

(i) µ(e) ≥ µ(x)

(ii) µ(x) = µ(x−1)

(iii) If for all x, y ∈ G, µ(x) 6= µ(y) then µ(xy) = µ(x) ∧ µ(y)

Definition 1.1. Let µ ∈ F(G)and for all x, y ∈ G: µz(x) = µ(z−1xz). If for all

x, y ∈ G, µz(x) = µ(x) then µ is called normal fuzzy subgroup of (G,F(G)), and

denote by µ �F F(G).

The set of all normal fuzzy subgroup of (G,F(G)) denoted by NF(G).

Let µ ∈ F (G) and θ be a function from G to G then for all x ∈ G, µθ(x) =

µ(θ(x)) = µ(xθ) is a fuzzy subset of G.
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Theorem 1.1. ([2, Theorem 2.2.3 ]) Let µ ∈ F(G), then the followings holds,

(i) If θ is a homomorphism of G into itself, then µθ ∈ F(G).

(ii) If θ is a automorphism of G, then µθ ∈ NF(G).

A fuzzy subgroup of G is called normal (characteristic, fully invariant) if for all

θ ∈ Inn(G) (θ ∈ Aut(G), θ ∈ End(G)), µθ = µ and is denoted by

µ �F F(G)(µ �F.c F(G),µ �F.f.in F(G)).

If µ ∈ F(G) and H ≤ G then µ|H is fuzzy subgroup of H.

Let µ ∈ NF(G) then we define the set G/µ = {xµ| x ∈ G} where,

(xµ)(t) = (µ(e){x} ◦ µ)(t) = ∨{µ(e){x}) ∧ µ(b)| t = ab} (1)

On the other hand, we know

(µ(e){x})(a) =











µ(e) a ∈ {x}

0 a ∈ G \ {x}

(2)

Now by (1) and (2):

if a ∈ G \ {x} then µ(e){x} ∧ µ(b) = 0 and,

if a ∈ {x} then b = x−1t and µ(e){x} ∧ µ(b) = µ(b)

therefore

(xµ)(t) =











µ(x−1t) ∃b ∈ G : t = xb

0 otherwise

similarly

(µx)(t) =











µ(tx−1) ∃b ∈ G : t = bx

0 otherwise

If N � G and µ ∈ F(G), then for all x ∈ G,

µ(xN) = ∨{µ(z)| z ∈ xN}



378 A. JAVADI AND A. GHOLAMI

2. Verbal and Marginal Fuzzy subgroups

Let (G, µ) be a fuzzy subgroup of (G,F(G)) and let (F (X), f(X; T, t)) be homo-

morphic image of (G, µ) and X = {x1, x2, · · · } be a countable set and let V be a

non-empty subset of F (X). If v = xl1
i1
xl2

i2
· · ·xlr

ir
∈ V and g1, g2, · · · , gr are elements of

the group G, then v(g1, g2, · · · , gr) = gl1
i1
gl2

i2
· · · glr

ir
∈ G is called the value of the word

ν at (g1, g2, · · · , gr). The subgroup of G genarated by all values in G of words in V ,

i.e

V (G) =< v(g1, g2, · · · , gr)| gi ∈ G, ν ∈ G >,

is called verbal subgroup of G.

Definition 2.1. Let µ ∈ F(G) and let V (G) be verbal subgroup of G. Suppose µV

is restriction of µ on V (G). We call (V (G), µV ), the verbal fuzzy subgroup of

(V (G),F(V (G))).

Definition 2.2. Let µ ∈ F(G) and V be a non-empty set of word in x1, x2, · · · . Then

the following subset

V ∗
µ (G) = {a ∈ G| µ(v(g1, g2, ..., gia, ..., gr)) = µ(v(g1, g2, ..., gr)) |gi ∈ G, 1 ≤ i ≤ r, v ∈ V }

of G forms a subgroups of G. Let µV ∗ be restriction of µ on V ∗
µ (G). We call

(V ∗
µ (G), µV ∗) the marginal fuzzy subgroup of (V ∗

µ (G),F(V ∗
µ (G)). It is easy to

see that V ∗
µ (G) ≤ G.

