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ON THE DUAL OF WEAKLY PRIME AND SEMIPRIME

MODULES

R. BEYRANVAND

Abstract. The weakly second modules (the dual of weakly prime modules) was

introduced in [6]. In this paper we introduce and study the semisecond and strongly

second modules. Let R be a ring and M be an R-module. We show that M is

semisecond if and only if MI = MI
2 for any ideal I of R. It is shown that every

sum of the second submodules of M is a semisecond submodule of M . Also if M

is an Artinian module, then M has only a finite number of maximal semisecond

submodules. We prove that every strongly second submodule of M is second and

every minimal submodule of M is strongly second. If every nonzero submodule of

M is (weakly) second, then M is called fully (weakly) second. It is shown that if

R is a commutative ring, then M is fully second if and only if M is fully weakly

second, if and only if M is a homogeneous semisimple module.

1. Introduction

Throughout the paper, all rings will have identity elements and all modules will be

right unitary. The notation “⊂” is used to denote strict inclusion. Also, R denotes an

arbitrary ring with identity element. Let M be an R-module. Then the annihilator

of M (in R) is the ideal annR(M) = {r ∈ R | Mr = 0}. For any submodule N of M

and any ideal I of R, the submodule {x ∈ M | xI ⊆ N} of M is denoted by (N :M I).

A proper submodule N of a right R-module M is said to be a prime submodule of
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M if for any submodule K of M and any ideal I of R, KI ⊆ N implies that K ⊆ N

or MI ⊆ N , i.e., annR(M/N) = annR(K/N), for any N ⊂ K ≤ M (see [8]). Also a

proper submodule N of a right R-module M is said to be a weakly prime submodule of

M if for any submodule K of M and any two ideals I, J of R, KIJ ⊆ N implies that

KI ⊆ N or KJ ⊆ N , i.e., annR(K/N) is a prime ideal of R, for any N ⊂ K ≤ M .

Moreover, a module M is called a prime module (resp., weakly prime module) if (0)

is a prime (resp., weakly prime) submodule of M . The notion of weakly prime mod-

ules is a generalization of prime modules and has been introduced by Behboodi and

Koohi in [5]. Also if R is commutative, then it is easy to see that N is weakly prime

if and only if for any K ≤ M and two elements a and b of R, Kab ⊆ N implies that

Ka ⊆ N or Kb ⊆ N , see for example [4].

Let us mention another notion used for weakly prime submodule in the literature.

Let M be an R-module over a commutative ring R and N be a proper submodule

of M . For instance in [9, 12], N is called a weakly prime submodule of M , if for any

m ∈ M and r ∈ R, 0 6= mr ∈ N implies that m ∈ N or Mr ⊆ N . In the following,

we show that the notion of weakly prime used in [9, 12] and what we use in this paper

are independent. We note that the zero submodule in any module is always weakly

prime regarding the sense used in [9, 12]. However, in Z30 as a Z-module, (0) is not

weakly prime submodule. Because 2Z30(3)(5) = 0, but 2Z30(3) 6= 0 and 2Z30(5) 6= 0.

On the other hand, it is easy to see that in Z⊕Z as a Z-module, (0)⊕2Z is a weakly

prime submodule. However, 0 6= ((0)⊕Z)(2) ⊆ (0)⊕ 2Z, but (0)⊕Z * (0)⊕ 2Z and

(Z⊕Z)(2) * (0)⊕ 2Z which means (0)⊕ 2Z is not weakly prime regarding the sense

used in [9, 12].

A nonzero R-module M is called a second module (the dual of a prime module) if

annR(M) = annR(M/N) for every proper submodule N of M . This notion was intro-

duced and studied by Yassemi in [14], for modules over commutative rings. Moreover,
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in [7], the authors generalized second modules from commutative rings to noncom-

mutative setting. The dual notion of a weakly prime module over noncommutative

rings was introduced by the author in [6] and some properties of this class of modules

have been considered. A nonzero R-module M is a weakly second (resp., semisec-

ond) module if annR(M/N) is a prime (resp., semiprime) ideal of R for every proper

submodule N of M . By a second (resp., weakly second, semisecond) submodule of a

module we mean a submodule which is also a second (resp., weakly second, semisec-

ond) module.

