ON THE DUAL OF WEAKLY PRIME AND SEMIPRIME MODULES

R. BEYRANVAND

ABSTRACT. The weakly second modules (the dual of weakly prime modules) was introduced in [6]. In this paper we introduce and study the semisecond and strongly second modules. Let R be a ring and M be an R-module. We show that M is semisecond if and only if $MI = MI^2$ for any ideal I of R. It is shown that every sum of the second submodules of M is a semisecond submodule of M. Also if M is an Artinian module, then M has only a finite number of maximal semisecond submodules. We prove that every strongly second submodule of M is second and every minimal submodule of M is strongly second. If every nonzero submodule of M is (weakly) second, then M is called fully (weakly) second. It is shown that if R is a commutative ring, then M is fully second if and only if M is fully weakly second, if and only if M is a homogeneous semisimple module.

1. Introduction

Throughout the paper, all rings will have identity elements and all modules will be right unitary. The notation " \subset " is used to denote strict inclusion. Also, R denotes an arbitrary ring with identity element. Let M be an R-module. Then the annihilator of M (in R) is the ideal $\operatorname{ann}_R(M) = \{r \in R \mid Mr = 0\}$. For any submodule N of M and any ideal I of R, the submodule $\{x \in M \mid xI \subseteq N\}$ of M is denoted by $(N:_M I)$. A proper submodule N of a right R-module M is said to be a prime submodule of

Received: Feb. 15, 2018 Accepted: Sept. 3, 2018.

²⁰⁰⁰ Mathematics Subject Classification. 16D10, 16D80, 16N60.

 $[\]label{eq:Key words} \textit{Key words and phrases}. \text{ weakly second modules, semisecond modules, weakly prime modules}. \\ \text{Copyright } \textcircled{c} \text{ Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.}$

M if for any submodule K of M and any ideal I of R, $KI \subseteq N$ implies that $K \subseteq N$ or $MI \subseteq N$, i.e., $\operatorname{ann}_R(M/N) = \operatorname{ann}_R(K/N)$, for any $N \subset K \leq M$ (see [8]). Also a proper submodule N of a right R-module M is said to be a weakly prime submodule of M if for any submodule K of M and any two ideals I, J of R, $KIJ \subseteq N$ implies that $KI \subseteq N$ or $KJ \subseteq N$, i.e., $\operatorname{ann}_R(K/N)$ is a prime ideal of R, for any $N \subset K \leq M$. Moreover, a module M is called a prime module (resp., weakly prime module) if (0) is a prime (resp., weakly prime) submodule of M. The notion of weakly prime modules is a generalization of prime modules and has been introduced by Behboodi and Koohi in [5]. Also if R is commutative, then it is easy to see that N is weakly prime if and only if for any $K \leq M$ and two elements a and b of a, b implies that b if a or b if a is commutative, then it is easy to see that a implies that a is a only if for any a in a and a only if for any a in a in

Let us mention another notion used for weakly prime submodule in the literature. Let M be an R-module over a commutative ring R and N be a proper submodule of M. For instance in [9, 12], N is called a weakly prime submodule of M, if for any $m \in M$ and $r \in R$, $0 \neq mr \in N$ implies that $m \in N$ or $Mr \subseteq N$. In the following, we show that the notion of weakly prime used in [9, 12] and what we use in this paper are independent. We note that the zero submodule in any module is always weakly prime regarding the sense used in [9, 12]. However, in \mathbb{Z}_{30} as a \mathbb{Z} -module, (0) is not weakly prime submodule. Because $2\mathbb{Z}_{30}(3)(5) = 0$, but $2\mathbb{Z}_{30}(3) \neq 0$ and $2\mathbb{Z}_{30}(5) \neq 0$. On the other hand, it is easy to see that in $\mathbb{Z} \oplus \mathbb{Z}$ as a \mathbb{Z} -module, $(0) \oplus 2\mathbb{Z}$ is a weakly prime submodule. However, $0 \neq ((0) \oplus \mathbb{Z})(2) \subseteq (0) \oplus 2\mathbb{Z}$, but $(0) \oplus \mathbb{Z} \nsubseteq (0) \oplus 2\mathbb{Z}$ and $(\mathbb{Z} \oplus \mathbb{Z})(2) \nsubseteq (0) \oplus 2\mathbb{Z}$ which means $(0) \oplus 2\mathbb{Z}$ is not weakly prime regarding the sense used in [9, 12].

