RESTRICTED HOM-LIE SUPERALGEBRAS

SHADI SHAQAQHA

ABSTRACT. The aim of this paper is to introduce the notion of restricted Hom-Lie superalgebras. This class of algebras is a generalization of both restricted Hom-Lie algebras and restricted Lie superalgebras. In this paper, we present a way to obtain restricted Hom-Lie superalgebras from the classical restricted Lie superalgebras along with algebra endomorphisms. Homomorphisms relations between restricted Hom-Lie superalgebras are defined and studied. Also, we obtain some properties of p-maps and restrictable Hom-Lie superalgebras.

1. Introduction

Hom structures including Hom-algebras, Hom-Lie algebras, Hom-Lie superalgebras, Hom-Lie color algebras, Hom-coalgebras, Hom-modules, and Hom-Hopf modules have been widely investigated during the last years. The motivations to study Hom-Lie structures are related to physics and to deformations of Lie algebras, especially Lie algebras of vector fields. The Hom-Lie algebras were firstly studied by Hartwig, Larsson, and Silvestrov in [5]. Later, Hom-Lie superalgebras are introduced by Ammar and Makhlouf in [1]. Also, Hom-Lie color algebras, which are the natural generalizations of Hom-Lie algebras and Hom-Lie superalgebras, are studied by Yuan ([14]). However, the notion of restricted Hom-Lie algebras was introduced by Guan

 $^{2000\} Mathematics\ Subject\ Classification.\ 17A70,\ 17A60,\ 17B75,\ 17B56.$

Key words and phrases. Hom-Lie superalgebra; Restricted Hom-Lie superalgebra; p-map; Restrictable Hom-Lie superalgebra; Morphism.

 $[\]hbox{Copyright \mathfrak{C} Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan. } \\$

and Chen ([4]).

The Lie superalgebras were originally introduced by Kac ([6]). Later, when $\operatorname{char} F = p > 0$, Lie superalgebras were studied, and also the notion of restricted Lie superalgebras was introduced ([7, 15]). In the present work, we introduce the notion of restricted Hom-Lie superalgebras.

The article is organized as follows. In Section 2, we review some definitions, notations, and results in [1, 3]. In Section 3, we introduce the definition of restricted Hom-Lie superalgebra. We provide some properties and their relationships with restricted Hom-Lie superalgebras. As a result, we show that it is enough to know how a p-map behaves for inputs from any basis of the domain. In Section 4, We study the direct sum of (restricted) Hom-Lie superalgebras. In Section 5, we study the homomorphisms between restricted Hom-Lie superalgebras. In particular, we show how arbitrary restricted Lie superalgebras deform into restricted Hom-Lie superalgebras via algebra endomorphisms. Also we discuss the images as well as preimages of restricted Hom-Lie subsuperalgebras under homomorphisms. The restrictable Hom-Lie superalgebras are defined and studied in Section 6.

2. Preliminaries

Let F be the ground field of characteristic $\neq 2,3$. A linear superspace V over F is merely a \mathbb{Z}_2 -graded linear space with a direct sum $V = V_0 \oplus V_1$. The elements of V_j , $j \in \{0,1\}$, are said to be homogeneous of parity j. The parity of a homogeneous element x is denoted by |x|. Suppose that $V = V_0 \oplus V_1$ and $V' = V'_0 \oplus V'_1$ are two linear superspaces. A linear map $\alpha: V \to V'$ is an even if $\alpha(V_j) \subseteq V'_j$ for $j \in \{0,1\}$.

Definition 2.1 ([1]). A Hom-associative superalgebra is a triple (A, μ, α) where A is a linear superspace, $\mu : A \times A \to A$ is an even bilinear map, and $\alpha : A \to A$ is an

even linear map such that

$$\mu(\alpha(x), \mu(y, z)) = \mu(\mu(x, y), \alpha(z)).$$

A Hom-associative superalgebra (A, μ, α) is called multiplicative if $\alpha(\mu(x, y)) = \mu(\alpha(x), \alpha(y))$ for all $x, y \in A$.

Definition 2.2 ([1]). A Hom-Lie superalgebra is a triple $(L, [\ ,\], \alpha)$ where L is a linear superspace, $[\ ,\]: L \times L \to L$ is an even bilinear map, and $\alpha: L \to L$ is an even linear map such that the following identities satisfied for any homogeneous $x, y, z \in L$.

(i) Super skew-symmetry:

$$[x,y] = -(-1)^{|x||y|}[y,x].$$

(ii) Hom-superJacobi identity:

$$(-1)^{|x||z|}[\alpha(x),[y,z]] + (-1)^{|z||y|}[\alpha(z),[x,y]] + (-1)^{|y||x|}[\alpha(y),[z,x]] = 0.$$

Example 2.1 ([1]). Any Hom-associative superalgebra A, with the bracket

$$[x,y] = \mu(x,y) - (-1)^{|x||y|} \mu(y,x)$$

for any nonzero homogeneous $x, y \in A$, is a Hom-Lie superalgebra, which will be denoted by $A^{(-)}$.

It is clear that Lie superalgebras are examples of Hom-Lie superalgebras by setting $\alpha = \mathrm{id}_L$. A Hom-Lie superalgebra is called a multiplicative Hom-Lie superalgebra if α is an even homomorphism (that is, $\alpha([x,y]) = [\alpha(x), \alpha(y)]$ for all $x,y \in L$). A subspace $H \subseteq L$ is called a Hom-Lie subsuperalgebra if $\alpha(H) \subseteq H$ and H is closed under the bracket operation (that is, $[x,y] \in L$ for all $x,y \in L$).

Let $L = L_0 \oplus L_1$ be a Lie superalgebra. For a homogenous element $a \in L$, we consider a mapping $ada : L \to L$; $b \mapsto [a, b]$.

Definition 2.3 ([3]). A Lie superalgebra $L = L_0 \oplus L_1$ is called *restricted* (or *p-superalgebra*) if there is a map

$$[p]: L_0 \to L; \ x \mapsto x^{[p]},$$

satisfying

- (i) $(adx)^p = ad(x^{[p]})$ for all $x \in L_0$,
- (ii) $(kx)^{[p]} = k^p x^{[p]}$ for all $k \in F, x \in L_0$,
- (iii) $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y)$ for all $x,y \in L_0$ where $is_i(x,y)$ is the coefficient of λ^{i-1} in ad $(\lambda x + y)^{p-1}(x)$.

