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Sα-CONNECTEDNESS IN TOPOLOGICAL SPACES

B. K. TYAGI(1), MANOJ BHARDWAJ(2) AND SUMIT SINGH(3)

Abstract. In this paper, connectedness of a class of Sα-open sets in a topo-

logical space X is introduced. The connectedness of this class on X, called Sα-

connectedness, turns out to be equivalent to connectedness of X when X is locally

indiscrete or with finite α-topology. The Sα-continuous and Sα-irresolute map-

pings are defined and their relationship with other mappings such as continuous

mappings and semi-continuous mappings are discussed. An intermediate value the-

orem is obtained. The hyperconnected spaces constitute a subclass of the class of

Sα-connected spaces.

1. Introduction

The study of connectedness via various generalized open sets is not a new idea

in topological spaces. Njastad [10] introduced the α-open sets and investigated the

topological structure on the class of these sets; the α-open sets form a topology. The

classes of semi-open sets [7] , β-open sets [1] , αβ-open sets [14], Pβ-open sets [13] and

Sα-open sets [17] were introduced. The classes of β-open, α-open and semi-open sets

contain the class of open sets. Based on these classes, the concepts of β-connectedness

[9, 12, 4], α-connectedness [4], semi-connectedness [11] and αβ-connectedness [14] were
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introduced, respectively. It is already known that connectedness of a topological space

X is equivalent to α-connectedness of X. Here a connectedness based on the class of

Sα-open sets called Sα-connectedness is introduced in a topological space X, which

turns out to be stronger than the connectedness of the original topology, but it turns

out to be equivalent to connectedness in case of finite α-topologies on X. The class

of Sα-connected spaces contains the class of hyperconnected spaces and also contains

the class of hyperconnected modulo an ideal spaces [15]. It is shown that in the

class of locally indiscrete spaces, the classes of open sets, Sα-open sets and semi-open

sets coincide. Through this, it is shown that R is not Sα-connected. One might be

interesting to study the connectedness of smaller class than the class of semi-open

sets under which R is not connected. It motivates to study Sα-connectedness.

This paper is organised as follows. In Section-2, the basic properties of Sα-open

sets are developed, Sα-closure and its properties are obtained and the notion of a

Sα-continuous function is defined. In Section-3, the notion of Sα-connectedness is in-

troduced and its relationship with various other weaker and stronger forms of connect-

edness is investigated. It is shown that in a locally indiscrete space Sα-connectedness

is equivalent to connectedness. Several characterizations of Sα-connected spaces are

obtained. It is shown that the class of hyperconnected spaces is a subclass of Sα-

connected spaces. Section-4 contains the properties of Sα-connected sets. In Section-

5, we introduced the notion of Sα-irresolute function and studied the behaviour of

Sα-connected spaces with respect to several type of mappings. Section-6 covers the

concept of Sα-component. It is shown that Sα-component of a space containing a

point is contained in the component containing that point.
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2. Preliminaries

Let (X, τ) or X be a topological space or a space. We will denote by Cl(A) and

Int(A) the closure of A and the interior of A, for a subset A of X, respectively.

Definition 2.1. A subset A of a topological space X is said to be

(1) α-open [10] if A ⊆ Int(Cl(Int(A)))

(2) β-open [1] if A ⊆ Cl(Int(Cl(A)))

(3) semi-open [7] if A ⊆ Cl(Int(A))).

The complement of a α-open (β-open, semi-open) set is said to be α-closed

(resp. β-closed, semi-closed).

Definition 2.2. (1) A semi-open subset A of a topological space X is said to

be Sα-open [17] if for each x ∈ A there exists a α-closed set F such that

x ∈ F ⊆ A.

(2) A α-open subset A of a topological space X is said to be αβ-open [14] if for

each x ∈ A there exists a β-closed set F such that x ∈ F ⊆ A.

A subset B of topological space X is Sα-closed (αβ-closed) if X \ A is

Sα-open (resp., αβ-open) in X.