Prime and weakly prime modules are interesting topics which have been studied

by many researchers, see [2, 5, 7, 8, 14]. It is natural to ask the following question:

to what extent dose the dual of these results hold for weakly second modules. The

purpose of this paper is to obtain more information about this class of modules.

Let M be an R-module and N be a submodule of M . In Section 2, we show that

the proper submodule N of M is weakly prime if and only if for any two ideals I and

J of R, (N :M IJ) = (N :M I) or (N :M IJ) = (N :M J) (Proposition 2.1). Some

characterizations of semisecond modules are given (Proposition 2.2). 0 6= N is called

a secondary submodule of M if for each ideal I of R, NI = N or NIn = 0, for some

integer number n. It is shown that if N is a secondary and semisecond submodule

of M , then N is weakly second (Proposition 2.3). Also if M is an Artinian module,

then M has only a finite number of maximal semisecond submodules (Theorem 2.1).

As an interesting result, we prove that every nonzero submodule of M is semisecond

if and only if every proper submodule of M is semiprime (Theorem 2.2). A nonzero

submodule S of an R-module M is called strongly second if for every two submodules

L1 and L2 of M and nonzero ideal I of R, S ⊆ (L1 :M IannR(L2 ∩ S)) implies that

SI ⊆ L1 or S ⊆ L2. We show that if V is a vector space over a division ring and W

is a subspace of V , then W is a minimal subspace of V if and only if W is a strongly
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second subspace of V (Proposition 2.5).

In Section 3, we study the fully weakly second modules. A nonzero R-module M

is called fully (weakly) prime if each proper submodule of M is a (weakly) prime

submodule. Also we say that M is fully (weakly) second if each nonzero submodule

of M is a (weakly) second submodule. In Theorem 3.1, fully weakly second modules

are characterized. It is shown that M is fully weakly prime if and only if M is fully

weakly second (Lemma 3.1). Finally, in Theorem 3.2, fully weakly second modules

over a commutative ring are characterized.

2. Weakly second and semisecond modules

Let M be a nonzero R-module. As in [7], M is called a second module if for every

proper submodule N of M , annR(M/N) = annR(M). We say that M is a weakly sec-

ond (resp., semisecond) module if for every proper submodule N of M , annR(M/N)

is a prime (resp., semiprime) ideal of R. It is easy to see that

M is second ⇒ M is weakly second ⇒ M is semisecond.

In general, non of implications is reversible (see Example 2.1).

Example 2.1. (a) It is clear to see that every homogenous semisimple module is

weakly second and every semisimple module is semisecond. Also, the Z-module Zn

is semisecond if and only if n is a square-free number. Moreover, Zn is a weakly

second Z-module if and only if n is a prime number. In particular, for any two

distinct prime numbers p and q, the Z-module Zp ⊕ Zq is not weakly second because

(Zp ⊕ Zq)pZ 6= 0 and (Zp ⊕ Zq)qZ 6= 0 but (Zp ⊕ Zq)pZqZ = 0. On the other hand,

(Zp ⊕ Zq)nZ = (Zp ⊕ Zq)n
2Z for any n ∈ N. Thus Zp ⊕ Zq is semisecond.

(b) Let V = ⊕∞

i=1eiD be a vector space over a division ring D, and set R = End(VD)

and T = {f ∈ R | rankf < ∞}. It is known that R has only three ideals (0), R and
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T . So T is a maximal ideal and (0) is a prime ideal of R. Now it is easy to check

that R as a left R-module is weakly second but is not a second R-module.