3. Restricted Hom-Lie superalgebra

Let $(L, [\ ,\], \alpha)$ be a multiplicative Hom-Lie superalgebra. For a homogeneous element $a \in L_0$ with $\alpha(a) = a$, we consider a map

$$ad_{\alpha}a: L \to L; \ b \mapsto [a, \alpha(b)].$$

Put $L^0 = \{x \in L_0 \mid \alpha(x) = x\}$. We can easily prove that L^0 is a Hom-Lie subsuperalgebra of L.

Definition 3.1. A multiplicative Hom-Lie superalgebra $(L, [,], \alpha)$ is called restricted if there is a map (called a p-map)

$$[p]: L^0 \to L^0; \ x \mapsto x^{[p]},$$

satisfying

- (i) $(\operatorname{ad}_{\alpha} x)^p = \operatorname{ad}_{\alpha} (x^{[p]})$ for all $x \in L^0$,
- (ii) $(kx)^{[p]} = k^p x^{[p]}$ for all $k \in F, x \in L^0$,
- (iii) $(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y)$ for all $x,y \in L^0$ where $is_i(x,y)$ is the coefficient of λ^{i-1} in $\mathrm{ad}_{\alpha} (\lambda x + y)^{p-1} (x)$.

Let $(L, [\ ,\], \alpha, [p])$ be a restricted Hom Lie-superalgebra over a field F. A Hom-Lie subsuperalgebra $H = H_0 \oplus H_1$ of L is called a p-subalgebra if $x^{[p]} \in H^0 \ \forall x \in H^0$.

Definition 3.2. Let $(L, [\ ,\], \alpha)$ be a Hom Lie-superalgebra, and let S be a subset of L.

- (i) A map $f: L \to L$ is called a *p*-semilinear map if $f(kx + y) = k^p f(x) + f(y)$ $\forall x, y \in L \text{ and } \forall k \in F.$
- (ii) The α -centralizer of S in L, denoted by $C_L(S)$, is defined to be

$$C_L(S) = \{x \in L \mid [x, \alpha(y)] = 0 \ \forall y \in S\}.$$

In particular, if S = L, it is called the α -center of L, and it is denoted by C(L).

The following theorem was proved by Baoling Guan and Liangyun Chen in [4] in the setting of Hom-Lie algebras.

Theorem 3.1. Let H be a Hom-Lie subsuperalgebra of a multiplicative restricted Hom-Lie superalgebra $(L, [\ ,\], \alpha, [p])$ and $[p]_1 : H^0 \to H^0$ is a map. Then the following statements are equivalent:

- (i) $[p]_1$ is a p-map on H^0 ,
- (ii) there is a p-semilinear map $f: H^0 \to C_L(H)$ such that $[p]_1 = [p] + f$.

Proof. Suppose that $[p]_1$ is a p-map on H^0 . Consider

$$f: H^0 \to L; \ x \mapsto x^{[p]_1} - x^{[p]}.$$

Since $\operatorname{ad}_{\alpha} f(x)(y) = [f(x), \alpha(y)] = [x^{[p]_1}, \alpha(y)] - [x^{[p]}, \alpha(y)] = (\operatorname{ad}_{\alpha} x)^p - (\operatorname{ad}_{\alpha} x)^p = 0$ for all $x \in H^0, y \in L$, f actually maps H^0 into $C_L(H)$. Now, for $x, y \in H^0$ and $k \in F$, we obtain

$$f(kx+y) = (kx+y)^{[p]_1} - (kx+y)^{[p]}$$

$$= k^p x^{[p]_1} + y^{[p]_1} + \sum_{i=1}^{p-1} s_i(kx,y) - k^p x^{[p]} - y^{[p]} - \sum_{i=1}^{p-1} s_i(kx,y)$$

$$= k^p f(x) + f(y).$$

This shows that f is a p-semilinear map. Conversely, assume there exists a p-semilinear map $f: H^0 \to C_L(H)$ with $[p]_1 = [p] + f$. We check the three conditions given in Definition 3.1. For $x \in H^0$, $y \in H$, we have

$$\operatorname{ad}_{\alpha} x^{[p]_1}(y) = \operatorname{ad}_{\alpha} (x^{[p]} + f(x))(y)$$

$$= \operatorname{ad}_{\alpha} x^{[p]}(y) + \operatorname{ad}_{\alpha} f(x)(y)$$

$$= \operatorname{ad}_{\alpha} x^{[p]}(y) \text{ (since } f(x) \in C_L(H))$$

$$= (\operatorname{ad}_{\alpha} x)^p(y).$$

For $x, y \in H^0$, we have

$$(x+y)^{[p]_1} = (x+y)^{[p]} + f(x+y)$$

$$= x^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(x,y) + f(x) + f(y)$$

$$= x^{[p]_1} + y^{[p]_1} + \sum_{i=1}^{p-1} s_i(x,y).$$

and, for $k \in F$, we get

$$(kx)^{[p]_1} = (kx)^{[p]} + f(kx)$$

$$= k^p x^{[p]} + k^p f(x)$$

$$= k^p (x^{[p]} + f(x))$$

$$= k^p x^{[p]_1}.$$

Corollary 3.1. Let $(L, [,], \alpha)$ be a multiplicative Hom-Lie superalgebra.

- (i) If C(L) = 0, then L admits at most one p-map.
- (ii) If two p-maps coincide on a basis of L^0 , then they are equal.
- (iii) If $[p]: L^0 \to L^0$ is a p-map, then there exists a p-mapping [p]' of L such that $x^{[p]'} = 0 \ \forall x \in C(L^0).$

Proof.

- (i) Suppose $[p]_1$ and $[p]_2$ are p-maps of L. By Theorem 3.1, there exists a psemilinear map f from L^0 into C(L) such that $[p]_2 = [p]_1 + f$, and since C(L) = 0, we have $[p]_1 = [p]_2$.
- (ii) Let $[p]_1$ and $[p]_2$ be two p-maps coincide on a basis B of L. According to Theorem 3.1, there exists a p-semilinear map $f: L^0 \to C(L)$ such that f = $[p]_2 - [p]_1$, and so $f(b) = 0 \ \forall b \in B$. As f is a p-semilinear, we have f(x) = 0 $\forall x \in L^0$. Thus, $[p]_1 = [p]_2$.
- (iii) $[p]|_{C(L^0)}$ is obviously a p-map. For $x,y\in C(L^0)$ and $k\in F$, we have

$$(kx + y)^{[p]} = (kx)^{[p]} + y^{[p]} + \sum_{i=1}^{p-1} s_i(kx, y)$$

= $k^p x^{[p]} + y^{[p]}$ (since C(L⁰) is abelian).