The following theorem indicates a connection between marginal and verbal fuzzy

subgroups.

Theorem 2.1. Let V be a non-empty set of word on x1, x2, · · · and let µ ∈ F(G).

Then V ∗
µ (G) = G if and only if µV = µ(e).
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Proof. Obviously, µV = µ(e) implies that V ∗
µ (G) = G. Conversely if V ∗

µ (G) = G,

then for all ν ∈ V and all gi ∈ G

µ(v(g1, g2, ..., gr)) = µ(v(e, g2, ..., gr)) = · · · = µ(v(e, e, ..., e)) = µ(e)

hence µV = µ(e). �

In continue, we provide some preliminary properties and notions concerning verbal

and marginal fuzzy subgroups.

Theorem 2.2. If V (G) = {[x1, x2]} then Z(µ) = V ∗
µ (G).

Proof. By definition of V (G) we have

V ∗
µ (G) = {a ∈ G| µ[ax, y] = µ[x, ay] = µ[x, y]; ∀x, y ∈ G} and

Z(µ) = {x ∈ G| µ[x, y] = µ(e); ∀y ∈ G}

If a ∈ V ∗
µ (G) then for all y ∈ G: µ[a, y] = µ[e, y] = µ(e). Therefore a ∈ Z(µ).

Conversely, if a ∈ Z(µ) then for all x, y ∈ G:

µ[ax, y] = µ(axyx−1a−1y−1) = µ(a−1axyx−1y−1) = µ[x, y] and

µ[x, ay] = µ(xayx−1y−1a−1) = µ(axyx−1y−1a−1) = µ(a−1axyx−1y−1) = µ[x, y]

hence a ∈ V ∗
µ (G). �

Theorem 2.3. Let V be a non-empty set of word on x1, x2, · · · and let µ ∈ F(G). If

H is subgroup of G such that

H

V ∗
µ (G)

⊆ Z(
G

V ∗
µ (G)

)

then µ[H, V (G)] = µ(e)
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Proof. By assumption, for every h ∈ H and ν ∈ V and g ∈ G:

hV ∗
µ (G)gV ∗

µ (G) = gV ∗
µ (G)hV ∗

µ (G) ⇒ [h, g] ∈ V ∗
µ (G) (1)

hence we have

µ[h, v(g1, g2, ..., gr)] = µ(hv(g1, g2, ..., gr)h
−1v(g1, g2, ..., gr)

−1)

= µ(v(gh
1 , gh

2 , ..., gh
r )v(g1, g2, ..., gr)

−1)

= µ(v(g1[g1, h], g2[g2, h], ..., gr[gr, h])v(g1, g2, ..., gr)
−1) (2)

since V (G) ≤ G and by insertion (1), (2), we have

µ[h, v(g1, g2, ..., gr)] = µ(v(g1, g2, ..., gr)v(g1, g2, ..., gr)
−1) = µ(e).

�

Definition 2.3. Let V be a non-empty set of word on x1, x2, · · · and let µ ∈ F(G)

and G be any group with normal subgroup N . We define [NV ∗G] to be subgroup of

G generated by

{v(g1, . . . , gi−1, gin, . . . , gr)v(g1, g2, ..., gr)
−1| v ∈ V, gi ∈ G, n ∈ N}

and let µ[NV ∗G] be restriction of µ on [NV ∗G] and define [NV ∗
µ G] to be the subset

of real number, with the following form

[NV ∗
µ G] = {µ(v(g1, . . . , gi−1, gin, . . . , gr))µ(v(g1, g2, ..., gr)

−1)| v ∈ V, gi ∈ G, n ∈ N}

Proposition 2.1. Let V be non-empty set of words on x1, x2, · · · and let µ ∈ F(G)

and N � G, then the following holds,

(i) µV (V ∗
µ (G)) = µ(e)