A nonzero R-module M is called a second module (the dual of a prime module) if $\operatorname{ann}_R(M) = \operatorname{ann}_R(M/N)$ for every proper submodule N of M. This notion was introduced and studied by Yassemi in [14], for modules over commutative rings. Moreover,

in [7], the authors generalized second modules from commutative rings to noncommutative setting. The dual notion of a weakly prime module over noncommutative rings was introduced by the author in [6] and some properties of this class of modules have been considered. A nonzero R-module M is a weakly second (resp., semisecond) module if $\operatorname{ann}_R(M/N)$ is a prime (resp., semiprime) ideal of R for every proper submodule N of M. By a second (resp., weakly second, semisecond) submodule of a module we mean a submodule which is also a second (resp., weakly second, semisecond) module.

Prime and weakly prime modules are interesting topics which have been studied by many researchers, see [2, 5, 7, 8, 14]. It is natural to ask the following question: to what extent dose the dual of these results hold for weakly second modules. The purpose of this paper is to obtain more information about this class of modules.

Let M be an R-module and N be a submodule of M. In Section 2, we show that the proper submodule N of M is weakly prime if and only if for any two ideals I and J of R, $(N:_MIJ)=(N:_MI)$ or $(N:_MIJ)=(N:_MJ)$ (Proposition 2.1). Some characterizations of semisecond modules are given (Proposition 2.2). $0 \neq N$ is called a secondary submodule of M if for each ideal I of R, NI=N or $NI^n=0$, for some integer number n. It is shown that if N is a secondary and semisecond submodule of M, then N is weakly second (Proposition 2.3). Also if M is an Artinian module, then M has only a finite number of maximal semisecond submodules (Theorem 2.1). As an interesting result, we prove that every nonzero submodule of M is semisecond if and only if every proper submodule of M is semiprime (Theorem 2.2). A nonzero submodule S of an R-module M is called strongly second if for every two submodules L_1 and L_2 of M and nonzero ideal I of R, $S \subseteq (L_1:_MIann_R(L_2\cap S))$ implies that $SI \subseteq L_1$ or $S \subseteq L_2$. We show that if V is a vector space over a division ring and W is a subspace of V, then W is a minimal subspace of V if and only if W is a strongly

second subspace of V (Proposition 2.5).

In Section 3, we study the fully weakly second modules. A nonzero R-module M is called fully (weakly) prime if each proper submodule of M is a (weakly) prime submodule. Also we say that M is fully (weakly) second if each nonzero submodule of M is a (weakly) second submodule. In Theorem 3.1, fully weakly second modules are characterized. It is shown that M is fully weakly second if and only if M is fully weakly second (Lemma 3.1). Finally, in Theorem 3.2, fully weakly second modules over a commutative ring are characterized.

2. Weakly second and semisecond modules

Let M be a nonzero R-module. As in [7], M is called a second module if for every proper submodule N of M, $\operatorname{ann}_R(M/N) = \operatorname{ann}_R(M)$. We say that M is a weakly second (resp., semisecond) module if for every proper submodule N of M, $\operatorname{ann}_R(M/N)$ is a prime (resp., semiprime) ideal of R. It is easy to see that

M is second $\Rightarrow M$ is weakly second $\Rightarrow M$ is semisecond.

In general, non of implications is reversible (see Example 2.1).

Example 2.1. (a) It is clear to see that every homogenous semisimple module is weakly second and every semisimple module is semisecond. Also, the \mathbb{Z} -module \mathbb{Z}_n is semisecond if and only if n is a square-free number. Moreover, \mathbb{Z}_n is a weakly second \mathbb{Z} -module if and only if n is a prime number. In particular, for any two distinct prime numbers p and q, the \mathbb{Z} -module $\mathbb{Z}_p \oplus \mathbb{Z}_q$ is not weakly second because $(\mathbb{Z}_p \oplus \mathbb{Z}_q)p\mathbb{Z} \neq 0$ and $(\mathbb{Z}_p \oplus \mathbb{Z}_q)q\mathbb{Z} \neq 0$ but $(\mathbb{Z}_p \oplus \mathbb{Z}_q)p\mathbb{Z}q\mathbb{Z} = 0$. On the other hand, $(\mathbb{Z}_p \oplus \mathbb{Z}_q)n\mathbb{Z} = (\mathbb{Z}_p \oplus \mathbb{Z}_q)n^2\mathbb{Z}$ for any $n \in \mathbb{N}$. Thus $\mathbb{Z}_p \oplus \mathbb{Z}_q$ is semisecond.