The family of all α-open ( β-open, Sα-open, semi-open, α-closed, semi-closed, β-

closed, Sα-closed) subsets of X is denoted by αO(X)(resp., βO(X), SαO(X), SO(X),

αC(X), SC(X), βC(X), SαC(X)).

We have the following inclusions: τ ⊆ αO(X) ⊆ SO(X) ⊆ βO(X) and SαO(X) ⊆

SO(X) ⊆ βO(X).

Definition 2.3. [17] A point x ∈ X is said to be an Sα-interior point of A ⊆ X

if there exists an Sα-open set U containing x such that x ∈ U ⊆ A. The set of all

Sα-interior points of A is said to be Sα-interior of A and it is denoted by SαInt(A).
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Lemma 2.1. The interior of a nonempty semi-open and hence Sα-open set in a space

is nonempty.

Proof. Follows directly from the definition of a semi-open set. �

Definition 2.4. [17] Intersection of all Sα-closed sets containing F is called the Sα-

closure of F and it is denoted by SαCl(F ).

It may be noted that Sα-open sets are obtained from semi-open sets but this col-

lection neither contains the collection of open sets nor it is contained in the collection

of open sets. Thus, the study of Sα-open sets is meaningful.

Example 2.1. Let X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}. Then SO(X) =

{∅, {a}, {b}, {a, b}, {a, c}, {b, c}, X} and SαO(X) = {∅, {a, c}, {b, c}X}. Here {a} ∈ τ

but {a} /∈ SαO(X) and {b, c} ∈ SαO(X) and {b, c} /∈ τ

Lemma 2.2. If A is dense in a space X, then SαCl(A) = X.

Proof. Suppose that SαCl(A) = F ⊂ X. Then F is semi-closed since F is Sα-closed.

Therefore, Int(Cl(A)) ⊆ Int(Cl(F )) ⊆ F . �

Theorem 2.1. The Sα-closure of a dense subset of a connected space is connected.

Proof. Follows from Lemma 2.2. �

Definition 2.5. A topological space X is said to be

(1) locally indiscrete [6] if every open subset of X is closed.

(2) hyperconnected [6] if every nonempty open subset of X is dense in X.

Theorem 2.2. If X is a hyperconnected space, then the Sα-closure of any non-empty

open set is X.

Proof. Follows from Lemma 2.2. �
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Definition 2.6. Let X and Y be two topological spaces. A function f from X to Y

is Sα-continuous at a point x ∈ X if for each open set V in Y containing f(x), there

exists an Sα- open set U in X containing x such that f(U) ⊆ V . If f is Sα-continuous

at every point x of X, then it is called Sα-continuous on X.

Theorem 2.3. Let X and Y be two topological spaces. A function f from X to Y is

Sα-continuous if and only if the inverse image of every open set in Y is Sα-open in

X.

Proof. Let V be any open set in Y . If f−1(V ) = ∅, then it is obviously Sα-open. If

f−1(V ) 6= ∅, then for any x ∈ f−1(V ), f(x) ∈ V . Since f is Sα-continuous, there

exists an Sα open set U in X containing x such that f(U) ⊆ V . Then f−1(V ),

being the union of Sα-open sets, is Sα-open in X. The converse follows from the

definition. �

Definition 2.7. Let X and Y be two topological spaces. A function f from X to

Y is semi-continuous [7](α-continuous [5, 8], αβ-continuous [14]) at a point x ∈ X

if for each open set V in Y containing f(x), there exists a semi-open(resp. α-open,

αβ-open) set U in X containing x such that f(U) ⊆ V . If f is semi-continuous (α-

continuous, αβ-continuous) at every point x of X, then it is called semi-continuous

(resp., α-continuous, αβ-continuous) on X.

3. Sα-Connected Space

Definition 3.1. Two nonempty subsets A and B of a topological space X are said

to be

(1) Sα-separated if A ∩ SαCl(B) = ∅ = SαCl(A) ∩B.

(2) α-separated [4] if A ∩ αCl(B) = ∅ = αCl(A) ∩B.

(3) semi-separated [11] if A ∩ SCl(B) = ∅ = SCl(A) ∩B.