Example 2.2. Let M be a right R-module. Then for each maximal ideal P of R,

MP = M or M/MP is a second R-module. To see this, suppose that M 6= MP and

0 6= K/MP is a submodule of M/MP . Then P ⊆ annR(M/MP ) ⊆ annR(K/MP )

and since P is maximal, P = annR(M/MP ) = annR(K/MP ).

It is easy to see that a nonzero submodule N of a right R-module M is weakly

second if and only if for any two ideals I and J of R, NIJ = NI or NIJ = NJ . We

give a similar result for a weakly prime submodule of a module.

Proposition 2.1. Let M be a right R-module and N be a proper submodule of M .

Then N is weakly prime if and only if for any two ideals I and J of R, (N :M IJ) =

(N :M I) or (N :M IJ) = (N :M J).

Proof. Suppose that N is weakly prime. It is easy to check that (N :M IJ) = (N :M

I) ∪ (N :M J). Since (N :M IJ) is a submodule of M , (N :M I) ⊆ (N :M J) or

(N :M J) ⊆ (N :M I). Thus (N :M IJ) = (N :M I) or (N :M IJ) = (N :M J).

Conversely, assume that for any two ideals I and J of R, (N :M IJ) = (N :M I)

or (N :M IJ) = (N :M J). Also suppose that KIJ ⊆ N , where K is a submodule

of M and I, J are two ideals of R. Then K ⊆ (N :M IJ) and by the hypothesis,

K ⊆ (N :M I) or K ⊆ (N :M J) and so KI ⊆ N or KJ ⊆ N . �

A proper submodule N of an R-module M is said to be completely irreducible if

N = ∩i∈INi, where {Ni}i∈I is a family of submodules of M , implies that N = Ni

for some i ∈ I. Every submodule of M is an intersection of completely irreducible

submodules of M . Thus, the intersection of all completely irreducible submodules of

M is zero (see [11]).
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Proposition 2.2. For any right R-module M , the following are equivalent:

(1) M is a semisecond module;

(2) Every nonzero quotient of M is a semisecond module;

(3) For each proper completely irreducible submodule L of M , annR(M/L) is a semiprime

ideal of R;

(4) For any ideal I of R, MI = MI2.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (1). Let N be a proper submodule of M . Since every submodule of M is an

intersection of completely irreducible submodules of M , we set N = ∩L∈T L, where

T is a set of completely irreducible submodules of M . Suppose a ∈ R and aRa ⊆

annR(M/N) = annR(M/∩L∈T L). Then MaRa ⊆ L for each L ∈ T . By (3), Ma ⊆ L

for each L ∈ T . Thus Ma ⊆ ∩L∈T L and so a ∈ annR(M/N).

(1) ⇒ (4). Let I be an ideal of R. If MI2 = M , then MI2 = MI = M . Thus we

assume that MI2 is a proper submodule of M . Then annR(M/MI2) is a semiprime

ideal of R and since I2 ⊆ annR(M/MI2), we have I ⊆ annR(M/MI2), i.e., MI =

MI2.

(4) ⇒ (1). Let N be a proper submodule of M and I2 ⊆ annR(M/N). Then

MI2 ⊆ N and by (4), MI ⊆ N . Thus I ⊆ annR(M/N) and so annR(M/N) is a

semiprime ideal of R, as desired. �

Example 2.3. Every sum of the second submodules of a right R-module M is a

semisecond submodule of M . To see this, let {Ni}i∈I be a family of second submodules

of M and K �
∑

i∈I Ni. We claim that annR(
∑

i∈I
Ni

K
) is a semiprime ideal of R.

Suppose that a ∈ R and aRa ⊆ annR(
∑

i∈I
Ni

K
). Then (

∑
i∈I Ni)aRa ⊆ K and for any

i ∈ I, Nia = (NiRaR)a = NiaRa ⊆ K (since Ni is second). Thus (
∑

i∈I Ni)a =
∑

i∈I Nia ⊆ K and so a ∈ annR(
∑

i∈I
Ni

K
).
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In [13], I.G. Macdonald introduced the notion of secondary modules. Let M be

a module over commutative ring R. A nonzero submodule N of M is said to be

secondary if for each r in R, Nr = N or Nrn = 0, for some integer number n. This

notion has been studied by several authors, for example see [3, 10]. In the following

we define the secondary submodules when R is an arbitrary ring.