Thus it is a p-semilinear map. Extend it to a p-semilinear map $f:L^0\to$ $C(L^{0})$. Then [p]' := [p] - f is a p-map with $x^{[p]'} = 0 \ \forall x \in C(L^{0})$.

4. Direct sum of Hom-Lie superalgebras

Let V and V' be two superspace. Then the homogeneous elements of the superspace $V \oplus V'$ have the form (x,y), where x and y are homogeneous elements of the same

degrees in V and V', respectively. In this case, |(x,y)| = |x| = |y|. We have the following result.

Theorem 4.1. Given two Hom-Lie superalgebras $(L, [\ ,\]_L, \alpha)$ and $(\Gamma, [\ ,\]_{\Gamma}, \beta)$, then $(L \oplus \Gamma, [\ ,\]_{L \oplus \Gamma}, \gamma)$ has a multiplicative Hom-Lie superalgebra structure, where the bilinear map $[\ ,\]_{L \oplus \Gamma}$ is given by $((x_1, y_1)$ and (x_2, y_2) are homogeneous elements): $[(x_1, y_1), (x_2, y_2)]_{L \oplus \Gamma} = ([x_1, x_2]_L, [y_1, y_2]_{\Gamma})$, and the linear map $\gamma : L \oplus \Gamma \to L \oplus \Gamma$ is given by: $\gamma(x_1, y_1) = (\alpha(x_1), \beta(y_1))$. Moreover, $(L \oplus \Gamma)^0 = L^0 \oplus \Gamma^0$.

Proof. Suppose that (x_1, y_1) and (x_2, y_2) are two homogeneous elements in $L \oplus \Gamma$. Then

$$\begin{split} [(x_1,y_1),(x_2,y_2)]_{L\oplus\Gamma} &= ([x_1,x_2]_L,[y_1,y_2]_\Gamma) \\ &= (-(-1)^{|x_1||x_2|}[x_2,x_1]_L,-(-1)^{|y_1||y_2|}[y_2,y_1]_\Gamma) \\ &= -(-1)^{|x_1||x_2|}([x_2,x_1]_L,[y_2,y_1]_\Gamma) \; (|x_1|=|y_1| \text{ and } |x_2|=|y_2|) \\ &= -(-1)^{|(x_1,y_1)||(x_2,y_2)|}[(x_2,y_2),(x_1,y_1)]_{L\oplus\Gamma}. \end{split}$$

For all homogeneous elements $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) , we have,

$$(-1)^{|(x_{1},y_{1})||(x_{3},y_{3})|} [\gamma(x_{1},y_{1}),[(x_{2},y_{2}),(x_{3},y_{3})]_{L\oplus\Gamma}]_{L\oplus\Gamma}$$

$$+ (-1)^{|(x_{3},y_{3})||(x_{2},y_{2})|} [\gamma(x_{3},y_{3}),[(x_{1},y_{1}),(x_{2},y_{2})]_{L\oplus\Gamma}]_{L\oplus\Gamma}$$

$$+ (-1)^{|(x_{2},y_{2})||(x_{1},y_{1})|} [\gamma(x_{2},y_{2}),[(x_{3},y_{3}),(x_{1},y_{1})]_{L\oplus\Gamma}]_{L\oplus\Gamma}$$

$$= (-1)^{|x_{1}||x_{3}|} [(\alpha(x_{1}),\beta(y_{1})),([x_{2},x_{3}]_{L},[y_{2},y_{3}]_{\Gamma})]_{L\oplus\Gamma}$$

$$+ (-1)^{|x_{3}||x_{2}|} [(\alpha(x_{3}),\beta(y_{3})),([x_{1},x_{2}]_{L},[y_{1},y_{2}]_{\Gamma})]_{L\oplus\Gamma}$$

$$+ (-1)^{|x_{2}||x_{1}|} [(\alpha(x_{2}),\beta(y_{2})),([x_{3},x_{1}]_{L},[y_{3},y_{1}]_{\Gamma})]_{L\oplus\Gamma}$$

$$= ((-1)^{|x_{1}||x_{3}|} [\alpha(x_{1}),[x_{2},x_{3}]_{L}]_{L},(-1)^{|y_{1}||y_{3}|} [\beta(y_{1}),[y_{2},y_{3}]_{\Gamma}]_{\Gamma})$$

$$+ ((-1)^{|x_{3}||x_{2}|} [\alpha(x_{3}),[x_{1},x_{2}]_{L}]_{L},(-1)^{|y_{3}||y_{2}|} [\beta(y_{3}),[y_{1},y_{2}]_{\Gamma}]_{\Gamma})$$

+
$$((-1)^{|x_2||x_1|}[\alpha(x_2), [x_3, x_1]_L]_L, (-1)^{|y_2||y_1|}[\beta(y_2), [y_3, y_1]_{\Gamma}]_{\Gamma})$$

= $(0, 0)$.

Also, $(L \oplus \Gamma, [\ ,\]_{L \oplus \Gamma}, \gamma)$ is multiplicative, since for all homogeneous elements $(x_1, y_1), (x_2, y_2) \in L \oplus \Gamma$, we have

$$\gamma([(x_1, y_1), (x_2, y_2)]_{L \oplus \Gamma}) = \gamma([x_1, x_2]_L, [y_1, y_2]_{\Gamma})
= ([\alpha(x_1), \alpha(x_2)]_L, [\beta(y_1), \beta(y_2)]_{\Gamma})
= ([(\alpha(x_1), \beta(y_1)), (\alpha(x_2), \beta(y_2))]_{L \oplus \Gamma}
= [\gamma(x_1, y_1), \gamma(x_2, y_2)]_{L \oplus \Gamma}.$$