(b) Let $V = \bigoplus_{i=1}^{\infty} e_i D$ be a vector space over a division ring D, and set $R = End(V_D)$ and $T = \{f \in R \mid rankf < \infty\}$. It is known that R has only three ideals (0), R and

T. So T is a maximal ideal and (0) is a prime ideal of R. Now it is easy to check that R as a left R-module is weakly second but is not a second R-module.

Example 2.2. Let M be a right R-module. Then for each maximal ideal P of R, MP = M or M/MP is a second R-module. To see this, suppose that $M \neq MP$ and $0 \neq K/MP$ is a submodule of M/MP. Then $P \subseteq ann_R(M/MP) \subseteq ann_R(K/MP)$ and since P is maximal, $P = ann_R(M/MP) = ann_R(K/MP)$.

It is easy to see that a nonzero submodule N of a right R-module M is weakly second if and only if for any two ideals I and J of R, NIJ = NI or NIJ = NJ. We give a similar result for a weakly prime submodule of a module.

Proposition 2.1. Let M be a right R-module and N be a proper submodule of M. Then N is weakly prime if and only if for any two ideals I and J of R, $(N:_MIJ) = (N:_MI)$ or $(N:_MIJ) = (N:_MJ)$.

Proof. Suppose that N is weakly prime. It is easy to check that $(N:_MIJ) = (N:_MI) \cup (N:_MJ)$. Since $(N:_MIJ)$ is a submodule of M, $(N:_MI) \subseteq (N:_MJ)$ or $(N:_MJ) \subseteq (N:_MI)$. Thus $(N:_MIJ) = (N:_MI)$ or $(N:_MIJ) = (N:_MI)$. Conversely, assume that for any two ideals I and J of R, $(N:_MIJ) = (N:_MI)$ or $(N:_MIJ) = (N:_MI)$. Also suppose that $KIJ \subseteq N$, where K is a submodule of M and I, J are two ideals of R. Then $K \subseteq (N:_MIJ)$ and by the hypothesis, $K \subseteq (N:_MI)$ or $K \subseteq (N:_MJ)$ and so $KI \subseteq N$ or $KJ \subseteq N$.

A proper submodule N of an R-module M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. Every submodule of M is an intersection of completely irreducible submodules of M. Thus, the intersection of all completely irreducible submodules of M is zero (see [11]).

Proposition 2.2. For any right R-module M, the following are equivalent:

- (1) M is a semisecond module;
- (2) Every nonzero quotient of M is a semisecond module;
- (3) For each proper completely irreducible submodule L of M, $ann_R(M/L)$ is a semiprime ideal of R;
- (4) For any ideal I of R, $MI = MI^2$.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.

- $(3) \Rightarrow (1)$. Let N be a proper submodule of M. Since every submodule of M is an intersection of completely irreducible submodules of M, we set $N = \cap_{L \in T} L$, where T is a set of completely irreducible submodules of M. Suppose $a \in R$ and $aRa \subseteq \operatorname{ann}_R(M/N) = \operatorname{ann}_R(M/\cap_{L \in T} L)$. Then $MaRa \subseteq L$ for each $L \in T$. By (3), $Ma \subseteq L$ for each $L \in T$. Thus $Ma \subseteq \cap_{L \in T} L$ and so $a \in \operatorname{ann}_R(M/N)$.
- (1) \Rightarrow (4). Let I be an ideal of R. If $MI^2 = M$, then $MI^2 = MI = M$. Thus we assume that MI^2 is a proper submodule of M. Then $\operatorname{ann}_R(M/MI^2)$ is a semiprime ideal of R and since $I^2 \subseteq \operatorname{ann}_R(M/MI^2)$, we have $I \subseteq \operatorname{ann}_R(M/MI^2)$, i.e., $MI = MI^2$.
- (4) \Rightarrow (1). Let N be a proper submodule of M and $I^2 \subseteq \operatorname{ann}_R(M/N)$. Then $MI^2 \subseteq N$ and by (4), $MI \subseteq N$. Thus $I \subseteq \operatorname{ann}_R(M/N)$ and so $\operatorname{ann}_R(M/N)$ is a semiprime ideal of R, as desired.

Example 2.3. Every sum of the second submodules of a right R-module M is a semisecond submodule of M. To see this, let $\{N_i\}_{i\in I}$ be a family of second submodules of M and $K \nleq \sum_{i\in I} N_i$. We claim that $ann_R(\frac{\sum_{i\in I} N_i}{K})$ is a semiprime ideal of R. Suppose that $a \in R$ and $aRa \subseteq ann_R(\frac{\sum_{i\in I} N_i}{K})$. Then $(\sum_{i\in I} N_i)aRa \subseteq K$ and for any $i \in I$, $N_ia = (N_iRaR)a = N_iaRa \subseteq K$ (since N_i is second). Thus $(\sum_{i\in I} N_i)a = \sum_{i\in I} N_ia \subseteq K$ and so $a \in ann_R(\frac{\sum_{i\in I} N_i}{K})$.