(4) β-separated [4, 9, 12] if A ∩ βCl(B) = ∅ = βCl(A) ∩B.
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(5) αβ-separated [14] if A ∩ αβCl(B) = ∅ = αβCl(A) ∩B.

It is obvious that two Sα-separated sets are disjoint. If A and B are two Sα-

separated sets in X with ∅ 6= C ⊂ A and ∅ 6= D ⊂ B. Then C and D are also Sα-

separated sets in X.

The following example constructs Sα- separated sets:

Example 3.1. In Example 2.1, let A = {a} and B = {b}.Then SαCl(A) = A and

SαCl(B) = B. Therefore, A ∩ SαCl(B) = SαCl(A) ∩ B = A ∩ B = ∅. Thus, A and

B are Sα-separated sets.

Definition 3.2. A subset S of a topological space X is said to be

(1) Sα-connected in X if S is not the union of two Sα-separated sets in X.

(2) α-connected [4] in X if S is not the union of two α-separated sets in X.

(3) semi-connected [11] in X if S is not the union of two semi-separated sets in

X.

(4) β-connected [4, 9, 12] in X if S is not the union of two β-separated sets in X.

(5) αβ-connected [14] in X if S is not the union of two αβ-separated sets in X.

Example 3.2. (1) In Example 2.1, X cannot be expressed as the union of two

Sα-separated sets in X. Thus, X is Sα-connected.

(2) An infinite space with cofinite topology is Sα-connected.

Theorem 3.1. A topological space X is Sα-connected if and only if X cannot be

expressed as the union of two disjoint nonempty Sα-open subsets of X.

Proof. Let X be Sα-connected, and A and B be two disjoint nonempty Sα-open

subsets of X such that X = A ∪ B. Then A and B are Sα-closed in X. Thus,

A ∩ SαCl(B) = ∅ = SαCl(A) ∩ B. Then X is not Sα-connected, a contradiction.
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Conversely, suppose that X = A∪B,A 6= ∅ 6= B and A∩SαCl(B) = ∅ = SαCl(A)∩B.

Then A and B are nonempty disjoint Sα-open sets, a contradiction. Thus, X is Sα-

connected. �

Lemma 3.1. A clopen subset of a topological space X is both Sα-open and Sα-closed.

Proof. Let A be both open and closed in X. Then A is semi-open and α-closed. Then

A is Sα-open. Similarily, X \ A is also Sα-open. �

Example 3.3. Let R be a space with usual topology. Then (a, b) is both Sα-open and

Sα-closed set but it is not a clopen set.

Theorem 3.2. For a topological space X, the following are equivalent :

(1) X is Sα-connected.

(2) The only subsets of X which are both Sα-open and Sα-closed are X and the

empty set.

(3) There is no nonconstant onto Sα-continuous function from X to a discrete

space which contains more than one point.

Proof. (1)⇒(2). Follows from Theorem 3.1.

(2)⇒(3). Let Y be a discrete space with more than one point, and f : X → Y be onto

Sα-continuous function. Let y ∈ Y and A = {y}. Since f : X → Y is Sα-continuous

and onto, by Theorem 2.3, f−1(A) is nonempty, Sα-open and Sα-closed subset in X.

Since f−1(A) is nonempty, f−1(A) = X. That is, f is constant.

(3)⇒(1). Suppose that X is not Sα-connected. If X = A ∪ B, where A and B are

nonempty subsets of X such that SαCl(A) ∩ B = ∅ and SαCl(B) ∩ A = ∅. Then A

and B both are Sα-open sets in X. Assume that Y = {0, 1} with discrete topology.

We define a map f from X to Y by f(x) = 0 if x ∈ A and f(x) = 1 if x ∈ B. Then

f is nonconstant Sα-continuous and onto mapping, a contradiction to (3). �
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Lemma 3.2. [17] If X is hyperconnected, then SαO(X) ∩ SαC(X) = {∅, X}.

Theorem 3.3. If a space X is hyperconnected, then it is Sα-connected.