Finally,

$$(L \oplus \Gamma)^0 = \{(x,y) \in (L \oplus \Gamma)_0 \mid \gamma(x,y) = (x,y)\}$$

$$= \{(x,y) \in (L \oplus \Gamma)_0 \mid (\alpha(x),\beta(y)) = (x,y)\}$$

$$= \{(x,y) \in (L \oplus \Gamma)_0 \mid \alpha(x) = x \text{ and } \beta(y) = y\}$$

$$= L^0 \oplus \Gamma^0.$$

Theorem 4.2. Given restricted Hom-Lie superalgebras $(L, [,]_L, \alpha, [p]_1)$ and $(\Gamma, [,]_\Gamma, \beta, [p]_2)$, then $(L \oplus \Gamma, [,]_{L \oplus \Gamma}, \gamma, [p])$ has a restricted Hom-Lie superalgebras, where $[,]_{L \oplus \Gamma}$ and γ are defined as in Theorem 4.1, and

$$[p]: (L \oplus \Gamma)^0 \to (L \oplus \Gamma)^0; \ (u, v) \mapsto (u^{[p]_1}, v^{[p]_2}).$$

Proof. According to Theorem 4.1, it is enough to check the three conditions given in Definition 3.1. Let $(x_1, y_1) \in L^0 \oplus \Gamma^0$ and $(x_2, y_2) \in L \oplus \Gamma$. We have

$$(\mathrm{ad}_{\gamma}(x_1, y_1))^p(x_2, y_2) = (\mathrm{ad}_{\gamma}(x_1, y_1))^{p-1}(\mathrm{ad}_{\gamma}(x_1, y_1))(x_2, y_2)$$

$$= (\operatorname{ad}_{\gamma}(x_{1}, y_{1}))^{p-1}[(x_{1}, y_{1}), (\alpha(x_{2}), \beta(y_{2}))]_{L \oplus \Gamma}$$

$$= (\operatorname{ad}_{\gamma}(x_{1}, y_{1}))^{p-1}([x_{1}, \alpha(x_{2})]_{L}, [y_{1}, \beta(y_{2})]_{\Gamma})$$

$$= (\operatorname{ad}_{\gamma}(x_{1}, y_{1}))^{p-2}([x_{1}, [x_{1}, \alpha^{2}(x_{2})]_{L}]_{L}, [y_{1}, [y_{1}, \beta^{2}(y_{2})]_{\Gamma}]_{\Gamma})$$

$$\vdots$$

$$= ([x_{1}, [x_{1}, \cdots, [x_{1}, \alpha^{p}(x_{2})]_{L} \cdots]_{L}]_{L}, [y_{1}, [y_{1}, \cdots, [y_{1}, \beta^{p}(y_{2})]_{\Gamma} \cdots]_{\Gamma}]_{\Gamma})$$

$$= ((\operatorname{ad}_{\alpha}x_{1})^{p}(x_{2}), (\operatorname{ad}_{\beta}y_{1})^{p}(y_{2}))$$

$$= (\operatorname{ad}_{\alpha}x_{1}^{[p]_{1}}(x_{2}), \operatorname{ad}_{\beta}y_{1}^{[p]_{2}}(y_{2}))$$

$$= ([x_{1}^{[p]_{1}}, \alpha(x_{2})]_{L}, [y_{1}^{[p]_{2}}, \beta(y_{2})]_{\Gamma})$$

$$= [(x_{1}^{[p]_{1}}, y_{1}^{[p]_{2}}), (\alpha(x_{2}), \beta(y_{2}))]_{L \oplus \Gamma}$$

$$= \operatorname{ad}_{\gamma}(x_{1}, y_{1})^{[p]}(x_{2}, y_{2}).$$

This proves that $(\operatorname{ad}_{\gamma}(x_1, y_1))^{[p]} = \operatorname{ad}_{\gamma}(x_1, y_1)^{[p]}$. For $k \in F, (x, y) \in L^0 \oplus \Gamma^0$, we obtain

$$(k(x,y))^{[p]} = ((kx)^{[p]_1}, (ky)^{[p]_2}) = (k^p x^{[p]_1}, ky^{[p]_2}) = k^p (x^{[p]_1}, y^{[p]_2}) = k^p (x,y)^{[p]}.$$

Finally, for $(x_1, y_1), (x_2, y_2) \in L^0 \oplus \Gamma^0$, one gets

$$((x_{1}, y_{1}) + (x_{2}, y_{2}))^{[p]} = (x_{1} + x_{2}, y_{1} + y_{2})^{[p]}$$

$$= ((x_{1} + x_{2})^{[p]_{1}}, (y_{1} + y_{2})^{[p]_{2}})$$

$$= \left(x_{1}^{[p]_{1}} + x_{2}^{[p]_{1}} + \sum_{i=1}^{p-1} s_{i}(x_{1}, x_{2}), y_{1}^{[p]_{2}} + y_{2}^{[p]_{2}} + \sum_{i=1}^{p-1} s_{i}(y_{1}, y_{2})\right)$$

$$= \left(x_{1}^{[p]_{1}}, y_{1}^{[p]_{2}}\right) + \left(x_{2}^{[p]_{1}}, y_{2}^{[p]_{2}}\right) + \left(\sum_{i=1}^{p-1} s_{i}(x_{1}, x_{2}), \sum_{i=1}^{p-1} s_{i}(y_{1}, y_{2})\right)$$

$$= (x_{1}, y_{1})^{[p]} + (x_{2}, y_{2})^{[p]} + \sum_{i=1}^{p-1} s_{i}((x_{1}, y_{1}), (x_{2}, y_{2})).$$

Corollary 4.1. Suppose that $(L_1, [\ ,\]_{L_1}, \alpha_1.[p]_1), \ldots, (L_n, [\ ,\]_{L_n}, \alpha_n, [p]_n)$ are restricted Hom-Lie superalgebras. Then $(L_1 \oplus \cdots \oplus L_n, [\ ,\]_{L_1 \oplus \cdots \oplus L_n}, \gamma, [p])$ is a restricted Hom-Lie superalgebra, where the bilinear map $[\ ,\]_{L_1 \oplus \cdots \oplus L_n}$ is defined on homogenous elements by

$$[(x_1,\ldots,x_n),(y_1,\ldots,y_n)]_{L_1\oplus\cdots\oplus L_n}=([x_1,y_1]_{L_1},\ldots,[x_n,y_n]_{L_n}),$$

and the linear map $\gamma: L_1 \oplus \cdots \oplus L_n \to L_1 \oplus \cdots \oplus L_n$ is defined as

$$\gamma(x_1,\ldots,x_n)=(\alpha_1(x_1),\ldots,\alpha_n(x_n)).$$

Also, the p-map $[p]: (L_1 \oplus \cdots \oplus L_n)^0 \to (L_1 \oplus \cdots \oplus L_n)^0$ is given by

$$(x_1,\ldots,x_n)^{[p]} = (x_1^{[p]_1},\ldots,x_n^{[p]_n}).$$

5. On morphisms of Hom-Lie superalgebras

Definition 5.1 ([1]). Let $(L, [\ ,\]_L, \alpha)$ and $(\Gamma, [\ ,\]_{\Gamma}, \beta)$ be two Hom-Lie superalgebras. An even superspace $\varphi : L \to \Gamma$ is said to be a morphism of Hom-Lie superalgebras if

$$[\varphi(u), \varphi(v)]_{\Gamma} = \varphi([u, v]_L) \ \forall u, v \in L \ \text{and} \ \varphi \circ \alpha = \beta \circ \varphi.$$