In [13], I.G. Macdonald introduced the notion of secondary modules. Let M be a module over commutative ring R. A nonzero submodule N of M is said to be secondary if for each r in R, Nr = N or $Nr^n = 0$, for some integer number n. This notion has been studied by several authors, for example see [3, 10]. In the following we define the secondary submodules when R is an arbitrary ring.

Definition 2.1. Let M be a nonzero right R-module.

- (1) A nonzero submodule N of M is called a *secondary submodule* of M if for each ideal I of R, NI = N or $NI^n = 0$, for some integer number n.
- (2) A proper submodule N of M is called a *primary submodule* of M if for any submodule K of M and any ideal I of R, $KI \subseteq N$ implies that $K \subseteq N$ or $MI^n \subseteq N$ for some integer number n.

It is clear that every second submodule is a secondary submodule. But the converse is not true in general. Because for $n \geq 3$, in \mathbb{Z}_{2^n} as a \mathbb{Z} -module, the submodule $2\mathbb{Z}_{2^n}$ is secondary while is not second.

Proposition 2.3. Let N be a submodule of a right R-module M. Then we have the following.

- (1) If N is a secondary and semisecond submodule of M, then N is a weakly second submodule of M;
- (2) If N is a primary and semiprime submodule of M, then N is a weakly prime submodule of M;
- (3) If there exist maximal ideals m_1, \ldots, m_n of R such that $m_1 \cap \ldots \cap m_n \subseteq ann_R(N)$ and $N \neq 0$, then N is a semisecond submodule of M.
- *Proof.* (1). Let I and J be two ideals of R. If NI = N, then NIJ = NJ. If $NI \neq N$, then $NI^n = 0$, for some integer number n. Now since N is semisecond, NI = 0 and so NI = NIJ = 0, as desired.

- (2). Suppose that $KIJ \subseteq N$, where K is a submodule of M and I,J are two ideals of R. Then $(KI)J \subseteq N$ and since N is primary, $KI \subseteq N$ or $MJ^n \subseteq N$ for some $n \in \mathbb{N}$. This implies that $KI \subseteq N$ or $MJ \subseteq N$ because N is semiprime. Thus $KI \subseteq N$ or $KJ \subseteq N$, as desired.
- (3). Let I be an ideal of R and r be a nonzero element of I. We show that $Nr \subseteq NI^2$. After a suitable rearrangement on m_1, \ldots, m_n , there can be found i $(0 \le i \le n-1)$ such that $r \in m_1 \cap \ldots \cap m_i$ and $r \notin m_{i+1} \cup \ldots \cup m_n$. Thus $R = m_j + RrR$ for $i+1 \le j \le n$ and so $1 = x_j + \sum_l r_{jl} r s_{jl}$ for some $x_j \in m_j$, $r_{jl}, s_{jl} \in R$ and $i+1 \le j \le n$. Therefore there exists $a \in I$ such that $1 = x_{i+1} x_{i+2} \ldots x_n + a$ and hence $r = x_{i+1} x_{i+2} \ldots x_n r + ar$. Since $x_{i+1} x_{i+2} \ldots x_n r \in \operatorname{ann}_R(N)$, we have $Nr \subseteq Nx_{i+1} x_{i+2} \ldots x_n r + Nar \subseteq NI^2$.

Let M be a right R-module. By a maximal semisecond submodule of M, we mean a semisecond submodule L of M such that L is not properly contained in another semisecond submodule of M. By applying Zorn's Lemma, it is easy to see that each semisecond submodule of M is contained in a maximal semisecond submodule of M.

Theorem 2.1. Let M be an Artinian right R-module. Then M has only a finite number of maximal semisecond submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of nonzero submodules N of M such that N has an infinite number of maximal semisecond submodules. The collection Σ is nonempty because $M \in \Sigma$ and hence has a minimal element, K say. Clearly, K is not a semisecond submodule of M. Thus there exists an ideal I of R such that $KI \neq KI^2$. Let V be a maximal semisecond submodule of M contained in K. Then $V \subseteq (KI^2 :_K I) \subset K$. By the choice of K, the module $(KI^2 :_K I)$ has only finitely many maximal semisecond submodules. Therefore there is only a finite number of possibilities for the module K, which is a desired contradiction. \square

Theorem 2.2. For any R-module M, the following statements are equivalent:

- (1) Every nonzero submodule of M is semisecond;
- (2) For each ideal I of R and each submodule N of M, $(N:_M I) = (N:_M I^2)$;
- (2') For each ideal I of R and each completely irreducible submodule L of M, $(L:_M I) = (L:_M I^2)$;
- (3) Every proper submodule of M is semiprime.

