Jordan Journal of Mathematics and Statistics (JJMS) 12(2), 2019, pp 103 - 114

ON FARTHEST POINTS IN FUZZY NORMED SPACES

M. AHMADI. BASERI (1) AND H. MAZAHERI (2)

ABSTRACT. The main purpose of this paper is to find t-farthest points in fuzzy normed spaces. We introduce the concept of t-remotest fuzzy sets and give some interesting theorems. In particular, we study the set of all t-farthest points to an element from a set and discuss some properties of the this set.

1. Introduction

The theory of fuzzy sets was introduced by L. Zadeh [14] in 1965. The concept of a fuzzy norm on a linear space was initiated by Katsaras [9] in 1984. Later, some mathematicians defined notions for a fuzzy norm from different points of view. In particular, following [5], Bag and Samanta in [1] and [2], introduced and studied an idea of a fuzzy norm on a linear space in such a manner that its corresponding fuzzy metric is of Kramosil and Michalek type [10]. Since then, many mathematicians have studied fuzzy normed spaces from several angles [7, 8, 11]. The notion of the farthest points has many nice applications in the study of some geometrical properties of a normed linear space, see e.g. [3, 4].

In this paper, we use the notion of a fuzzy norm introduced in [13] to define the set of all t-farthest points on fuzzy normed spaces and investigate some interesting results.

¹⁹⁹¹ Mathematics Subject Classification. 41A65, 41A52, 46N10.

Key words and phrases. Fuzzy normed space, t-farthest point, t-remotest fuzzy set, Nearly compact set.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

In following, we recall some definitions and preliminaries that is need for main rsults.

Definition 1.1. [6] A binary operation $*:[0,1]\times[0,1]\to[0,1]$ is a continuous t-norm if * satisfying conditions:

- (i) * is commutative and associative,
- (ii) * is continuous,
- (iii) a * 1 = a for all $a \in [0, 1]$,
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ and $a; b; c; d \in [0, 1]$.

Definition 1.2. [6] The 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for all $x, y, z \in X$ and t, s > 0,

- (i) M(x, y, t) > 0,
- (ii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
- (iii) M(x, y, t) = M(y, x, t),
- (iv) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$ for all t, s > 0,
- (v) $M(x, y, .) : (0, \infty) \longrightarrow [0, 1]$ is continuous.

Definition 1.3. [6] Let (X, M, *) be a fuzzy metric space. A subset X is called fuzzy bounded (f-bounded), if there exist t > 0 and 0 < r < 1 such that M(x, y, t) > 1 - r for all $x, y \in X$.

Definition 1.4. [6] Let (X, M, *) be a fuzzy metric space and $\{x_n\}$ a sequence in X. Then $\{x_n\}$ is said convergent to $x \in X$ if for each $0 < \epsilon < 1$ and $t \in (0, \infty)$ there exists $N_0 \in \mathbb{N}$ such that $M(x_n, x, t) > 1 - \epsilon$ for each $n \geq N_0$.

Definition 1.5. [6] Let (X, M, *) be a fuzzy metric space. A subset A of X is said to be compact if any sequence $\{x_n\}$ in A has a subsequence converging to an element of A.

Every compact subset A of a fuzzy metric space (X, M, *) is f-bounded.

Proposition 1.1. [12] Let (X, M, *) be a fuzzy metric space. Then M is a continuous function on $X \times X \times (0, \infty)$.

Definition 1.6. [13] The 3-tuple (X, N, *) is said to be a fuzzy normed space if X is a vector space, * is a continuous t-norm and N is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$ and t, s > 0,

- (i) N(x,t) > 0,
- (ii) $N(x,t) = 1 \Leftrightarrow x = 0$,
- (iii) $N(\alpha x, t) = N(x, t/|\alpha|)$, for all $\alpha \neq 0$,
- (iv) $N(x,t) * N(y,s) \le N(x+y,t+s)$,
- (v) $N(x,.):(0,\infty)\longrightarrow [0,1]$ is continuous,
- (vi) $\lim_{t\to\infty} N(x,t) = 1$.

Lemma 1.1. [13] Let (X, N, *) be a fuzzy normed space. Then

- (i) N(x,t) is nondecreasing with respect to t for each $x \in X$,
- (ii) N(x y, t) = N(y x, t).

Remark 1. [13] As was shown in [13], every fuzzy normed space induces a fuzzy metric space on it and is therefore a topological space.