If $\varphi: L \to \Gamma$ is an even superspace, then the graph of φ is the set

$$G_{\varphi} = \{(x, \varphi(x) \mid x \in L\} \subseteq L \oplus \Gamma.$$

Definition 5.2. A morphism of Hom-Lie superalgebra

$$\varphi: (L, [\ ,\]_L, \alpha, [p]_1) \to (\Gamma, [\ ,\]_\Gamma, \beta, [p]_2)$$

is said to be restricted if $\varphi(x^{[p]_1}) = (\varphi(x))^{[p]_2} \ \forall x \in L^0$.

Theorem 5.1. A linear map $\varphi: (L, [\ ,\]_L, \alpha, [p]_1) \to (\Gamma, [\ ,\]_\Gamma, \beta, [p]_2)$ is a restricted morphism of Hom-Lie superalgebras if and only if the graph G_{φ} is a restricted Hom-Lie subsuperalgebra of $(L \oplus \Gamma, [\ ,\]_{L \oplus \Gamma}, \gamma, [p])$ where $[\ ,\]_{L \oplus \Gamma}, \gamma$, and [p] are defined as in Theorem 4.2.

Proof. Suppose $\varphi:(L,[\ ,\]_L,\alpha,[p]_1)\to (\Gamma,[\ ,\]_\Gamma,\beta,[p]_2)$ is a restricted morphism of Hom-Lie superalgebras. Let $(x_1,\varphi(x_1)),(x_2,\varphi(x_2))\in G_\varphi$. Then

$$[(x_1, \varphi(x_1)), (x_2, \varphi(x_2))]_{L \oplus \Gamma} = ([x_1, x_2]_L, [\varphi(x_1), \varphi(x_2)]_{\Gamma})$$
$$= ([x_1, x_2]_L, \varphi([x_1, x_2])) \in G_{\varphi}.$$

This shows G_{φ} is closed under the bracket operation. For $(x_1, \varphi(x_1)) \in G_{\varphi}$, we have

$$\gamma(x_1, \varphi(x_1)) = (\alpha(x_1), \beta(\varphi(x_1))) = (\alpha(x_1), \varphi(\alpha(x_1))) \in G_{\varphi}.$$

So far we have shown that G_{φ} is a Hom-Lie subsuperalgebra. For $(x_1, \varphi(x_1)) \in G_{\varphi}^0$, we have

$$(x_1, \varphi(x_1))^{[p]} = \left(x_1^{[p]_1}, (\varphi(x_1))^{[p]_2}\right)$$
$$= \left(x_1^{[p]_1}, \varphi\left(x_1^{[p]_1}\right)\right) \in G_{\varphi}^0.$$

Conversely, suppose G_{φ} is a restricted Hom-Lie subsuperalgebra of $(L \oplus \Gamma, [\ ,\]_{L \oplus \Gamma}, \gamma, [p])$. Let $x_1, x_2 \in L$. Then $[(x_1, \varphi(x_1)), (x_2, \varphi(x_2))]_{L \oplus \Gamma} = ([x_1, x_2]_L, [\varphi(x_1), \varphi(x_2)]_{\Gamma}) \in G_{\varphi}$, and so $\varphi([x_1, x_2]_L) = [\varphi(x_1), \varphi(x_2)]_{\Gamma}$. For $x \in L$, we have $\gamma(x, \varphi(x)) = (\alpha(x), \beta(\varphi(x))) \in G_{\varphi}$, so that $\varphi(\alpha(x)) = \beta(\varphi(x))$. Finally, if $x \in L^0$, then we have $(x, \varphi(x))^{[p]} = (x^{[p]_1}, (\varphi(x))^{[p]_2}) \in G_{\varphi}$, and so $\varphi(x^{[p]_1}) = (\varphi(x))^{[p]_2}$.

We extend, in the following theorem, the result in [1] to restricted Lie superalgebras case. It gives a way to construct restricted Hom-Lie superalgebras starting from a restricted Lie superalgebra and an even superalgebra endomorphism.

Theorem 5.2. Let (L, [,], [p]) be a restricted Lie superalgebra and $\alpha : L \to L$ be an even Lie superalgebra endomorphism. Then $(L, [,]_{\alpha}, \alpha, [p]|_{L^0})$, where $[x, y]_{\alpha} = \alpha([x, y])$ is a restricted Hom-Lie superalgebra.

Proof. The bracket is obviously super skew-symmetric. Let $x, y, z \in L$ be homogenous elements. With a direct computation, we have

$$\begin{split} &(-1)^{|x||z|}[\alpha(x),[y,z]_{\alpha}]_{\alpha} + (-1)^{|z||y|}[\alpha(z),[x,y]_{\alpha}]_{\alpha} + (-1)^{|y||x|}[\alpha(y),[z,x]_{\alpha}]_{\alpha} \\ &= & (-1)^{|x||z|}\alpha^{2}\left([x,[y,z]]\right) + (-1)^{|z||y|}\alpha^{2}\left([z,[x,y]]\right) + (-1)^{|y||x|}\alpha^{2}\left([y,[z,x]]\right) \\ &= & \alpha^{2}\left((-1)^{|x||z|}[x,[y,z]] + (-1)^{|z||y|}[z,[x,y]] + (-1)^{|y||x|}[y,[z,x]]\right) = 0. \end{split}$$