Proof. (1) \Rightarrow (2). Let I be an ideal of R and N be a submodule of M. Clearly $(N:_M I) \subseteq (N:_M I^2)$. Now suppose that $0 \neq x \in (N:_M I^2)$. Then $xI = xRI = xRI^2 = xI^2 \subseteq N$ because xR is semisecond. Thus $(N:_M I) = (N:_M I^2)$.

- $(2) \Rightarrow (2')$ is trivial.
- $(2') \Rightarrow (2)$. Let I be an ideal of R and N be a submodule of M. Then $N = \bigcap_{\alpha \in A} L_{\alpha}$, for some completely irreducible submodules L_{α} of M. Thus $(N :_M I) = (\bigcap_{\alpha \in A} L_{\alpha} :_M I) = \bigcap_{\alpha \in A} (L_{\alpha} :_M I$
- $(2) \Rightarrow (3)$. Let N be a proper submodule of M. Suppose $I^2 \subseteq \operatorname{ann}_R(K/N)$, where I is an ideal of R and $N \subset K \leq M$ is a submodule of M. Then $KI^2 \subseteq N$ and so $K \subseteq (N :_M I^2) = (N :_M I)$. Thus $KI \subseteq N$ and hence $I \subseteq \operatorname{ann}_R(K/N)$.
- (3) \Rightarrow (1). Let I be an ideal of R and N be a nonzero submodule of M. Clearly $NI^2 \subseteq NI$. Since $I^2 \subseteq \operatorname{ann}_R(N/NI^2)$ and $\operatorname{ann}_R(N/NI^2)$ is semiprime, $I \subseteq \operatorname{ann}_R(N/NI^2)$ and so $NI \subseteq NI^2$, as desired.

Definition 2.2. A nonzero submodule S of an R-module M is called strongly second if for every two submodules L_1 and L_2 of M and nonzero ideal I of R, $S \subseteq (L_1 :_M Iann_R(L_2 \cap S))$ implies that $SI \subseteq L_1$ or $S \subseteq L_2$. Also we say that S is strongly semisecond if for every submodule L of M and nonzero ideal I of R, $S \subseteq (L :_M Iann_R(L \cap S))$ implies that $SI \subseteq L$.

We note that every submodule of an R-module M is an intersection of completely irreducible submodules of M. Thus it is easy to see that a nonzero submodule S

is strongly second if for every two completely irreducible submodules L_1 and L_2 of M and nonzero ideal I of R, $S \subseteq (L_1 :_M Iann_R(L_2 \cap S))$ implies that $SI \subseteq L_1$ or $S \subseteq L_2$.

Proposition 2.4. Let M be a right R-module. Then

- (1) Every strongly second submodule of M is second;
- (2) Every minimal submodule of M is strongly second.
- Proof. (1). Suppose that S is a strongly second submodule of M which is not second. Then there is a proper submodule L_1 of S such that $\operatorname{ann}_R(S) \subset \operatorname{ann}_R(S/L_1)$. Let $I = \operatorname{ann}_R(S/L_1)$ and so $SI \subseteq L_1$ and $SI \neq 0$. Then there exists a completely irreducible submodule L_2 of M such that $SI \nsubseteq L_2$. Now $S \subseteq (L_2 :_M I \operatorname{ann}_R(L_1 \cap S))$. But $SI \nsubseteq L_2$ and $S \nsubseteq L_1$, a contradiction.
- (2). Suppose that S is a minimal submodule of M and L_1 , L_2 are two submodules of M with $S \subseteq (L_1 :_M Iann_R(L_2 \cap S))$, where I is a nonzero ideal of R. If $S \nsubseteq L_2$, then $S \cap L_2 = 0$. Thus $S \subseteq (L_1 :_M Iann_R(L_2 \cap S)) = (L_1 :_M I)$ and so $SI \subseteq L_1$, as desired.

The following example shows that a second submodule need not be a strongly second submodule.