Proof. Follows from Lemma 3.2 and Theorem 3.2. �

Remark 1. In Theorem 3.3, we have essentially proved that if a topological space

(X, τ) is hyperconnected, then the generalized topological space (X,µ), where, µ =

SαO(X) is µ-connected in the sense of Császár [2] and Tyagi et al. [16]. However,

if we take any arbitrary generalized topology µ on X which is finer than SαO(X)

or incomparable with it, then the generalized topological space (X,µ) need not be

µ-connected even if τ ⊆ µ. For example, let X be a countable infinite set with

cofinite topology τ . Then for a fixed element a ∈ X, µ = τ ∪ {{a}} is a generalized

topology on X. Now (X, τ) is hyperconnected but (X,µ) is not µ-connected since

{a} is µ-clopen.

In contrast to connectedness of topological spaces, if a topology τ1 is finer than the

topology τ2, then Sα-connectedness of (X, τ2) does not imply the Sα-connectedness

of (X, τ1).

Example 3.4. Let X = {a, b, c} and τ1 = {∅, {a}, {b}, {a, b}, {a, c}, X} and τ2 =

{∅, {a, b}, X}. Then τ2 ⊆ τ1. Now in (X, τ1), SO(X) = {∅, {a}, {b}, {a, b}, {b, c}, {a,

c}, X} and SαO(X) = {∅, {b}, {b, c}, {a, c}, X} and in (X, τ2), SO(X) = {∅, {a, b}, X

} and SαO(X) = {∅, X}. So (X, τ2) is Sα-connected but (X, τ1) is not Sα-connected

as {b} and {a, c} are Sα-separated sets or Sα-separation of X in τ1.

Theorem 3.4. [14] A topological space X is αβ-connected if and only if X is con-

nected.

Theorem 3.5. If a space X is Sα-connected, then it is connected.
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Proof. Let X be Sα-connected. Then the only subsets of X which are both Sα-open

and Sα-closed in X are ∅ and X. Suppose that X is not connected, then there is a

nonempty proper subset A of X which is both open and closed. By Lemma 3.1, A is

both Sα-open and Sα-closed in X, a contradiction. �

Example 3.5. Let R be a space with usual topology. Then R is connected but the

sets (a, b) and R \ (a, b) constitute a Sα-separation on X.

Theorem 3.6. [4] A topological space X is connected if and only if X is α-connected.

Theorem 3.7. [14] A topological space X is αβ-connected if and only if X is α-

connected.

Theorem 3.8. If a space X is semi-connected, then it is Sα-connected.

Proof. Follows from the fact that SαO(X) ⊆ SO(X). �

Theorem 3.9. [17] If a space X is T1 or locally indiscrete, then SαO(X) = SO(X).

Corollary 3.1. A T1-space or locally indiscrete space X is semi-connected if and

only if X is Sα-connected.

Theorem 3.10. If a space X is locally indiscrete, then SαO(X) = SO(X) = τ .

Proof. It is sufficient to show that every semi-open set is open in X. Let A be a semi-

open set in X. Then A ⊆ Cl(Int(A)). Since X is locally indiscrete, Cl(Int(A)) =

Int(A). �

Corollary 3.2. A locally indiscrete space X is connected if and only if X is Sα-

connected.

Here we consider finite α-topology, that is, a topology with finite number of α-open

sets.
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Theorem 3.11. Let X be a space with finite α-topology. Then X is α-connected if

and only if it is Sα-connected.

Proof. Suppose that X is not Sα-connected. Then there are Sα-separated sets A and

B such that X = A ∪B. Then A and B are α-closed, a contradiction. �

Corollary 3.3. Let X be a space with finite α-topology. Then X is connected if and

only if it is Sα-connected.

Remark 2. In Corollary 3.3, we have proved that µ-connectedness and connected-

ness are equivalent in case of finite α-topology, where µ = SαO(X). However, if

we take any arbitrary generalized topology µ on X which is finer than SαO(X) or

incomparable with it, then the generalized topological space (X,µ) need not be µ-

connected even if τ ⊆ µ. For example, Let (X, τ) be an indisrete topological space

and µ = {∅, A,X − A,X}. Then (X, τ) is connected but (X,µ) is not µ-connected

since A is µ-clopen. Here αO(X, τ) = {∅, X} and τ is finite α-topology.