(ii) N ⊆ V ∗
µ (G) ⇐⇒ [NV ∗

µ G] = 1

(iii) µ[NV ∗G] = µ(e) ⇒ N ⊆ V ∗
µ (G)

(iv) V ∗
µ (

G

V (G)
) = V ∗(

G

V (G)
)

(v) [G, N ] ⊆ V ∗
µ (G) ⇒ µ(V (G)) ⊆ µ[V (G), N ]
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Proof. (i) We know µV (V ∗
µ (G)) is restriction of µ on words of V that their letters is

selected of V ∗
µ (G). Therfore:

V (V ∗
µ (G)) = {v(g1, g2, ..., gr)| v ∈ V, gi ∈ V ∗

µ (G)}.

Let v(g1, g2, ..., gr) ∈ V (V ∗
µ (G)) then,

µ(v(g1, g2, ..., gr)) = µ(v(e, g2, ..., gr)) = . . . = µ(v(e, e, ..., e)) = µ(e)

(ii)

[NV ∗
µ G] = 1 ⇐⇒

∀n ∈ N ; µ(v(g1, g2, ..., gin, . . . , gr)) = µ(v(g1, g2, ..., gr)) ⇐⇒

n ∈ V ∗
µ (G)

(iii) Let n ∈ N and ν ∈ V be arbitary. Clearly, if

µ(ν(g1, g2, ..., gin, . . . , gr)) = µ(v(g1, g2, ..., gr))

then n ∈ V ∗
µ (G). Otherwise

µ(v(g1, g2, ..., gin, . . . , gr)) 6= µ(v(g1, g2, ..., gr)) (1)

by assumption

µ(e) = µ(v(g1, . . . , gi−1, gin, . . . , gr)v(g1, g2, ..., gr)
−1)

now by (1) and (1.1) (i,ii)

µ(e) = µ(v(g1, . . . , gi−1, gin, . . . , gr)) ∧ µ(v(g1, g2, ..., gr)
−1) (2)

therfore, by (2)

µ(e) ≤ µ(v(g1, . . . , gi−1, gin, . . . , gr)) and µ(e) = µ(v(g1, . . . , gr))



382 A. JAVADI AND A. GHOLAMI

now by (1.1) (i)

µ(v(g1, . . . , gi−1, gin, . . . , gr)) = µ(e) = µ(v(g1, . . . , gr))

but it is in contradiction to (1).

(iv) In [3] was proved that
G

V (G)
= V ∗(

G

V (G)
). So we need to prove V ∗

µ (
G

V (G)
) =

G

V (G)
.

V ∗
µ (

G

V (G)
) =

{gV (G)|µ(v(g1V (G), . . . , giV (G)gV (G), . . . , grV (G))) =

µ(v(g1V (G), . . . , grV (G))); gi ∈ G, v ∈ V } =

{gV (G)|µ(v(g1, . . . , gig, . . . , gr)V (G))µ(v(g1, . . . , gr)V (G)); gi ∈ G, v ∈ V } =

{gV (G)| µ(V (G)) = µ(V (G))} =

G

V (G)

(v) Let v(g1, g2, ..., gr) ∈ V and n ∈ N :

µ[v(g1, g2, ..., gr), n] = µ(v(g1, g2, ..., gr)
−1n−1v(g1, g2, ..., gr)n)

= µ(v(g1, g2, ..., gr)
−1v(g1[g1, n], g2[gr, n], ..., gr[gr, n]))

≥ µ(v(g1, g2, ..., gr)) ∧ µ(v(g1[g1, n], g2[gr, n], ..., gr[gr, n]))

by assumption,

µ[v(g1, g2, ..., gr), n] ≥ µ(v(g1, g2, ..., gr))

wich complete the proof. �



ON VARIETAL FUZZY SUBGROUPS 383

Let (G, λ) and (G, µ) be fuzzy subsets of (G,F(G)). Let (λ, µ) be the fuzzy subset

of G defined as follows: ∀x ∈ G),

(µ, λ)(x) =











∨{µ(a) ∧ µ(b)| x = [a, b], a, b ∈ G} x is commutator

0 otherwise

The commutator of λ and µ is the fuzzy subgroup [λ, µ] of G generated by (λ, µ).