Now, the Hom-Lie superalgebra $(L,[\ ,\]_{\alpha},\alpha)$ is multiplicative. Indeed, for homogeneous elements $x,y\in L$, we have $\alpha\left([x,y]_{\alpha}\right)=\alpha^2([x,y])=[\alpha(x),\alpha(y)]_{\alpha}$. Next, we check the three conditions given in Definition 3.1. For $x\in L^0$ and $z\in L$,

 $(\operatorname{ad}_{\alpha} x)^{p}(z) = (\operatorname{ad}_{\alpha} x)^{p-1} (\operatorname{ad}_{\alpha} x)(z)$ $= (\operatorname{ad}_{\alpha} x)^{p-1} ([x, \alpha(z)]_{\alpha})$ $= (\operatorname{ad}_{\alpha} x)^{p-1} ([x, \alpha^{2}(z)])$ $= (\operatorname{ad}_{\alpha} x)^{p-2} ([x, [x, \alpha^{2}(z)]]_{\alpha})$ $= (\operatorname{ad}_{\alpha} x)^{p-2} ([x, [x, \alpha^{3}(z)]])$ \vdots $= [x, [x, \dots, [x, \alpha^{p+1}(z)] \dots]]$ $= (\operatorname{ad} x)^{p} (\alpha(z))$ $= \operatorname{ad} (x^{[p]}) (\alpha(z))$ $= [x^{[p]}, \alpha(z)]$ $= \operatorname{ad}_{\alpha} x^{[p]|_{L^{0}}}(z).$

The second and the third properties are clear.

we have

Theorem 5.3. Let $(L, [,]_L, [p]_1)$ and $(\Gamma, [,]_\Gamma, [p]_2)$ be restricted Lie superalgebras, $\alpha: L \to L$ and $\beta: \Gamma \to \Gamma$ be an even Lie superalgebra endomorphisms, and $f: L \to \Gamma$ be a morphism of restricted Lie superalgebras with $f \circ \alpha = \beta \circ f$. Then

$$f: (L, [\ ,\]_{\alpha}, \alpha, [p]_1) \to (\Gamma, [\ ,\]_{\beta}, \beta, [p]_2),$$

where $[,]_{\alpha}$ and $[,]_{\beta}$ are defined as in Theorem 5.2, is a morphism of restricted Hom-Lie superalgebras.

Proof. If $u, v \in L$, we have

$$f([u,v]_{\alpha}) = f(\alpha[u,v]) = \beta \circ f([u,v]) = \beta([f(u),f(v)]) = [f(u),f(v)]_{\beta}.$$

Also. for $u \in L^0$ and using $L^0 \subseteq L_0$, we obtain $f(u^{[p]_1}) = (f(u))^{[p]_2}$.

Theorem 5.4. Let $(L, [\ ,\]_L, \alpha)$ and $(\Gamma, [\ ,\]_{\Gamma}, \beta)$ be multiplicative Hom-Lie superalgebras, and φ be a one to one morphism of Hom-Lie superalgebras. If C is a Hom-Lie subsuperalgebra of Γ and $[p]: C^0 \to C^0$ is a p-map, then $(\varphi^{-1}(C), [\ ,\]_L, \alpha|_{\varphi^{-1}(C)}, [p]')$, where

$$[p]': (\varphi^{-1}(C))^0 \to (\varphi^{-1}(C))^0; x \mapsto \varphi^{-1}((\varphi(x))^{[p]}),$$

is a restricted Hom-Lie superalgebra.

Proof. First, we show $\varphi^{-1}(C)$ is a Hom-Lie subsuperalgebra of L. For $x_1, x_2 \in \varphi^{-1}(C)$, there exist $y_1, y_2 \in C$ with $\varphi(x_1) = y_1$ and $\varphi(x_2) = y_2$. Now, $\varphi([x_1, x_2]) = [y_1, y_2]$, implies $[x_1, x_2] \in \varphi^{-1}(C)$. Also, $\alpha(x_1) \in \varphi^{-1}(C)$ follows from $\beta(\varphi(x_1)) = \varphi(\alpha(x_1))$. Next, if $x \in (\varphi^{-1}(C))^0$, then it is clear that $\varphi(x) \in C^0$. Also, for $k \in F$,

we have

$$(kx)^{[p]'} = \varphi^{-1} ((\varphi(kx))^{[p]})$$

$$= \varphi^{-1} ((k\varphi(x))^{[p]})$$

$$= \varphi^{-1} (k(\varphi(x))^{[p]})$$

$$= k (\varphi(x))^{[p]} = kx^{[p]'}.$$

Also, for $x_1, x_2 \in (\varphi^{-1}(C))^0$ we have

$$(x_{1} + x_{2})^{[p]'} = \varphi^{-1} (\varphi(x_{1}) + \varphi(x_{2}))^{[p]}$$

$$= \varphi^{-1} (\varphi(x_{1}) + \varphi(x_{2}))^{[p]}$$

$$= \varphi^{-1} \left((\varphi(x_{1}))^{[p]} + (\varphi(x_{2}))^{[p]} + \sum_{i=1}^{p-1} s_{i}(\varphi(x_{1}), \varphi(x_{2})) \right)$$

$$= \varphi^{-1} \left((\varphi(x_{1}))^{[p]} \right) + \varphi^{-1} \left((\varphi(x_{2}))^{[p]} \right) + \varphi^{-1} \left(\sum_{i=1}^{p-1} s_{i}(\varphi(x_{1}), \varphi(x_{2})) \right)$$

$$= x_{1}^{[p]'} + x_{2}^{[p]'} + \sum_{i=1}^{p-1} s_{i}(x_{1}, x_{2}).$$

Finally, let $x_1 \in (\varphi^{-1}(C))^0$ and $x_2 \in \varphi^{-1}(C)$. There exist $y_1 \in C^0$ and $y_2 \in C$ with $\varphi(x_1) = y_1$ and $\varphi(x_2) = y_2$. With a direct computation, we have

$$\operatorname{ad}_{\alpha} x^{[p]'}(x_2) = \left[x_1^{[p]'}, \alpha(x_2)\right]$$