Definition 2.1. Let M be a nonzero right R-module.

(1) A nonzero submodule N of M is called a secondary submodule of M if for each

ideal I of R, NI = N or NIn = 0, for some integer number n.

(2) A proper submodule N of M is called a primary submodule of M if for any

submodule K of M and any ideal I of R, KI ⊆ N implies that K ⊆ N or MIn ⊆ N

for some integer number n.

It is clear that every second submodule is a secondary submodule. But the converse

is not true in general. Because for n ≥ 3, in Z2n as a Z-module, the submodule 2Z2n

is secondary while is not second.

Proposition 2.3. Let N be a submodule of a right R-module M . Then we have the

following.

(1) If N is a secondary and semisecond submodule of M , then N is a weakly second

submodule of M ;

(2) If N is a primary and semiprime submodule of M , then N is a weakly prime

submodule of M ;

(3) If there exist maximal ideals m1, . . . , mn of R such that m1 ∩ . . .∩mn ⊆ annR(N)

and N 6= 0, then N is a semisecond submodule of M .

Proof. (1). Let I and J be two ideals of R. If NI = N , then NIJ = NJ . If NI 6= N ,

then NIn = 0, for some integer number n. Now since N is semisecond, NI = 0 and

so NI = NIJ = 0, as desired.



182 R. BEYRANVAND

(2). Suppose that KIJ ⊆ N , where K is a submodule of M and I,J are two ideals of

R. Then (KI)J ⊆ N and since N is primary, KI ⊆ N or MJn ⊆ N for some n ∈ N.

This implies that KI ⊆ N or MJ ⊆ N because N is semiprime. Thus KI ⊆ N or

KJ ⊆ N , as desired.

(3). Let I be an ideal of R and r be a nonzero element of I. We show that Nr ⊆ NI 2.

After a suitable rearrangement on m1, . . . , mn, there can be found i (0 ≤ i ≤ n − 1)

such that r ∈ m1 ∩ . . . ∩ mi and r /∈ mi+1 ∪ . . . ∪ mn. Thus R = mj + RrR for

i + 1 ≤ j ≤ n and so 1 = xj +
∑

l rjlrsjl for some xj ∈ mj, rjl, sjl ∈ R and

i + 1 ≤ j ≤ n. Therefore there exists a ∈ I such that 1 = xi+1xi+2 . . . xn + a

and hence r = xi+1xi+2 . . . xnr + ar. Since xi+1xi+2 . . . xnr ∈ annR(N), we have

Nr ⊆ Nxi+1xi+2 . . . xnr + Nar ⊆ NI2. �

Let M be a right R-module. By a maximal semisecond submodule of M , we mean

a semisecond submodule L of M such that L is not properly contained in another

semisecond submodule of M . By applying Zorn’s Lemma, it is easy to see that each

semisecond submodule of M is contained in a maximal semisecond submodule of M .

Theorem 2.1. Let M be an Artinian right R-module. Then M has only a finite

number of maximal semisecond submodules.

Proof. Suppose that the result is false. Let Σ denote the collection of nonzero submod-

ules N of M such that N has an infinite number of maximal semisecond submodules.