In [2], was proved (µ, µ)(x) ≤ µ(x) therfore [µ, µ] ⊆ µ.

Theorem 2.4. Let µ ∈ F(G). Then

[µ, µ]([x1, x2]) ≤ µ([x1, x2])

Proof. The fuzzy subgroup [µ, µ] generated by (µ, µ), so that

(µ, µ)(t) =











∨{µ(a) ∧ µ(b)| t = [a, b], a, b ∈ G} t is commutator

0 otherwise

therefore

(µ, µ)([x1, x2]) = ∨{µ(a) ∧ µ(b)| [x1, x2] = [a, b]} (1)

. It is obvious that a function on the same elements, acts the same. Therfore, for all

[a, b] in the absence [x1, x2] = [a, b],

µ[x1, x2] = µ[a, b] ≥ µ(a) ∧ µ(b)

therefore

µ[x1, x2] ≥ ∨{µ(a) ∧ µ(b)| [x1, x2] = [a, b]} (2)

Now by (1) and (2) the proof is complete. �

According to (3.2.14) in [2] we have,

. . . ⊆ [µ, µ, . . . , µ] ⊆ [µ, . . . , µ] ⊆ . . . ⊆ [µ, µ] ⊆ µ
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so we have,

[µ, µ, . . . , µ](x1, x2. . . . , xs) ≤ µ(x1, x2. . . . , xs)

3. Fuzzy Varieties of Groups

P. Hall introduced the concept of varieties of groups in 1940 and as time went on,

it become one of the most important concepts in mathematics. In this chapter, we

try to express the meaning of fuzzy varieties.

Definition 3.1. Let µ be a fuzzy subgroup of G. Then the chain

µ = µ(0) ⊇ µ(1) ⊇ ... ⊇ µ(n) ⊇ ...

of fuzzy subgroups of G is called the derived chain of µ where, ∀n ∈ N :

µ(n+1) = [µ(n), µ(n)].

Let µ be a fuzzy subgroup of G. Then the chain

µ = Z0(µ) ⊇ Z1(µ) ⊇ ... ⊇ Zn(µ) ⊇ ...

of fuzzy subgroups of G is called the descending central chain of µ where, Zn+1(µ) =

[Zn(µ), µ].

Definition 3.2. Let G be a group. A Fuzzy variety on (G,F(G)) is an equationally

defined class of fuzzy subgroups. If W is a set of words in x1, x2, . . . the class of all

fuzzy subgroups of (G,F(G)) such that V (µ) = et, (G, µ) is the fuzzy subgroup with

tip t, is called Fuzzy variety FV(W ) determined by W . We also say that W is a

set of lows for the fuzzy variety FV(W ).

Now let W = {[x1, x2]}, then FV(W ) is the class of abelian fuzzy sub groups and

is called Abelian fuzzy variety.

More precisely, if [µ, µ] = et then fuzzy subgroup (G, µ) settle on abelian fuzzy variety.
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If W = {[x1, x2, . . . , xc+1], where c ≥ 1, then FV(W ) is the class of all nilpotent fuzzy

subgroups of at most c and is called Nilpotent fuzzy variety

Clearly, if the descending central chain of µ is such that Zc(µ) = et for c ∈ N , then

fuzzy subgroup (G, µ) settle on nilpotent fuzzy variety.

If W = {x(c+1)}, where c ≥ 1, then FV(W ) is the class of all solvable fuzzy subgroups

of at most c and is called Solvable fuzzy variety

More precisely, if the derived chain of µ is such that µ(c+1) = et for c ∈ N , then fuzzy

subgroup (G, µ) settle on solvable fuzzy variety.