Example 2.4. Set $M = \mathbb{Z}_{p^{\infty}} \oplus \mathbb{Z}_{p^{\infty}}$ and $N = <\frac{1}{p} + \mathbb{Z} >$ where p is a prime number. Then $N \oplus N$ is a second submodule of the \mathbb{Z} -module M, but it is not a strongly second submodule of M. We note that $N \oplus N \nsubseteq N \oplus (0)$, but $N \oplus N \subseteq (N \oplus (0))$ ann $\mathbb{Z}((N \oplus N) \cap (N \oplus (0)))$.

Proposition 2.5. Let V be a vector space over a division ring F and W be a subspace of V. Then W is a minimal subspace of V if and only if W is a strongly second subspace of V.

Proof. By Proposition 2.4, every minimal subspace is strongly second. Conversely, suppose that W is a strongly second subspace of V which is not a minimal subspace of V. Then there exists a completely irreducible submodule L of V such that $L \cap W \neq 0$ and $W \not\subseteq L$. Therefore for every completely irreducible submodule L_1 of V, we have

$$W \subseteq V = (L_1 :_V 0) = (L_1 :_V \operatorname{ann}_F(W \cap L)).$$

It follows that $W \subseteq L_1$, and hence W = 0, a contradiction.

Let N be a nonzero submodule of an R-module M. We define the strongly second socle of N as the sum of all strongly second submodules of M contained in N and denoted by S.soc(N). If there is no strongly second submodule contained in N, then we put S.soc(N) = 0. A family $\{N_i\}_{i \in I}$ of submodules of an R-module M is said to be an inverse family of submodules of M if the intersection of two of its submodules again contains a module in $\{N_i\}_{i \in I}$. Also M satisfies the property $AB5^*$ if for every submodule K of M and every inverse family $\{N_i\}_{i \in I}$ of submodules of M, $K + \bigcap_{i \in I} N_i = \bigcap_{i \in I} (K + N_i)$.

Theorem 2.3. Let M be an R-module which satisfies the property $AB5^*$, and N be a nonzero submodule of M. If N is strongly semisecond, then N = S.soc(N).

Proof. It is enough to show that $N \subseteq S.soc(N)$. Let L be a completely irreducible submodule of M with $N \nsubseteq L$. We define the set $T = \{L_0, L_1, \ldots\}$ of completely irreducible submodules of M inductively as follows:

$$L_0 = L, \ N \nsubseteq L_i, \ (L_i :_M \operatorname{ann}_R(L_i \cap N)) \subseteq L_{i+1}, \ i \in \mathbb{N}.$$

Set

 $\Omega = \{K : K \text{ is a submodule of } N \text{ and } K \nsubseteq L_i, \text{ for each } L_i \in T\}.$

 $\Omega \neq \emptyset$ because $N \in \Omega$. By the property $AB5^*$ and Zorn's Lemma, Ω has a minimal element, S say. We claim that S is a strongly second submodule of M. To see this, suppose that H_1 and H_2 are two completely irreducible submodules of M and I is a nonzero ideal of R with $SI \nsubseteq H_2$ and $S \nsubseteq H_1$, but $S \subseteq (H_2 :_M I \operatorname{ann}_R(H_1 \cap S))$. By the minimality of S, $S \cap H_1 \subseteq L_i$ and $S \cap H_2 \subseteq L_j$ for some L_i and L_j belong to T. Now $S \cap H_1 \subseteq L_i \cap N$ implies that $S \subseteq (H_2 :_M I \operatorname{ann}_R(L_i \cap N))$. If $i \leq j$, then $S \subseteq (L_j :_M I \operatorname{ann}_R(L_j \cap N)) \subseteq L_{j+1}$, a contradiction. If $j \leq i$, then $S \subseteq (L_i :_M I \operatorname{ann}_R(L_i \cap N)) \subseteq L_{i+1}$, which is again a contradiction. Therefore S is strongly second. Now since $S \nsubseteq L$, this implies that $S.soc(N) \nsubseteq L$, as desired. \square

3. Fully weakly second modules

A ring R is called a fully prime ring if each proper ideal of R is a prime ideal. Also, an R-module M is called a fully (weakly) prime module if $M \neq 0$ and each proper submodule of M is a (weakly) prime submodule. On the other hand, an R-module M is called a fully (weakly) second module if $M \neq 0$ and each nonzero submodule of M is a (weakly) second submodule.

In the following theorem, fully weakly second modules are characterized.

Theorem 3.1. Let M be a nonzero R-module. Then M is fully weakly second if and only if $(K:_M I)$ and $(K:_M J)$ are compatible and $(K:_M I) = (K:_M I^2)$ for every submodule K of M and every two ideals I, J of R.