Theorem 3.12. [10] The α-sets with respect to a given topology are exactly those

sets which may be written as a difference between an open set and a nowhere dense

set.

Theorem 3.13. If every closed set in a space X contains some nonempty open set,

then α-topology of X concides with the original topology.

Proof. Follows from Theorem 3.12. �

Theorem 3.14. Let X be a space with finite topology and every closed set in X con-

tains some nonempty open set. Then X is Sα-connected if and only if it is connected.

Proof. Follows from Theorem 3.13 and Corollary 3.3. �

We give a moderate figure for relationships of various strong forms of connectedness.
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Theorem 3.15. Generalization of Intermediate value theorem: Let f : X → R be a

Sα-continuous map from a Sα-connected space X to the real line R. If x and y are

two points of X such that a = f(x) and b = f(y), then every real number r between

a and b is attained at a point in X.

Proof. Suppose that there is no point c ∈ X, such that f(c) = r. Then A = (−∞, r)

and (r,∞) are disjoint open sets in R. Since f is Sα-continuous, f−1(A) and f−1(B)

are disjoint Sα-open sets in X and X = f−1(A) ∪ f−1(B), a contradiction. �

4. Properties of Sα-connected sets

The Sα-closure of a subset A in a space X may be distinct from the closure of

A. Thus, the results in the following section can not be inferred from the known

corrosponding results for connectedness, however the proofs are parallel.

Theorem 4.1. If A is a Sα-connected set of a topological space X and U, V are

Sα-separated sets of X such that A ⊆ U ∪ V , then either A ⊆ U or A ⊆ V .

Proof. Since A = (A∩U)∪(A∩V ), we have (A∩U)∩SαCl(A∩V ) ⊆ U∪SαCl(V ) = ∅.

If A ∩ U and A ∩ V are nonempty, then A is not Sα-connected, a contradiction.

Therefore, either A ⊆ U or A ⊆ V . �
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Theorem 4.2. If A is Sα-connected set of a topological space X and A ⊆ N ⊆

SαCl(A), then N is Sα-connected.

Proof. Assume that N is not Sα-connected set. Then there exist Sα-separated sets

U and V such that N = U ∪ V .By Theorem 4.1, either A ⊆ U or A ⊆ V . If A ⊆ U ,

then SαCl(A) ∩ V = ∅, a contradiction. The proof is now complete. �

Corollary 4.1. If A is a Sα-connected subset of a topological space X, then SαCl(A)

is Sα-connected.

Theorem 4.3. Let A and B be subsets of a topological space X. If A and B are

Sα-connected and not Sα-separated, then A ∪B is Sα-connected.

Proof. Suppose that A∪B is not Sα-connected. Then there are Sα-separated sets C

and D in X such that A ∪ B = C ∪ D. By Theorem 4.1, either A ⊆ C or A ⊆ D

and B ⊆ C or B ⊆ D. If A ⊆ C and B ⊆ C, then (A ∪ B) ⊆ C and D = ∅, a

contradiction. If A ⊆ C and B ⊆ D, then A and B are Sα-separated sets in X, a

contradiction. �

Theorem 4.4. If {Bγ; γ ∈ Γ} is a nonempty family of Sα-connected subsets of a

topological space X such that
⋂
Bγ 6= ∅, then

⋃
Bγ is Sα-connected.

Proof. Suppose that N =
⋃
Bγ and N is not Sα-connected. Then N = U ∪V , where

U and V are Sα-separated sets in X. Since
⋂
Bγ 6= ∅, there is a point x in

⋂
Bγ.

Since x ∈ N , either x ∈ U or x ∈ V . Suppose that x ∈ U . Since x ∈
⋂
Bγ, Bγ and U

intersect for each γ. By Theorem 4.1, Bγ must be in U for each γ ∈ Γ. Then N ⊆ U ,

a contradiction. The proof now follows. �

Theorem 4.5. If {An;n ∈ N} is an infinite sequence of Sα-connected subsets of a

topological space X and An ∩ An+1 6= ∅ for each n ∈ N, then
⋃
An is Sα-connected.