$$= \left[\varphi^{-1}\left((\varphi(x_1))^{[p]}\right), \alpha(x_2)\right]$$

$$= \varphi^{-1}\left[(\varphi(x_1))^{[p]}, \varphi \circ \alpha(x_2)\right]$$

$$= \varphi^{-1}\left[y_1^{[p]}, \beta(y_2)\right]$$

$$= \varphi^{-1}\left(\operatorname{ad}_{\beta} y_1^{[p]}\right)(y_2)$$

$$= \varphi^{-1}\left(\operatorname{ad}_{\beta} y_1\right)^p(y_2)$$

$$= \varphi^{-1}\left(\operatorname{ad}_{\beta} y_1\right)^{p-1}\left[\varphi(x_1), \beta(\varphi(x_2))\right]$$

$$= \varphi^{-1} \left(\operatorname{ad}_{\beta} y_{1} \right)^{p-1} \left[\varphi(x_{1}), \varphi(\alpha(x_{2})) \right]$$

$$\vdots$$

$$= \varphi^{-1} \left[\varphi(x_{1}), \left[\varphi(x_{1}), \left[\cdots, \left[\varphi(x_{1}), \varphi(\alpha^{p}(x_{2})) \right] \cdots \right] \right] \right]$$

$$= \left[x_{1}, \left[x_{1}, \cdots, \left[x_{1}, \alpha^{p}(x_{2}) \right] \cdots \right] \right]$$

$$= \left(\operatorname{ad}_{\alpha} x_{1} \right)^{p} \left(x_{2} \right).$$

Theorem 5.5. Suppose that $(L, [\ ,\]_L, \alpha, [p])$ is a restricted Hom-Lie superalgebra, $(\Gamma, [\ ,\]_{\Gamma}, \beta)$ is a multiplicative Hom-Lie superalgebra, and $\varphi : L \to \Gamma$ is a one to one morphism of Hom-Lie superalgebras. Then $(\varphi(L), [\ ,\]_{\Gamma}, \beta|_{\varphi(L)}, [p]')$ is a restricted Hom-Lie superalgebra, where

$$[p]': (\varphi(L))^0 \to (\varphi(L))^0; \ \varphi(x) \mapsto \varphi(x^{[p]}).$$

Proof. For $\varphi(x_1), \varphi(x_2) \in \varphi(L)$, we have $[\varphi(x_1), \varphi(x_2)] = \varphi([x_1, x_2]) \in \varphi(L)$ and $\beta(\varphi(x_1)) = \varphi(\alpha(x_1)) \in \varphi(L)$. For $\varphi(x) \in (\varphi(L))^0$, we have $\beta(\varphi(x)) = \varphi(\alpha(x)) = \varphi(x)$. Since φ is one to one we have $\alpha(x) = x$. Thus, $x \in L^0$. Next, we check the three conditions given in Definition 3.1. For $\varphi(x) \in (\varphi(L))^0$ and $k \in F$, we obtain

$$(k\varphi(x))^{[p]'} = (\varphi(kx))^{[p]'} = \varphi\left((kx)^{[p]}\right) = \varphi\left(kx^{[p]}\right) = k\varphi\left(x^{[p]}\right) = k(\varphi(x))^{[p]'}.$$

If $\varphi(x_1), \varphi(x_2) \in (\varphi(L))^0$, then we have

$$(\varphi(x_1) + \varphi(x_2))^{[p]'} = (\varphi(x_1 + x_2))^{[p]'}$$

$$= \varphi((x_1 + x_2)^{[p]})$$

$$= \varphi\left(x_1^{[p]} + x_2^{[p]} + \sum_{i=1}^{p-1} s_i(x_1, x_2)\right)$$

$$= \varphi\left(x_1^{[p]}\right) + \varphi\left(x_2^{[p]}\right) + \varphi\left(\sum_{i=1}^{p-1} s_i(x_1, x_2)\right)$$

$$= (\varphi(x_1))^{[p]'} + (\varphi(x_2))^{[p]'} + \sum_{i=1}^{p-1} s_i(\varphi(x_1), \varphi(x_2)).$$

In addition, for $\varphi(x_1) \in (\varphi(L))^0$ and $\varphi(x_2) \in \varphi(L)$, we obtain

$$\operatorname{ad}_{\beta}(\varphi(x_{1}))^{[p]'}(\varphi(x_{2})) = \left[(\varphi(x_{1}))^{[p]'}, \beta(\varphi(x_{2})) \right]$$

$$= \left[(\varphi(x_{1}))^{[p]'}, \varphi(\alpha(x_{2})) \right]$$

$$= \varphi\left(\left[x_{1}^{[p]}, \alpha(x_{2}) \right] \right)$$

$$= \varphi\left(\left[x_{1}^{[p]}, \alpha(x_{2}) \right] \right)$$

$$= \varphi\left(\left(\operatorname{ad}_{\alpha} x_{1}^{[p]} \right) (x_{2})$$

$$= \varphi\left(\left(\operatorname{ad}_{\alpha} x_{1} \right)^{p} (x_{2}) \right)$$

$$= \varphi\left(\left[x_{1}, \left[x_{1}, \cdots, \left[x_{1}, \alpha^{p}(x_{2}) \right] \cdots \right] \right] \right)$$

$$= \left[\varphi(x_{1}), \left[\varphi(x_{1}), \cdots, \left[\varphi(x_{1}), \varphi(\alpha^{p}(x_{2})) \right] \cdots \right] \right]$$

$$= \left[\varphi(x_{1}), \left[\varphi(x_{1}), \cdots, \left[\varphi(x_{1}), \beta^{p}(\varphi(x_{2})) \right] \cdots \right] \right]$$

$$= \left(\operatorname{ad}_{\beta} \varphi(x_{1}) \right)^{p} (\varphi(x_{2})).$$

6. Restrictable Hom-Lie superalgebra

Definition 6.1. A multiplicative Hom-Lie superalgebra $(L, [,], \alpha)$ is called restrictable if $(\mathrm{ad}_{\alpha}x)^p \in \mathrm{ad}_{\alpha}L^0$ for all $x \in L^0$, where $\mathrm{ad}_{\alpha}L^0 = \{\mathrm{ad}_{\alpha}x \mid x \in L^0\}$.

The following theorem was obtained by Guan and Chen in [4] in the setting of Lie algebras. We extend it to Lie superalgebra case.

Theorem 6.1. A multiplicative Hom-Lie superalgebra is restrictable if and only if there is a p-map $[p]: L^0 \to L^0$ which makes L a restricted Hom-Lie superalgebra.