Proof. Suppose that M is fully weakly second. Let K be a submodule of M and I, J be two ideals of R. Clearly $(K:_M I) \subseteq (K:_M I^2)$. If $(K:_M I^2) = 0$, there is no thing to prove. Thus we assume $(K:_M I^2) \neq 0$. Then $(K:_M I^2)I^2 \subseteq K$ implies that $(K:_M I^2)I \subseteq K$ because $(K:_M I^2)$ is a weakly second submodule of M. Therefore $(K:_M I) = (K:_M I^2)$. Now we suppose that $(K:_M I) \neq 0$ and $(K:_M J) \neq 0$.

We note that $(K:_M I)IJ \subseteq K$ and $(K:_M J)IJ \subseteq K$. Thus $((K:_M I) + (K:_M J))IJ \subseteq (K:_M I)IJ + (K:_M J)IJ \subseteq K$. Since $(K:_M I) + (K:_M J)$ is weakly second, $((K:_M I) + (K:_M J))I \subseteq K$ or $((K:_M I) + (K:_M J))J \subseteq K$. Hence $(K:_M J)I \subseteq K$ or $(K:_M I)J \subseteq K$ and so $(K:_M J)\subseteq (K:_M I)$ or $(K:_M I)\subseteq (K:_M J)$. Conversely, suppose that N is a nonzero submodule of M and $NIJ\subseteq K$, where I and J are two ideals of R and K is a submodule of M. By hypothesis, $(K:_M I)\subseteq (K:_M J)$ or $(K:_M J)\subseteq (K:_M I)$. If $(K:_M J)\subseteq (K:_M I)$, then $NIJ\subseteq K$ implies that $NI\subseteq (K:_M I)$. Therefore $NI^2\subseteq K$ and so $N\subseteq (K:_M I^2)=(K:_M I)$. Thus $NI\subseteq K$. Now assume that $(K:_M I)\subseteq (K:_M J)$. Since $NIJ\subseteq K$, we have $N\subseteq (K:_M (JI)^2)=(K:_M JI)$ and so $NJI\subseteq K$. Thus $NJ\subseteq (K:_M J)$ because $(K:_M I)\subseteq (K:_M J)$. This implies that $NJ^2\subseteq K$. Then $N\subseteq (K:_M J^2)=(K:_M J)$ and hence $NJ\subseteq K$. Thus N is weakly second.

Lemma 3.1. Let R be a ring. An R-module M is fully weakly prime if and only if M is fully weakly second.

Proof. First suppose that M is fully weakly prime and N is a nonzero submodule of M. Let L be a proper submodule of N. Then L is a weakly prime submodule of M, i.e., M/L is a weakly prime module. Thus $\operatorname{ann}_R(N/L)$ is a prime ideal and so N is a weakly second submodule. Conversely, suppose that M is fully weakly second and N is a proper submodule of M. Let $N \subset K$ be a submodule of M. Then K is a weakly second submodule and hence $\operatorname{ann}_R(K/N)$ is a prime ideal. Thus M/N is a weakly prime module, i.e., N is a weakly prime submodule of M.

Corollary 3.1. Let R be a ring and M be an R-module. Then M is a fully weakly second module if and only if for each submodule $K \subseteq M$ and each ideal I of R, $KI = KI^2$, and also for any two ideals A and B of R, KA and KB are comparable.

Proof. By Lemma 3.1, and [5, Proposition 4.4].

Recall that a module M is semisimple if M is a direct sum of a family of simple submodules. Also M is called homogeneous semisimple if M is a direct sum of a family of pairwise isomorphic simple submodules. If the ring R is considered as right R-module, we use the notation R_R . Clearly, if R is a fully prime ring, then each nonzero R-module is weakly second module. Thus we have the following result which is a characterization of rings whose all nonzero modules are weakly second.

Proposition 3.1. The following statements are equivalent:

- (1) All nonzero right R-modules are weakly second;
- (2) The R-module R_R is weakly second;
- (3) R is a fully prime ring.

Proof. Clear. \Box

Proposition 3.2. The following statements are equivalent:

- (1) R_R is a second R-module;
- (2) All nonzero right R-modules are second;
- (3) All nonzero right ideals of R are second;
- (4) R is a simple ring.

Proof. Clear. \Box

Corollary 3.2. Let R be a ring. Then all nonzero right R-modules are prime if and only if all nonzero right R-modules are second.

Proof. This is immediate from the above proposition.

We conclude the paper with the following interesting result.