Proof. The proof follows by induction and Theorem 4.4. �
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5. Sα-Connectedness and Mappings

Definition 5.1. Let X and Y be two topological spaces. A function f from X to Y

is said to be Sα-irresolute if the inverse image of every Sα-open set in Y under f is

Sα-open in X.

Theorem 5.1. Let f be a Sα-irresolute function from space X onto a space Y . If X

is Sα-connected, then Y is Sα-connected.

Proof. Suppose that Y is not Sα-connected. Then there is a nonempty proper subset

A of Y which is both Sα-open and Sα-closed. Then inverse image of A under f is

both Sα-open and Sα-closed in X, a contradiction. �

Corollary 5.1. A Sα-irresolute function maps Sα-connected set onto connected set.

Theorem 5.2. Let f be a Sα-continuous function from a space X onto a space Y .

If X is Sα-connected, then Y is connected.

Proof. Suppose Y is not connected. Then there is A nonempty proper subset of X

which is both open and closed. Then the inverse image of A under f is both Sα-open

and Sα-closed in X, a contradiction. �

Though the concept of continuity, Sα-continuity and Sα-irresolute are independent

of each other but they behave similarly in case of Sα-connectedness, that is, these

functions map a Sα-connected set onto a connected set.

Theorem 5.3. If (X, τ) is locally indiscrete space and Y is any space. Then for any

function f : X → Y the following statements are equivalent:

(1) f is continuous.

(2) f is α-continuous.

(3) f is semi-continuous.
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(4) f is αβ-continuous.

(5) f is Sα-continuous.

Proof. Follows from the fact that in a locally indiscrete space (X, τ), αβO(X) =

αO(X) = τ = SO(X) = SαO(X). �

Theorem 5.4. Let X be a locally indiscrete Sα-connected space. Then it has indis-

crete topology.

Corollary 5.2. A locally indiscrete space X is Sα-connected space if and only if it

is hyperconnected.

Obviously, continuity implies semi-continuity.

Theorem 5.5. If X is a T1-space, then every semi-continuous function from X to a

space Y is Sα-continuous.

Proof. Follows from Theorem 3.9. �

Theorem 5.6. If X is a T1 space, then every Sα-irresolute function from X to any

space is Sα-continuous and also semi-continuous.

Proof. Since X is T1, τ ⊆ SαO(X) = SO(X). The proof is now immediate. �

Theorem 5.7. Let f be a function from a space X to a space Y . If f is Sα-

continuous, then it is semi-continuous.

Proof. Follows from the fact that SαO(X) ⊆ SO(X). �

Definition 5.2. A bijective function f from (X, τ) to (Y, µ) is said to be Sα-homeomorphism

if f and f−1 both are Sα-irresolutes.

Definition 5.3. [3] A bijective function f from a space X to a space Y is said to be

semi-homeomorphism if
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(1) f is semi-irresolutes (i.e. f−1(V ) is semi-open in X for each semi-open V in

Y )

(2) f is pre-semi-open map (i.e. images of semi-open sets are semi-open).

Theorem 5.8. A Sα-homeomorphism preserves Sα-connectedness.

Theorem 5.9. [3] Every homeomorphism is a semi-homeomorphism.

Theorem 5.10. Every homeomorphism is Sα-homeomorphism.

Proof. Let f be any homeomorphism from X to Y . It is sufficient to show that f

is Sα-irresolute. Suppose that V ∈ SαO(Y ) and f−1(V ) = U . Then by Theorem

5.9, U is semi-open in X, since V is semi-open. Let x ∈ U be arbitrary. Then

f(x) ∈ f(U) = V . Since V ∈ SαO(Y ), there is an α-closed set W in Y such that

f(x) ∈ W ⊆ V . It implies that x ∈ f−1(W ) ⊆ f−1(V ) and f−1(W ) is α-closed, since

f is a homeomorphism. �

Theorem 5.11. A homeomorphism preserves Sα-connectedness.