The collection Σ is nonempty because M ∈ Σ and hence has a minimal element, K

say. Clearly, K is not a semisecond submodule of M . Thus there exists an ideal I of

R such that KI 6= KI2. Let V be a maximal semisecond submodule of M contained

in K. Then V ⊆ (KI2 :K I) ⊂ K. By the choice of K, the module (KI2 :K I) has

only finitely many maximal semisecond submodules. Therefore there is only a finite

number of possibilities for the module K, which is a desired contradiction. �
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Theorem 2.2. For any R-module M , the following statements are equivalent:

(1) Every nonzero submodule of M is semisecond;

(2) For each ideal I of R and each submodule N of M , (N :M I) = (N :M I2);

(2′) For each ideal I of R and each completely irreducible submodule L of M , (L :M

I) = (L :M I2);

(3) Every proper submodule of M is semiprime.

Proof. (1) ⇒ (2). Let I be an ideal of R and N be a submodule of M . Clearly

(N :M I) ⊆ (N :M I2). Now suppose that 0 6= x ∈ (N :M I2). Then xI = xRI =

xRI2 = xI2 ⊆ N because xR is semisecond. Thus (N :M I) = (N :M I2).

(2) ⇒ (2′) is trivial.

(2′) ⇒ (2). Let I be an ideal of R and N be a submodule of M . Then N = ∩α∈ALα,

for some completely irreducible submodules Lα of M . Thus (N :M I) = (∩α∈ALα :M

I) = ∩α∈A(Lα :M I) = ∩α∈A(Lα :M I2) = (∩α∈ALα :M I2) = (N :M I2).

(2) ⇒ (3). Let N be a proper submodule of M . Suppose I2 ⊆ annR(K/N), where

I is an ideal of R and N ⊂ K ≤ M is a submodule of M . Then KI2 ⊆ N and so

K ⊆ (N :M I2) = (N :M I). Thus KI ⊆ N and hence I ⊆ annR(K/N).

(3) ⇒ (1). Let I be an ideal of R and N be a nonzero submodule of M . Clearly NI 2 ⊆

NI. Since I2 ⊆ annR(N/NI2) and annR(N/NI2) is semiprime, I ⊆ annR(N/NI2)

and so NI ⊆ NI2, as desired. �

Definition 2.2. A nonzero submodule S of an R-module M is called strongly second

if for every two submodules L1 and L2 of M and nonzero ideal I of R, S ⊆ (L1 :M

IannR(L2 ∩ S)) implies that SI ⊆ L1 or S ⊆ L2. Also we say that S is strongly

semisecond if for every submodule L of M and nonzero ideal I of R, S ⊆ (L :M

IannR(L ∩ S)) implies that SI ⊆ L.

We note that every submodule of an R-module M is an intersection of completely

irreducible submodules of M . Thus it is easy to see that a nonzero submodule S
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is strongly second if for every two completely irreducible submodules L1 and L2 of

M and nonzero ideal I of R, S ⊆ (L1 :M IannR(L2 ∩ S)) implies that SI ⊆ L1 or

S ⊆ L2.

Proposition 2.4. Let M be a right R-module. Then

(1) Every strongly second submodule of M is second;

(2) Every minimal submodule of M is strongly second.

Proof. (1). Suppose that S is a strongly second submodule of M which is not second.

Then there is a proper submodule L1 of S such that annR(S) ⊂ annR(S/L1). Let I =

annR(S/L1) and so SI ⊆ L1 and SI 6= 0. Then there exists a completely irreducible

submodule L2 of M such that SI * L2. Now S ⊆ (L2 :M IannR(L1 ∩ S)). But

SI * L2 and S * L1, a contradiction.

(2). Suppose that S is a minimal submodule of M and L1, L2 are two submodules

of M with S ⊆ (L1 :M IannR(L2 ∩ S)), where I is a nonzero ideal of R. If S * L2,

then S ∩ L2 = 0. Thus S ⊆ (L1 :M IannR(L2 ∩ S)) = (L1 :M I) and so SI ⊆ L1, as

desired. �

The following example shows that a second submodule need not be a strongly

second submodule.

Example 2.4. Set M = Zp∞ ⊕ Zp∞ and N =< 1

p
+ Z > where p is a prime number.