Lemma 1.2. [13] Let (X, N, *) be a fuzzy normed space. If we define

$$M(x, y, t) = N(x - y, t),$$

then M is a fuzzy metric on X, which is called the fuzzy metric induced by the fuzzy norm N.

Definition 1.7. [1] Let (X, N, *) be a fuzzy normed space. A subset B of X is said to be the closure of F if for any $x \in B$, there exists a sequence $\{x_n\}$ in F such that $\lim_{n\to\infty} N(x_n - x, t) = 1$, $\forall t > 0$. We denote the set B by \overline{F} .

Theorem 1.1. [1] Let (X, N, *) be a finite dimensional fuzzy normed space. Then a subset A is compact iff A is closed and bounded.

2. Main Results

Definition 2.1. Let W be a nonempty f-bounded subset of a fuzzy normed space (X, N, *). For $x \in X$, t > 0, let

$$\delta(W, x, t) = \inf_{w \in W} N(w - x, t).$$

An element $q_W^t(x) \in W$ is said to be a t-farthest point of x from W if

$$N(q_W^t(x) - x, t) = \delta(W, x, t).$$

Definition 2.2. Let W be a nonempty f-bounded subset of a fuzzy normed space (X, N, *). For $x \in X$, t > 0, we shall denote the set of all elements of t-farthest points of x from W by $F_W^t(x)$, i.e.,

$$F_W^t(x) = \{ w \in W : N(w - x, t) = \delta(W, x, t) \}.$$

If each $x \in X$ has at least one (one) t-farthest in W, then W is called a t-remotest fuzzy set (uniquely t-remotest fuzzy set).

Example 2.1. Let $X = \mathbb{R}^2$. For $a, b \in [0, 1]$, let a * b = ab. Define $N : \mathbb{R}^2 \times (0, \infty) \rightarrow [0, 1]$ by

$$N((x_1, x_2), t) = (\exp \frac{\sqrt{x_1^2 + x_2^2}}{t})^{-1}.$$

Then (X, N, *) is a fuzzy normed space. Let $W = \{(x_1, x_2) \in \mathbb{R}^2 : -1 \le x_1 \le 1, 0 \le x_2 \le x_1^2\}$. Clearly W is f-bounded. Then for $x = (x_0, y_0)$,

$$\delta(W, (x_0, y_0), t) = \inf\{N((x_1 - x_0, x_2 - y_0), t) : -1 \le x_1 \le 1, \ 0 \le x_2 \le x_1^2\}$$

$$= \inf\{(\exp \frac{\sqrt{(x_1 - x_0)^2 + (x_2 - y_0)^2}}{t})^{-1} : -1 \le x_1 \le 1, \ 0 \le x_2 \le x_1^2\}$$

Since

$$F_W^t(x_0, y_0) = \{(-1, 1): x_0 > 0, y_0 \le 0\}$$

$$F_W^t(x_0, y_0) = \{(-1, 0): x_0 > 0, y_0 > 0, y_0 \ne 1/2\}$$

$$F_W^t(x_0, y_0) = \{(-1, 0), (-1, 1): x_0 > 0, y_0 = 1/2\}$$

$$F_W^t(x_0, y_0) = \{(1, 1): x_0 < 0, y_0 \le 0\}$$

$$F_W^t(x_0, y_0) = \{(1, 0): x_0 < 0, y_0 > 0, y_0 \ne 1/2\}$$

$$F_W^t(x_0, y_0) = \{(1, 0), (1, 1): x_0 < 0, y_0 = 1/2\}$$

$$F_W^t(x_0, y_0) = \{(1, 0), (-1, 0): x_0 = 0, y_0 > 0\}$$

$$F_W^t(x_0, y_0) = \{(1, 1), (-1, 1): x_0 = 0, y_0 < 0\}$$

Therefore W is a t-remotest fuzzy set, but W is not a uniquely t-remotest fuzzy set.

Example 2.2. Let $X = \mathbb{R}$. For $a, b \in [0, 1]$, let a * b = ab. Define $N : \mathbb{R} \times (0, \infty) \rightarrow [0, 1]$ by

$$N(x,t) = \frac{t}{t + |x|}.$$

Then (X, N, *) is a fuzzy normed space. Let W = [0, 1]. Then for every x > 1, 0 is a t-farthest points of x from W and for every x < 0, 1 is a t-farthest points of x from W. So for each $x \in X$, $F_W^t(x)$ is a singleton. Therefore W is a uniquely t-remotest fuzzy set.