Proof. Follows from Theorem 5.8 and Theorem 5.10. �

Theorem 5.12. If X is Sα-connected space, then X × {a} is also Sα-connected.

Proof. Obviously, X is homeomorphic to X × {a}. Then by Theorem 5.11, X × {a}

is Sα-connected. �

Theorem 5.13. If X and Y are two Sα-connected spaces, then X × Y is also Sα-

connected.

Proof. For any point (a, b) in the product X×Y , by Theorem 4.3 and Theorem 5.12,

each of the subspace X × {b} ∪ {x} × Y is Sα-connected since it is the union of two

Sα-connected subspaces with a point in common. Then by Theorem 4.4, X × Y is

Sα-connected. �
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Theorem 5.14. Let Xβ, β ∈ A, be a family of spaces. If
∏
Xβ is Sα-connected, then

each Xβ is connected.

Proof. Let
∏
Xβ is Sα-connected. Then

∏
Xβ is connected. Since the projection

pγ :
∏
Xβ → Xγ is a continuous map. So each Xβ is connected. �

The following example shows that the converse of Theorem 5.14 is not true.

Example 5.1. Let X = R with usual topology on it. Then R is connected but
∏

Rβ

is not Sα-connected.

Theorem 5.15. Let Xβ, β ∈ A, be a family of spaces. If each Xβ is Sα-connected,

then
∏
Xβ is connected.

Proof. The proof follows from the fact that Sα-connectedness implies connectedness

and each Xβ is connected if and only if
∏
Xβ is connected. �

Example 5.2. Let X = R with usual topology on it. Then
∏

Rβ is connected but

each Rβ is not Sα-connected.

Theorem 5.16. If f : X → Y is α-homeomorphism and semi-homeomorphism, then

f is Sα-homeomorphism.

Proof. Let V ∈ SαO(Y ). Since f is a semi-homeomorphism, f−1(V ) is semi-open

in X. There exist a α-closed set F in Y such that f(x) ∈ F ⊆ V . Then x ∈

f−1(F ) ⊆ f−1(V ). Since f is α-homeomorphism, f−1(F ) is α-closed set in X. Thus,

f−1(V ) ∈ SαO(X). Now let U ∈ SαO(X). Since f is semi-homeomorphism, f(U)

is semi-open in Y . There exist a α-closed set E in X such that x ∈ E ⊆ U . Then

f(x) ∈ f(E) ⊆ f(U). Since f is α-homeomorphism, f(E) is α-closed set in Y . Thus,

f(V ) ∈ SαO(Y ). �

Corollary 5.3. If f : X → Y is α-homeomorphism and semi-homeomorphism, then

f preserves Sα-connectedness.
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6. Sα-components

Definition 6.1. Let x be any element of a space X. The Sα-component containing

x, CSα(x), is the union of all Sα-connected subsets of X which contain x.

By Theorem 4.4, the component CSα(x) is Sα-connected and hence connected. It

follows from its definition that CSα(x) is not properly contained in any Sα-connected

subset of X. Thus, CSα(x) is a maximal Sα-connected subset of X.

Lemma 6.1. If A is Sα-component of X containing x, then it is contained in com-

ponent of X containing x.

Theorem 6.1. Let X be a space. Then:

(1) Each Sα-component of X is Sα-closed.

(2) Each Sα-connected subset of X is contained in a Sα-component of X.

(3) The set of all Sα-components of X forms a partition of X.

Proof. (1) If CSα(x) is a Sα-component containing x in X, then CSα(x) is Sα-

connected. So SαCl(CSα(x)) is also Sα-connected. By the maximality of

CSα(x), we have CSα(x) = SαCl(CSα(x)). Thus, CSα(x) is Sα-closed in X.

(2) If A is a nonempty Sα-connected subset of X, then A ⊂ CSα(a) for each a in

A.