Then N ⊕ N is a second submodule of the Z-module M , but it is not a strongly

second submodule of M . We note that N ⊕ N * N ⊕ (0), but N ⊕ N ⊆ (N ⊕ (0) :M

annZ((N ⊕ N) ∩ (N ⊕ (0)))).

Proposition 2.5. Let V be a vector space over a division ring F and W be a subspace

of V . Then W is a minimal subspace of V if and only if W is a strongly second

subspace of V .
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Proof. By Proposition 2.4, every minimal subspace is strongly second. Conversely,

suppose that W is a strongly second subspace of V which is not a minimal subspace of

V . Then there exists a completely irreducible submodule L of V such that L∩W 6= 0

and W * L. Therefore for every completely irreducible submodule L1 of V , we have

W ⊆ V = (L1 :V 0) = (L1 :V annF (W ∩ L)).

It follows that W ⊆ L1, and hence W = 0, a contradiction. �

Let N be a nonzero submodule of an R-module M . We define the strongly second

socle of N as the sum of all strongly second submodules of M contained in N and

denoted by S.soc(N). If there is no strongly second submodule contained in N ,

then we put S.soc(N) = 0. A family {Ni}i∈I of submodules of an R-module M

is said to be an inverse family of submodules of M if the intersection of two of its

submodules again contains a module in {Ni}i∈I . Also M satisfies the property AB5∗

if for every submodule K of M and every inverse family {Ni}i∈I of submodules of M ,

K + ∩i∈INi = ∩i∈I(K + Ni).

Theorem 2.3. Let M be an R-module which satisfies the property AB5∗, and N be

a nonzero submodule of M . If N is strongly semisecond, then N = S.soc(N).

Proof. It is enough to show that N ⊆ S.soc(N). Let L be a completely irreducible

submodule of M with N * L. We define the set T = {L0, L1, . . .} of completely

irreducible submodules of M inductively as follows:

L0 = L, N * Li, (Li :M annR(Li ∩ N)) ⊆ Li+1, i ∈ N.

Set

Ω = {K : K is a submodule of N and K * Li, for each Li ∈ T}.
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Ω 6= ∅ because N ∈ Ω. By the property AB5∗ and Zorn’s Lemma, Ω has a minimal

element, S say. We claim that S is a strongly second submodule of M . To see this,

suppose that H1 and H2 are two completely irreducible submodules of M and I is

a nonzero ideal of R with SI * H2 and S * H1, but S ⊆ (H2 :M I annR(H1 ∩ S)).

By the minimality of S, S ∩ H1 ⊆ Li and S ∩ H2 ⊆ Lj for some Li and Lj belong to

T . Now S ∩ H1 ⊆ Li ∩ N implies that S ⊆ (H2 :M I annR(Li ∩ N)). If i ≤ j, then

S ⊆ (Lj :M I annR(Lj ∩ N)) ⊆ Lj+1, a contradiction. If j ≤ i, then S ⊆ (Li :M I

annR(Li∩N)) ⊆ Li+1, which is again a contradiction. Therefore S is strongly second.

Now since S * L, this implies that S.soc(N) * L, as desired. �

3. Fully weakly second modules

A ring R is called a fully prime ring if each proper ideal of R is a prime ideal. Also,

an R-module M is called a fully (weakly) prime module if M 6= 0 and each proper

submodule of M is a (weakly) prime submodule. On the other hand, an R-module

M is called a fully (weakly) second module if M 6= 0 and each nonzero submodule of

M is a (weakly) second submodule.

In the following theorem, fully weakly second modules are characterized.

Theorem 3.1. Let M be a nonzero R-module. Then M is fully weakly second if and

only if (K :M I) and (K :M J) are compatible and (K :M I) = (K :M I2) for every

submodule K of M and every two ideals I, J of R.