4. Isologisms of Fuzzy subgroups

P. Hall introduced the notion of isologism, an equivalence relation on the class of

all groups. This equivalence relation depends on some fixed variety V and has the

property that the groups in the variety V form a single equivalence classes. Now we

introduce and study the concept of fuzzy isologism on some fixed fuzzy variety.

Let f be a function from X into Y , and let µ ∈ FP (X) and λ ∈ FP (Y). Define

the fuzzy subsets f(µ) ∈ FP (Y) and f−1(λ) ∈ FP (X) by ∀y ∈ Y ,

f(µ)(y) =











∨{µ(x)| t = [a, b], x ∈ X, f(x) = y} f−1(y) 6= ∅

0 otherwise

and ∀x ∈ X

f−1(λ)(x) = λ(f(x)).

Then f(µ) is called the image of µ under f and f−1(λ) is called the preimage (or

inverse image) of λ under f .

Let µ ∈ F(G) and H be a group. Suppose that f is a homomorphism of G into H.

Then f(µ) ∈ F(H) and if λ ∈ F(H) then f−1(λ) ∈ F(G).

Definition 4.1. Let (F (X); T1, t1) be the homomorphic image of (G, µ) and let

(F (X); T2, t2) be the homomorphic image of (H, λ). Let V be a fuzzy variety.
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A FV − Isologism between (G, µ) and (H, λ) is a pair of isomorfism (α, β) if,

α :
G

V ∗
µ (G)

→
H

V ∗
λ (H)

and β : µV (G) → λV (H), such that for all s > 0 and all

v(x1, x2 . . . , xs) ∈ V and all g1, g2, . . . , gs ∈ G, it hold that

β(µv(g1, g2, ..., gr)) = λv(h1, ..., hr) whenever hi ∈ α(giV
∗
µ (G)), i = 1, ..., r.

We write (G, µ) ≈ (H, λ)

Lemma 4.1. Let (α, β) be a FV-isologism between (G1, µ1) and (G2, µ2). If V ∗
µ1

(G1) ≤

H1 ≤ G1 and α(
H1

V ∗
µ1

(G1)
) =

H2

V ∗
µ2

(G2)
, Then (H1, λ1) ≈ (H2, λ2) where, λ1 =

µ1|H1
, λ2 = µ2|H2

.

Proof. Since (α, β) is a FV-isologism between (G1, µ1) and (G2, µ2), both α, β are

isomorfisms such that,

α :
G1

V ∗
µ1

(G1)
−→

G2

V ∗
µ2

(G2)

β : µ1V
(G1) −→ µ2V

(G2)

and

β(µ1v(g1, g2, ..., gr)) = µ2v(g
′

1, ..., g
′

r) whenever g
′

i ∈ α(giV
∗
µ1

(G1)), i = 1, ..., r.

Since V ∗
µ1

(G1) ≤ H1 ≤ G1, we conclude V ∗
µ1

(G1) ≤ V ∗
λ1

(H1).

Similarly, since α(
H1

V ∗
µ1

(G1)
) =

H2

V ∗
µ2

(G2)
, we conclude V ∗

µ2
(G2) ≤ H2 ≤ G2. Therefore,

V ∗
µ2

(G2) ≤ V ∗
λ2

(H2). We define two isomorphisms

α
′

:
H1

V ∗
λ1

(H1)
−→

H2

V ∗
λ2

(H2)

β
′

: λ1V
(H1) −→ λ2V

(H2),

as follows,

α
′

(h1V
∗
λ1

(H1)) = h2V
∗
λ2

(H2), if h1 ∈ H1 and h2 ∈ α(h1V
∗
λ1

(H1)),

β
′

(λ1(v(h1, . . . , hr))) = λ2(v(h
′

1, . . . , h
′

r))) and
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β
′

(λ1(v(h1, . . . , hr))) = β(λ1(v(h1, . . . , hr)))

It is easy to see that the pair (α
′

, β
′

) is an FV-isologism between (H1, λ1) and (H2, λ2).