(3) For x ∈ X, {x} is Sα-connected. Then there is a Sα-component U ⊆ X

containing x. So X will be contained in the union of Sα-components. Let

C1 and C2 be two distinct Sα-components such that C1 ∩ C2 6= ∅. Then

C1 ∪ C2 is Sα-connected, which contradicts the fact that C1 and C2 are Sα-

components. Therefore C1 and C2 are disjoint. Thus, the Sα-components

constitute a partition of X.

�
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Theorem 6.2. If X has finite number of components, then each component is both

Sα-open and Sα-closed.

Proof. If a space X has finite number of components, then each component is both

open and closed and hence by Lemma 3.1, both Sα-open and Sα-closed. �

Theorem 6.3. If X has finite number of Sα-components, then each Sα-component

is both Sα-open and Sα-closed.

Theorem 6.4. [17] If the family of semi-open subsets of a topological space X forms

topology on X, then the family of Sα-open sets also forms topology on X.

Theorem 6.5. Let the family of semi-open subsets of a topological space X be a

topology on X. If X has finite number of Sα-components, then each component is

both Sα-open and Sα-closed.

Proof. If the space X has finite number of Sα-components, then each Sα-component

is the complement of the union of other Sα-components and hence by Theorem 6.1

and Theorem 6.4, both Sα-open and Sα-closed. �

Theorem 6.6. If f : X → Y is Sα-continuous or Sα-irresolute and C(x) is the

component containing x in X, then f(CSα(x)) ⊆ C(f(x)).

Proof. Follows from Corollary 5.1 and Theorem 5.2. �

Corollary 6.1. If f is Sα-homeomorphism, then f(CSα(x)) = CSα(f(x)).

Corollary 6.2. If f is homeomorphism, then f(CSα(x)) = CSα(f(x)).

Theorem 6.7. Let X be a space with finite α-topology on it and f be Sα-homeomorphism.

Then f(C(x)) = C(f(x))

Theorem 6.8. A Sα-connected, Sα-open and Sα-closed subset A of a space X is a

Sα-component of X.
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Proof. If possible, suppose that A is not a Sα-component of X. Then A ⊂ B and B is

Sα-component of X. By Theorem 6.1, B is Sα-closed. Therefore, B \A is Sα-closed.

Then A and B \ A constitute a Sα-separation of B, a contradiction. �

Theorem 6.9. A Sα-connected, Sα-open and Sα-closed subset A of a space X with

finite α-topology, is a component of X.

Definition 6.2. A space X is called locally Sα-connected at x ∈ X if for each Sα-

open set U containing x, there is a Sα-connected Sα-open set V such that x ∈ V ⊆ U .

The space X is locally Sα-connected if it is locally Sα-connected at each of its points.

Theorem 6.10. A space X is locally Sα-connected if and only if the Sα-components

of each Sα-open subset of X are Sα-open.

Proof. Suppose that X is locally Sα-connected. Let U be an Sα-open subset of X

and C be a Sα-component of U . If x ∈ C, then there is a Sα-connected Sα-open

set V ⊆ X such that x ∈ V ⊆ U . Since C is a Sα-component of U and V is a Sα-

connected subset of U containing x, V ⊆ C. Thus, C is a Sα-open set. Conversely,

let U ⊆ X be a Sα-open set, and x ∈ U . By our hypothesis, the Sα-component V of

U containing x is Sα-open, so X is locally Sα-connected at x. �

Theorem 6.11. Let f : X → Y be a Sα-irresolute, Sα-closed surjection. If X is

locally Sα-connected, then Y is locally Sα-connected.

Proof. Suppose that X is locally Sα-connected. Let C be a Sα-component of U ∈

SαO(Y ), and let x ∈ f−1(C). Then there exists a Sα-connected Sα-open set V in X

such that x ∈ V ⊆ f−1(U), since X is locally Sα-connected and f−1(U) is Sα-open

in X. It follows that f(x) ∈ f(V ) ⊆ C for f(V ) is Sα-connected. So, by Theorem

6.10, x ∈ V ⊆ f−1(C), and f−1(C) ∈ SαO(X). Since f is Sα-closed surjection,

Y \ C = f(X \ f−1(C)) is Sα-closed. �
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