Proof. Suppose that M is fully weakly second. Let K be a submodule of M and I,

J be two ideals of R. Clearly (K :M I) ⊆ (K :M I2). If (K :M I2) = 0, there is no

thing to prove. Thus we assume (K :M I2) 6= 0. Then (K :M I2)I2 ⊆ K implies that

(K :M I2)I ⊆ K because (K :M I2) is a weakly second submodule of M . Therefore

(K :M I) = (K :M I2). Now we suppose that (K :M I) 6= 0 and (K :M J) 6= 0.
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We note that (K :M I)IJ ⊆ K and (K :M J)IJ ⊆ K. Thus ((K :M I) + (K :M

J))IJ ⊆ (K :M I)IJ+(K :M J)IJ ⊆ K. Since (K :M I)+(K :M J) is weakly second,

((K :M I)+(K :M J))I ⊆ K or ((K :M I)+(K :M J))J ⊆ K. Hence (K :M J)I ⊆ K

or (K :M I)J ⊆ K and so (K :M J) ⊆ (K :M I) or (K :M I) ⊆ (K :M J).

Conversely, suppose that N is a nonzero submodule of M and NIJ ⊆ K, where I

and J are two ideals of R and K is a submodule of M . By hypothesis, (K :M I) ⊆

(K :M J) or (K :M J) ⊆ (K :M I). If (K :M J) ⊆ (K :M I), then NIJ ⊆ K implies

that NI ⊆ (K :M I). Therefore NI2 ⊆ K and so N ⊆ (K :M I2) = (K :M I).

Thus NI ⊆ K. Now assume that (K :M I) ⊆ (K :M J). Since NIJ ⊆ K, we have

N ⊆ (K :M (JI)2) = (K :M JI) and so NJI ⊆ K. Thus NJ ⊆ (K :M J) because

(K :M I) ⊆ (K :M J). This implies that NJ2 ⊆ K. Then N ⊆ (K :M J2) = (K :M

J) and hence NJ ⊆ K. Thus N is weakly second. �

Lemma 3.1. Let R be a ring. An R-module M is fully weakly prime if and only if

M is fully weakly second.

Proof. First suppose that M is fully weakly prime and N is a nonzero submodule of

M . Let L be a proper submodule of N . Then L is a weakly prime submodule of M ,

i.e., M/L is a weakly prime module. Thus annR(N/L) is a prime ideal and so N is a

weakly second submodule. Conversely, suppose that M is fully weakly second and N

is a proper submodule of M . Let N ⊂ K be a submodule of M . Then K is a weakly

second submodule and hence annR(K/N) is a prime ideal. Thus M/N is a weakly

prime module, i.e., N is a weakly prime submodule of M . �

Corollary 3.1. Let R be a ring and M be an R-module. Then M is a fully weakly

second module if and only if for each submodule K ⊆ M and each ideal I of R,

KI = KI2, and also for any two ideals A and B of R, KA and KB are comparable.

Proof. By Lemma 3.1, and [5, Proposition 4.4]. �
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Recall that a module M is semisimple if M is a direct sum of a family of simple

submodules. Also M is called homogeneous semisimple if M is a direct sum of a

family of pairwise isomorphic simple submodules. If the ring R is considered as right

R-module, we use the notation RR. Clearly, if R is a fully prime ring, then each

nonzero R-module is weakly second module. Thus we have the following result which

is a characterization of rings whose all nonzero modules are weakly second.

Proposition 3.1. The following statements are equivalent:

(1) All nonzero right R-modules are weakly second;

(2) The R-module RR is weakly second;

(3) R is a fully prime ring.

Proof. Clear. �

Proposition 3.2. The following statements are equivalent:

(1) RR is a second R-module;

(2) All nonzero right R-modules are second;

(3) All nonzero right ideals of R are second;

(4) R is a simple ring.

Proof. Clear. �

Corollary 3.2. Let R be a ring. Then all nonzero right R-modules are prime if and

only if all nonzero right R-modules are second.

Proof. This is immediate from the above proposition. �

We conclude the paper with the following interesting result.