Proof. Suppose $(L, [\ ,\], \alpha, [p])$ is a restricted Hom-Lie superalgebra. Let $x \in L^0$. Then $(\mathrm{ad}_{\alpha}x)^p = \mathrm{ad}_{\alpha}x^{[p]} \in \mathrm{ad}_{\alpha}L^0$. Conversely, suppose that $(L, [\ ,\], \alpha)$ is restrictable.

Let $\{e_j \mid j \in J\}$ be a basis of L^0 . Then for each $j \in J$, there exists $y_j \in L^0$ such that $(\mathrm{ad}_{\alpha}e_j)^p = \mathrm{ad}_{\alpha}y_j$. Now, $e_j^p - y_j \in C(L^0)$, where

$$e_{j}^{p} = [e_{j}, [e_{j}, \cdots, [e_{j}, e_{j}] \cdots]],$$

for if $z \in L^0$, then $(\mathrm{ad}_\alpha e_j)^p(z) - \mathrm{ad}_\alpha y_j(z) = [e_j^p - y_j, \alpha(z)] = 0$. Define a function

$$f: L^0 \to C(L^0); \sum c_i e_i \mapsto \sum c_i^p (y_i - e_i^p).$$

Clearly f is a p-semilinear map. Set

$$W = \{ x \in L^0 \mid x^p + f(x) \in L^0 \}.$$

Then W is a subspace of L^0 . Indeed, if $x, y \in W$ and $a, b \in F$, then

$$(ax + by)^p + f(ax + by) = a^p x^p + b^p y^p + \sum_{i=1}^{p-1} s_i(ax, by) + k^p f(x) + f(by) \in L^0.$$

Since $e_j^p + f(e_j) \in L^0$, it follows $x^p + f(x) \in L^0$ for all $x \in L^0$. By Theorem 3.1, we have

$$[p]: L^0 \to L^0; \ x \mapsto x^p + f(x)$$

is a *p*-map with $e_i^{[p]} = y_j$.

Let $(L, [\ ,\], \alpha)$ be a Hom-Lie superalgebra, and let U and W be subspaces of L. Then L is a direct sum of U and W, and we write $L = U \oplus W$, if L = U + W and $U \cap W = \{0\}$. The subspace U is a Hom-Lie ideal of L if $\alpha(U) \subseteq U$ and $[x, y] \in U$ for all $x \in U$ and $y \in L$. We have the following result.

Theorem 6.2. Let $(L, [\ ,\], \alpha)$ be a Hom-Lie superalgebra and let U and W be Hom-Lie ideals of L with $L = U \oplus W$. Then, L is restrictable if and only if U and W are restrictable.

Proof. Suppose L is restrictable. Then by Theorem 6.1, we have L is restricted. Now, the result follows from the trivial fact that a subalgebra of a restricted Hom-Lie superalgebra is restricted and Theorem 6.1. Conversely, suppose that U and V are

restrictable. Let $x = x_1 + x_2$, where $x_1 \in U$ and $x_2 \in W$, be an element of L^0 . Then $\alpha(x) = \alpha(x_1) + \alpha(x_2) = x_1 + x_2$, and so $x_1 \in U^0$ and $x_2 \in W^0$. As U and W are restrictable, there exist $y_1 \in Y^0$ and $y_2 \in W^0$ such that $(\operatorname{ad}_{\alpha} x_1)^p = \operatorname{ad}_{\alpha} y_1$ and $(\operatorname{ad}_{\alpha} x_2)^p = y_2$. Now,

$$(\operatorname{ad}_{\alpha}(x_1 + x_2))^p = (\operatorname{ad}_{\alpha}x_1 + \operatorname{ad}_{\alpha}x_2)^p$$

$$= (\operatorname{ad}_{\alpha}x_1)^p + (\operatorname{ad}_{\alpha}x_2)^p$$

$$= \operatorname{ad}_{\alpha}y_1 + \operatorname{ad}_{\alpha}y_2$$

$$= \operatorname{ad}_{\alpha}(y_1 + y_2).$$

Therefore, L is restrictable.

References

- Ammar, F. and Makhlouf, A., Hom-Lie superalgebras and Hom-Lie admissible superalgebras,
 J. Algebra, 324(2010), 1513–1528.
- [2] Bahturin, Y., Identical relations in Lie algebras, VNU Science Press, b.v., Utrecht, 1987.
- [3] Bahturin, Y., Mikhlev, A., Petrogradsky, V. and Zaicev, V., *Infinite dimensional Lie superal-qebras*, de Gruyter Exp. Math. 7, Berlin 1992.
- [4] Guan, B., Chen, L., Restricted hom-Lie algebras, Hacettepe Journal of Mathematics and Statistics Volume 44 (4) (2015), 823–837
- [5] Hartwig, J. T., Larsson D. and Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2006), 314–361.
- [6] Kac, V., Lie superalgebras, Adv. Math. 26 (1977) 8–96.
- [7] Kochetkov, Y., Leites, D., Simple Lie algebras in characteristic 2 recovered from superalgebras and on the notion of a simple finite group, Contemp. Math., vol. 131, Amer. Math. Soc., RI, 1992, Part 2.
- [8] Larsson, D., Silvestrov, S., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra, 2005, 288: 321–344.
- [9] Larsson, D., Silvestrov, S., Quasi-Lie algebras, Contemp. Math., 2005, 391: 241–248.

- [10] Makhlouf, A., Silvestrov, S., Notes on formal deformations of hom-associative and hom-Lie algebras, Forum Math., 2010, 22(4): 715–739.
- [11] Makhlouf, A., Silvestrov, S., *Hom-algebra structures*, J. Gen. Lie Theory Appl., 2008, 2(2), 51–64.
- [12] Makhlouf, A., Silvestrov, S., Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras, Generalized Lie Theory in Mathematics, Physics and Beyond (S. Silvestrov et al., ed.). Springer, Berlin, 2009, pp. 189–206.
- [13] Makhlouf, A., Silvestrov, S., *Hom-algebras and Hom-coalgebras*, J. Algebra Appl., 2010, 9(4): 553–589.
- [14] Yuan, L., Hom-Lie color algebra structures, Communications in Algebra, 2012, 40(2): 575–592.
- [15] Petrogradsky, V., Identities in the enveloping algebras for modular Lie superalgebras, , J. Algebra 145 (1992) 1-21.

DEPARTMENT OF MATHEMATICS, YARMOUK UNIVERSITY, IRBID, JORDAN E-mail address: shadi.s@yu.edu.jo