Theorem 2.1. Let W be a nonempty f-bounded subset of a fuzzy normed space (X, N, *). Then:

- (i) $\delta(W+y,x+y,t) = \delta(W,x,t)$, for every $x,y \in X$ and t > 0,
- $(ii)\ F_W^t(x+y)=F_W^t(x)+y,\ for\ every\ x,y\in X\ and\ t>0,$
- (iii) $\delta(\alpha W, \alpha x, t) = \delta(W, x, t/|\alpha|)$, for every $x \in X$, t > 0 and $\alpha \in \mathbb{R} \{0\}$,
- (iv) $F_{\alpha W}^{|\alpha|t}(\alpha x) = \alpha F_W^t(x)$, for every $x \in X$, t > 0 and $\alpha \in \mathbb{R} \{0\}$,
- (v) W is t-remotest fuzzy set (uniquely t-remotest fuzzy set.) if and only if W + y is

t-remotest fuzzy set (uniquely t-remotest fuzzy set.) for any given $y \in X$,

(vi) W is t-remotest fuzzy set (uniquely t-remotest fuzzy set.) if and only if αW is $|\alpha|t$ -remotest fuzzy set (uniquely $|\alpha|t$ -remotest fuzzy set.) for any given $\alpha \in \mathbb{R} - \{0\}$.

proof. (i) For any $x, y \in X$ and t > 0,

$$\delta(W + y, x + y, t) = \inf\{N((w + y) - (x + y), t) : w \in W\}$$
$$= \inf\{N(w - x), t) : w \in W\}$$
$$= \delta(W, x, t).$$

- (ii) Using (i), $w_0 \in F_{W+y}^t(x+y)$ if and only if $w_0 \in W+y$ and $\delta(W+y,x+y,t)=N(x+y-w_0,t)$ if and only if $w_0-y\in W$ and $\delta(W,x,t)=N(x-(w_0-y),t)$ if and only if $w_0-y\in F_W^t(x)$; i.e., $w_0\in F_W^t(x)+y$.
- (iii) For every $x \in X$, t > 0 and $\alpha \in \mathbb{R} \{0\}$,

$$\delta(\alpha W, \alpha x, t) = \inf\{N(\alpha w - \alpha x, t) : w \in W\}$$
$$= \inf\{N(w - x), t/|\alpha|\} : w \in W\}$$
$$= \delta(W, x, t/|\alpha|).$$

(iv) By (iii), $w_0 \in F_{\alpha W}^{|\alpha|t}(\alpha x)$ if and only if $w_0 \in \alpha W$ and $\delta(\alpha W, \alpha x, |\alpha|t) = N(\alpha x - w_0, |\alpha|t)$ if and only if $w_0/\alpha \in W$ and $N(x - w_0/\alpha, t) = \delta(W, x, t)$. So $w_0/\alpha \in F_W^t(x)$; i.e., $w_0 \in \alpha F_W^t(x)$.

- (v) follows from (ii).
- (vi) is an immediate consequence of (iv).

Definition 2.3. Let W be a nonempty f-bounded subset of a fuzzy normed space (X, N, *). The set W is said to be nearly compact, if for each $x \in X$, the sequence $\{w_n\}$ in W satisfying $N(x - w_n, t) \to \delta(W, x, t)$ contains a subsequence converging to an element of W.

Remark 2. Every compact set in a metric space is nearly compact.

Theorem 2.2. Let W be a nonempty compact subset of a fuzzy normed space (X, N, *). Then W is t-remotest fuzzy set.

proof. Since W is compact, hence W is nearly compact. So for each $x \in X$, the sequence $\{w_n\}$ in W satisfying $N(x-w_n,t) \to \delta(W,x,t)$. Let $\{w_{n_k}\}$ be the subsequence of $\{w_n\}$, then $\{w_{n_k}\}$ is convergent to $w_0 \in W$. By Lemma 1.2 and Proposition 1.1, N is a continuous function on $X \times (0,\infty)$. Hence $N(x-w_{n_k},t) \to N(x-w_0,t)$. Then $N(x-w_0,t) = \delta(W,x,t)$. Therefore W is t-remotest fuzzy set. \square

Corollary 2.1. Let W be a nonempty f-bounded and closed subset of a finite dimensional fuzzy normed space (X, N, *). Then W is t-remotest fuzzy set.