�

Lemma 4.2. Let (α, β) be a FV-isologism between (G, µ) and (H, λ). If g ∈ G and

h ∈ α(gV ∗
µ (G)), then β(µ(vg)) = λ(vh).

Proof. Let v ∈ V , say v = v(x1, x2, . . . , xs). Let g1, g2, . . . , gs ∈ G and choose

h ∈ α(gV ∗
µ (G)), hi ∈ α(giV

∗
µ (G)) for all 1 ≤ i ≤ s

we have

(hi)
h = h−1hih ∈ α(g−1gigV ∗

µ (G))

thus (hi)
h ∈ α((gi)

gV ∗
µ (G)), because α is homomorphism. Now we have

β(µ(v(g1, g2, . . . , gs)
g)) = β(µ(v(gg

1, g
g
2, . . . , g

g
s))) = λ(v(hh

1 , h
h
2 , . . . , h

h
s)) = λ(vh)

�

Proposition 4.1. Let µ ∈ F(G) and H ≤ G and µ
′

= µ|H , then the following holds,

(i) V ∗
µ (HV ∗

µ (G)) = V ∗
µ
′ (H)V ∗

µ (G)

(ii) µ
′

V (H) = µV (HV ∗
µ (G))

Proof. (i) by definition 2.2, we have

V ∗
µ (HV ∗

µ (G)) = {ha| µ(v(h1a1, . . . , hiaiha, . . . , hrar)) =

µ(v(h1a1, . . . , hiai, . . . , hrar)); ∀v ∈ V ; ∀h, hi ∈ H; ∀a, ai ∈ V ∗
µ (G)} =

{ha|µ(v(h1, . . . , hihh−1aih, . . . , hr)) =

µ(v(h1, . . . , hi, . . . , hr)); ∀v ∈ V ; ∀h, hi ∈ H; ∀ai ∈ V ∗
µ (G)}

V ∗
µ (G) is normal subgroup of G, therefore h−1aih ∈ V ∗

µ (G). So,

V ∗
µ (HV ∗

µ (G)) = {ha|µ(v(h1, . . . , hiha
′

i, . . . , hr)) =
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µ(v(h1, . . . , hi, . . . , hr)); ∀v ∈ V ; ∀h, hi ∈ H; ∀a
′

i ∈ V ∗
µ (G)} =

{ha|µ(v(h1, . . . , hih, . . . , hr)) =

µ(v(h1, . . . , hi, . . . , hr)); ∀v ∈ V ; ∀h, hi ∈ H} =

{ha| h ∈ V ∗
µ
′ (H)} = V ∗

µ
′ (H)V ∗

µ (G))

(ii) For all v(h1a1, . . . , hrar) ∈ V (HV ∗
µ (G))

µ(v(h1a1, . . . , hrar)) = µ(v(h1, . . . , hr))

therefore µ
′

V (H) = µV (HV ∗
µ (G)). �

Theorem 4.1. Let H ≤ G and µ ∈ F(G) and µ
′

= µ|H . Then (H, µ
′

) ≈ (HV ∗
µ (G)).

In particular, if G = HV ∗
µ (G), then (G, µ) ≈ (H, µ

′

). Conversely, if
G

V ∗
µ (G)

satisfies

the ascending chain condition on subgroups and (G, µ) ≈ (H, µ
′

), then G = HV ∗
µ (G)

Proof. We difine a map α by putting α(hV ∗
µ
′ (H)) = hV ∗

µ (HV ∗
µ (G)) (h ∈ H). By

Proposition 4.4 (i), since V ∗
µ (HV ∗

µ (G)) = V ∗
µ
′ (H)V ∗

µ (G), α is an isomorphism from

H

V ∗
µ
′ (H)

onto
HV ∗

µ (G)

V ∗
µ (HV ∗

µ )
. By Proposition 4.4 (ii), since µ

′

V (H) = µV (HV ∗
µ (G)) and α

induces the identity on µ
′

V (H), the pair (α, id
µ
′

V
(H)) is a FV-isologism between (H, µ

′

)

and (HV ∗
µ (G), µ).