Theorem 3.2. Let R be a commutative ring and M be a nonzero R-module. Then

the following statements are equivalent:
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(1) M is a fully second module;

(2) M is a fully weakly second module;

(3) Each nonzero cyclic submodule of M is a weakly second module;

(4) M is a homogeneous semisimple module.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (4). Suppose that x is a nonzero element of M . Then xR ∼= R/annR(x)

and since xR is a weakly second R-module, so is R/annR(x). Let A = A/annR(x)

be a proper ideal of R = R/annR(x). Then R/A ∼= R/A and so annR(R/A) =

annR(R/A) = A. Since R is weakly second, A is a prime ideal of R and hence A is a

prime ideal of R. Thus every proper ideal of R is prime and so R is a field. It follows

that annR(x) is a maximal ideal of R and so xR is a simple R-module. Now suppose

that 0 6= y ∈ M such that x 6= y. Then annR(x)∩ annR(y) ⊆ annR(x−y) implies that

annR(x) ⊆ annR(x− y) or annR(y) ⊆ annR(x− y) and so annR(x) = annR(x− y) or

annR(y) = annR(x− y). Thus (x− y) annR(x) = 0 or (x− y) annR(y) = 0 and hence

y annR(x) = 0 or x annR(y) = 0. This shows that annR(x) ⊆ annR(y) or annR(y) ⊆

annR(x). Thus annR(x) = annR(y). Since M =
∑

x∈M xR, annR(M) = annR(x) for

each nonzero element x of M . Therefore M is a homogeneous semisimple R-module.

(4) ⇒ (1). Clearly, every homogeneous semisimple module is a second module. Also

by [1, Proposition 9.4], all submodules and all factor modules of a homogeneous

semisimple module are homogeneous semisimple. Thus (1) is obtained. �

Acknowledgement

The author would like to thank the referees for helpful comments that improved

this paper.



190 R. BEYRANVAND

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer Verlag, New York,

1974

[2] H. Ansari-Toroghy and F. Farshadifar, The dual notion of some generalizations of prime sub-

modules, Comm. Algebra 39 (2011), 2396–2416

[3] H. Ansari-Toroghy, F. Farshadifar, S.S. Pourmortazavi and F. Khaliphe, On secondary modules,

International J. Algebra 6 (16)(2012), 769–774

[4] A. Azizi, Weakly prime submodule and prime submodule, Glasgow Math. Journal 48 (2006),

343–346

[5] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2004), 185–195

[6] R. Beyranvand and F. Rastgoo, Weakly second modules over noncommutative rings, Hacettepe

J. Math. Stat. 45 (5) (2016), 1355–1366

[7] S. Ceken, M. Alkan and P. F. Smith, Second modules over noncommutative rings, Comm.

Algebra 41 (2013), 83–98

[8] J. Dauns, Prime modules, J. Reine Angew Math. 298 (1978), 156–181

[9] S. Ebrahimi Atani and F. Farzalipour, On weakly prime submodules, Tank. J. Math. 38 (3)

(2007), 247–252

[10] S. Ebrahimi Atani, On secondary modules over dedekind domains, Southeast Asian Bull. Math.

25 (2001), 1–6

[11] L. Fuchs, W. Heinzerand B. Olberding, Commutative ideal theory without finiteness conditions:

irreducibility in the quotient filed. In: Abelian Groups, Rings, Modules, and Homological Al-

gebra, Lecture Notes in Pure and Applied Mathematics 249 (2006), 121–145

[12] H. A. Khashan, On almost prime submodules, Acta Math. Scientia 32 (2012), 645–651

[13] I.G. Macdonald, Secondary representation of modules over a commutative ring, Sympos. Math.

XI (1973), 23–43

[14] S. Yassemi, The dual notion of prime submodules, Arch. Math. Brno. 37 (2001), 273–278

Department of Mathematics, Lorestan University, P. O. Box: 465, Khorramabad,

Iran.

E-mail address : beyranvand.r@lu.ac.ir