proof. It follows directly from Theorem 1.1 and Theorem 2.2. \Box

Theorem 2.3. Let W be a nonempty closed and f-bounded subset of a finite dimensional fuzzy normed space (X, N, *). Then for every $x \in X$, $F_W^t(x)$ is closed.

proof. By Corollary 2.1, W is t-remotest fuzzy set. Let sequence $\{w_n\}$ in $F_W^t(x)$ converges to w. So $w_n \in W$ and $\delta(W, x, t) = N(w_n - x, t)$. Since W is closed, hence $w \in W$. As N is a continuous function on $X \times (0, \infty)$, then $\lim_{n \to \infty} N(w_n - x, t) = N(w - x, t)$, and $\delta(W, x, t) = N(w - x, t)$. Therefore $w \in F_W^t(x)$. Hence $F_W^t(x)$ is closed.

1, $0 < w_2 < 1$ }. Clearly W is f-bounded. Then, for (2, -1),

$$\delta(W, (2, -1), t) = \inf_{(w_1, w_2) \in W} N((w_1 - 2, w_2 + 1), t)$$

$$= \inf_{(w_1, w_2) \in W} \frac{t}{t + \max\{|w_1 - 2|, |w_2 + 1|\}}$$

$$= \frac{t}{t + 2}.$$

Since

$$F_W^t(2,-1) = \{(w_1, w_2) \in W : N((w_1 - 2, w_2 + 1), t) = \delta(W, (2,-1), t)\}$$

$$= \left\{(w_1, w_2) \in W : \frac{t}{t + \max\{|w_1 - 2|, |w_2 + 1|\}} = \frac{t}{t+2}\right\}$$

$$= \{(w_1, w_2) \in W : w_1 = 0, 0 < w_2 < 1\}.$$

Hence $F_W^t(2,-1)$ is not closed.

Theorem 2.4. Let W be a nonempty f-bounded and closed subset of a finite dimensional fuzzy normed space (X, N, *). Then \overline{W} (closure of W) is t-remotest fuzzy set.

proof. Let sequence $\{x_n\}$ in W converges to x, then $x \in \overline{W}$. So \overline{W} is closed set. Let $w \in \overline{W}$, there exists a sequence $\{w_n\}$ in W such that for $\forall \epsilon \in (0,1), \ \forall t > 0,$ $N(w_n - w, t) > 1 - \epsilon$. For s = t + h

$$N(w,s) > N(w_n - w, t) * N(w_n, h)$$

> $(1 - \epsilon) * N(w_n, h)$.

Since W is f-bounded, there exists 0 < r < 1 such that $N(w_n, h) > 1 - r$. Then

$$N(w,s) > (1-\epsilon) * (1-r).$$

Put
$$1 - \delta = (1 - \epsilon) * (1 - r)$$
, $(0 < \delta < 1)$. So

$$N(w,s) > 1 - \delta$$
.

Therefore \overline{W} is f-bounded. By Corollary 2.1, \overline{W} is t-remotest fuzzy set.

Now we consider a set some what similar to the set $F_W^t(x)$ and study some properties of this set.

Let W be a nonempty f-bounded subset of a fuzzy normed space (X, N, *) and $x_0 \in X$. For each $z \in X$ we know that

$$\inf_{w \in W} N(w - z, t) \ge \inf_{w \in W} N(w - x_0, t_1) * N(x_0 - z, t_2),$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

Let us define the set $F^t(W, x_0)$ as

$$F^{t}(W, x_{0}) = \{ z \in X : \inf_{w \in W} N(w - z, t) = \inf_{w \in W} N(w - x_{0}, t_{1}) * N(x_{0} - z, t_{2}) \},$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

i.e.

$$F^{t}(W, x_{0}) = \{ z \in X : \delta(W, z, t) = \delta(W, x_{0}, t_{1}) * N(x_{0} - z, t_{2}) \},$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

Then $F^t(W, x_0)$ is a nonempty (since $x_0 \in F^t(W, x_0)$) closed subset of X.