Now suppose that H ≤ G and (G, µ) ≈ (H, µ
′

). There is the pair (α0, β0) such that,

α0 :
G

V ∗
µ (G)

−→
H

V ∗
µ
′ (H)

,

β0 : µV (G) −→ µ
′

V (H)

Define H1 ≤ H by α0(
H

V ∗
µ (G)

) =
H1

V ∗
µ
′ (G)

. So V ∗
µ (G) ≤ H ≤ G and by (4.5) we have

(H, µ
′

) ≈ (H1, µ
′

1) where µ
′

= µ|H and µ
′

1 = µ
′

|H1
, thus (G, µ) ≈ (H1, µ

′

1) .

since (H, µ
′

) ≈ (H1, µ
′

1), there is the pair (α1, β1) such that,

α1 :
H

V ∗
µ
′ (H)

−→
H1

V ∗
µ
′

1

(H1)
,
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β1 : µ′
V (H) −→ µ′

1V (H1)

Define H2 ≤ H1 by α1(
H1

V ∗
µ
′ (H)

) =
H2

V ∗
µ
′

1

(H1)
. So V ∗

µ
′

1

(H1) ≤ H2 ≤ H1 and by (4.5) we

have (H1, µ
′

1) ≈ (H2, µ
′

2) where µ
′

2 = µ
′

1|(H2) so that (G, µ) ≈ (H2, µ
′

2).

Continuing the above process, we get a sequence of subgroups of H,

V ∗
µ (G) ≤ V ∗

µ
′ (H) ≤ V ∗

µ
′

1

(H1) ≤ . . . ≤ H2 ≤ H1 ≤ H

with the property that (G, µ) ≈ (Hi, µ
′

i) for each i ≥ 0. If however
G

V ∗
µ (G)

, and hence

H

V ∗
µ
′ (G)

, satisfies the descending chain condition on subgroups, then it follows that

for some i ≥ 0 we have Hi = Hi+1. But this is equivalent to G = H, as desired. �

Proposition 4.2. Let FV be a fuzzy variety and let (α, β) be a FV-isologism between

(G, µ) and (H, λ). Let M � G and put α(
MV ∗

µ (G)

V ∗
µ (G)

) =
N

V ∗
λ (H)

. Then

β(µ[MV ∗G]) = λ[NV ∗H].

Proof. Since (α, β) is a FV-isologism between (G, µ) and (H, λ), both α, β are iso-

morfisms such that,

α :
G

V ∗
µ (G)

−→
H

V ∗
λ (H)

β : µV (G) −→ λV (H)

and

β(µ(v(g1, g2, ..., gs))) = λ(v(h1, ..., hs)) whenever hi ∈ α(giV
∗
µ (G)), i = 1, ..., s.

Let m ∈ M, g1, . . . , gs ∈ G and v(x1, . . . , xs) ∈ V .choose hi ∈ α(giV
∗
µ (G))(i = 1, ..., s)

and n ∈ α(mV ∗
µ ). By definition of FV-isologism we have that ,

β(µ(v(g1, . . . , gim, ..., gs))) = λv(h1, . . . , hin, hs)

therefore

β(µ(v(g1, . . . , gim, ..., gs)v(g1, ..., gs)
−1)) = λ(v(h1, . . . , hin, hs)v(h1, . . . , hs)

−1).
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We conclude that β(µ[MV ∗G]) ⊆ λ[NV ∗H] and the reverse inclusion follows by

applying the above arguments to β−1. �

There are many concepts in varieties of groups that can be viewed on fuzzy varieties

in the next research.
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