Theorem 3.2. Let R be a commutative ring and M be a nonzero R-module. Then the following statements are equivalent:

- (1) M is a fully second module;
- (2) M is a fully weakly second module;
- (3) Each nonzero cyclic submodule of M is a weakly second module;
- (4) M is a homogeneous semisimple module.

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ are clear.

 $(3) \Rightarrow (4)$. Suppose that x is a nonzero element of M. Then $xR \cong R/\operatorname{ann}_R(x)$ and since xR is a weakly second R-module, so is $R/\operatorname{ann}_R(x)$. Let $\overline{A} = A/\operatorname{ann}_R(x)$ be a proper ideal of $\overline{R} = R/\mathrm{ann}_R(x)$. Then $\overline{R}/\overline{A} \cong R/A$ and so $\mathrm{ann}_R(\overline{R}/\overline{A}) =$ $\operatorname{ann}_R(R/A) = A$. Since \overline{R} is weakly second, A is a prime ideal of R and hence \overline{A} is a prime ideal of \overline{R} . Thus every proper ideal of \overline{R} is prime and so \overline{R} is a field. It follows that $\operatorname{ann}_R(x)$ is a maximal ideal of R and so xR is a simple R-module. Now suppose that $0 \neq y \in M$ such that $x \neq y$. Then $\operatorname{ann}_R(x) \cap \operatorname{ann}_R(y) \subseteq \operatorname{ann}_R(x-y)$ implies that $\operatorname{ann}_R(x) \subseteq \operatorname{ann}_R(x-y)$ or $\operatorname{ann}_R(y) \subseteq \operatorname{ann}_R(x-y)$ and so $\operatorname{ann}_R(x) = \operatorname{ann}_R(x-y)$ or $\operatorname{ann}_R(y) = \operatorname{ann}_R(x-y)$. Thus (x-y) $\operatorname{ann}_R(x) = 0$ or (x-y) $\operatorname{ann}_R(y) = 0$ and hence $y \operatorname{ann}_R(x) = 0$ or $x \operatorname{ann}_R(y) = 0$. This shows that $\operatorname{ann}_R(x) \subseteq \operatorname{ann}_R(y)$ or $\operatorname{ann}_R(y) \subseteq \operatorname{ann}_R(y)$ $\operatorname{ann}_R(x)$. Thus $\operatorname{ann}_R(x) = \operatorname{ann}_R(y)$. Since $M = \sum_{x \in M} xR$, $\operatorname{ann}_R(M) = \operatorname{ann}_R(x)$ for each nonzero element x of M. Therefore M is a homogeneous semisimple R-module. $(4) \Rightarrow (1)$. Clearly, every homogeneous semisimple module is a second module. Also by [1, Proposition 9.4], all submodules and all factor modules of a homogeneous semisimple module are homogeneous semisimple. Thus (1) is obtained.

Acknowledgement

The author would like to thank the referees for helpful comments that improved this paper.

References

- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer Verlag, New York, 1974
- [2] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime submodules, *Comm. Algebra* **39** (2011), 2396–2416
- [3] H. Ansari-Toroghy, F. Farshadifar, S.S. Pourmortazavi and F. Khaliphe, On secondary modules, International J. Algebra 6 (16)(2012), 769–774
- [4] A. Azizi, Weakly prime submodule and prime submodule, Glasgow Math. Journal 48 (2006), 343–346
- [5] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2004), 185–195
- [6] R. Beyranvand and F. Rastgoo, Weakly second modules over noncommutative rings, Hacettepe
 J. Math. Stat. 45 (5) (2016), 1355–1366
- [7] S. Ceken, M. Alkan and P. F. Smith, Second modules over noncommutative rings, Comm. Algebra 41 (2013), 83–98
- [8] J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156–181
- [9] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, *Tank. J. Math.* **38** (3) (2007), 247–252
- [10] S. Ebrahimi Atani, On secondary modules over dedekind domains, Southeast Asian Bull. Math.
 25 (2001), 1–6
- [11] L. Fuchs, W. Heinzerand B. Olberding, Commutative ideal theory without finiteness conditions: irreducibility in the quotient filed. In: Abelian Groups, Rings, Modules, and Homological Algebra, Lecture Notes in Pure and Applied Mathematics 249 (2006), 121–145
- [12] H. A. Khashan, On almost prime submodules, Acta Math. Scientia 32 (2012), 645–651
- [13] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math. XI (1973), 23–43
- [14] S. Yassemi, The dual notion of prime submodules, Arch. Math. Brno. 37 (2001), 273–278

Department of Mathematics, Lorestan University, P. O. Box: 465, Khorramabad, Iran.

E-mail address: beyranvand.r@lu.ac.ir