Proposition 2.1. Let $w_n \in W$ be such that $\delta(W, z, t) = \lim_{n \to \infty} N(w_n - z, t)$ for each $z \in F^t(W, x_0) - \{x_0\}$. Then $\delta(W, x_0, t_1) * N(x_0 - z, t_2) = \lim_{n \to \infty} N(w_n - x_0, t) * N(x_0 - z, t_2)$, for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

proof. Since $z \in F^t(W, x_0) - \{x_0\}$. Hence

$$\delta(W, z, t) = \delta(W, x_0, t_1) * N(x_0 - z, t_2)$$

$$\leq N(w_n - x_0, t_1) * N(x_0 - z, t_2),$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$. So

$$\lim_{n \to \infty} N(w_n - z, t) \le \lim_{n \to \infty} N(w_n - x_0, t_1) * N(x_0 - z, t_2).$$

On the other hand

$$\lim_{n \to \infty} N(w_n - z, t) \ge \lim_{n \to \infty} N(w_n - x_0, t_1) * N(x_0 - z, t_2),$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$. Then

$$\lim_{n \to \infty} N(w_n - z, t) = \lim_{n \to \infty} N(w_n - x_0, t_1) * N(x_0 - z, t_2).$$

Therefore

$$\delta(W, x_0, t_1) * N(x_0 - z, t_2) = \lim_{n \to \infty} N(w_n - x_0, t_1) * N(x_0 - z, t_2).$$

Proposition 2.2. Let $z \in F^t(W, x_0)$ and $y \in F^t(W, z)$ then $\delta(W, y, t) \leq \delta(W, x_0, t) * N(x_0 - y, 2t_2)$, for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

proof. Since $z \in F^t(W, x_0)$ and $y \in F^t(W, z)$. Hence

$$\begin{split} \delta(W,y,t) &= \delta(W,z,t_1) * N(y-z,t_2) \\ &\leq \delta(W,z,t) * N(y-z,t_2) \\ &= \delta(W,x_0,t_1) * N(x_0-z,t_2) * N(y-z,t_2) \\ &\leq \delta(W,x_0,t_1) * N(x_0-y,2t_2) \\ &\leq \delta(W,x_0,t) * N(x_0-y,2t_2), \end{split}$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$.

Proposition 2.3. Let $W \subseteq W_1$, and $x_0 \in X$ be such that

$$\delta(W, x_0, t) = \delta(W_1, x_0, t),$$

then $F^t(W, x_0) \subseteq F^t(W_1, x_0)$.

proof. Let $z \in F^t(W, x_0)$. So

$$\delta(W, z, t) = \delta(W, x_0, t_1) * N(x_0 - z, t_2)$$

$$= \delta(W_1, x_0, t_1) * N(x_0 - z, t_2)$$

$$= \delta(W_1, z, t).$$

for every $t_1, t_2 > 0$ and $t = t_1 + t_2$. Which implies that $z \in F^t(W_1, x_0)$.

References

- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11
 (3) (2003), 687-706.
- [2] T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005), 513-547.
- [3] M. Baronti and P. L. Papini, Remotal sets revisited, Taiwanese J. Math. 5 (2001), 367-373.
- [4] S. Cobzas, Geometric properties of Banach spaces and the existence of nearest and farthest points, Abstr. Appl. Anal. 3 (2005), 259-285.
- [5] S. C. Chang and J. N. Mordeson, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc. 86 (1994), 429-436.
- [6] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64 (1994), 395-399.
- [7] H. R. Goudarzi, t-proximinal sets in fuzzy normed spaces, Journal of Fuzzy Set Valued Analysis,
 1 (2016), 19-27.
- [8] S. A. Kamel Mirmostafaee, Fuzzy farthest points in the space of fuzzy continuous functions, Journal of Fuzzy Mathematics, 22 (2014), 761-768.
- [9] A. K. Katsaras, Fuzzy topological vector space II, Fuzzy set and System, 12 (1984), 143-154.
- [10] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11, 5 (1975), 336-344.
- [11] M. Mirzavaziri and S. A. Kamel Mirmostafaee, Closability of farthest point maps in fuzzy normed spaces, Bulletin of Mathematical Analysis and Applications, 2 (2010), 140-145.
- [12] J. Rodrguez-López and S. Romaguera, The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, 147 (2) (2004), 273-283.

- [13] R. Saadati and S. M. Vaezpour, Some results on fuzzy Banach spaces, J. Appl. Math. Computing, 17 (1-2) (2005), 475-484.
- [14] L. A. Zade, Fuzzy sets, Information and Control 8 (1965), 338-353.
 - (1,2) Department of Mathematics, Yazd University, Yazd, Iran.

E-mail address: (1) m.ahmadi@stu.yazd.ac.ir

E-mail address: (2) hmazaheri@yazd.ac.ir