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IRREDUCIBLE & STRONGLY IRREDUCIBLE BI-IDEALS OF

Γ-SO-RINGS

DR. P. V. SRINIVASA RAO (1) AND DR. M. SIVA MALA (2)

Abstract. The set of all partial functions over a set under a natural addition

(disjoint-domain sum), functional composition and functional relation on them,

forms a Γ-so-ring. In this paper we introduce the notions of irreducible bi-ideal,

strongly irreducible bi-ideal and strongly prime bi-ideals of Γ-so-rings and we prove

that a bi-ideal is strongly irreducible if and only if it is strongly prime in a class of

Γ-so-rings.

1. Introduction

In 2014, by extending the binary operation addition in Γ-semirings to partially

defined infinitary operation Σ, M. Siva Mala[10], introduced the notion of a partial

Γ-semiring as a common generalization of partial semiring by Arbib, manes and

Benson[3],[4] and Γ-semiring. Also the author developed the ideal theory for the Γ-

so-rings[11] to [16]. In [17] and [18], we introduced the notions of bi-ideal, prime &

semiprime bi-ideals in Γ-so-rings and obtained various characteristics of them. In this

paper, we introduce the notions of irreducible, strongly irreducible and strongly prime

bi-ideals of Γ-so-rings and obtained characterizations of prime, semiprime, irreducible

and strongly irreducible bi-ideals in regular Γ-so-rings.
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2. Preliminaries

In this section we collect important definitions from the literature.

Let M be a nonempty set, and let I be a set. An I − indexed family in M is a

function x : I → M . Such a family is denoted by (xi : i ∈ I), where xi = ix for each

i in I. The cardinality of the family (xi : i ∈ I) is the cardinality of its index set

I. Two families (xi : i ∈ I) and (yk : k ∈ K) are isomorphic if there is a bijection

σ : I → K with yiσ = xi for each i in I. A sub family of (xi : i ∈ I) is a family

(xj : j ∈ J) such that J ⊆ I. The empty family is the unique such family indexed

by ∅.

Now let us consider an infinitary operation Σ which takes families in M to elements

of M , but which may not be defined for all families in M . By “infinitary”, we mean

that Σ may be applied to a family (xi : i ∈ I) in M , for which the cardinality of the

index set I is infinite. Since Σ(xi : i ∈ I) need not be defined for an arbitrary family

(xi : i ∈ I) in M , Σ is said to be partially-defined. A family (xi : i ∈ I) in M is

said to be summable if Σ(xi : i ∈ I) is defined and is in M . We use the notations

Σ(xi : i ∈ I), and Σixi interchangebly.

Definition 2.1. [4] A partial monoid is a pair (M, Σ) where M is a nonempty set and

Σ is a partial addition defined on some, but not necessarily all, families (xi : i ∈ I)

in M subject to the following axioms:

(1) Unary Sum Axiom. If (xi : i ∈ I) is a one element family in M and I = {j},

then Σ(xi : i ∈ I) is defined and equals xj.

(2) Partition-Associativity Axiom. If (xi : i ∈ I) is a family in M and (Ij : j ∈ J) is

a partition of I, then (xi : i ∈ I) is summable if and only if (xi : i ∈ Ij) is summable

for every j in J , (Σ(xi : i ∈ Ij) : j ∈ J) is summable, and Σ(xi : i ∈ I) = Σ(Σ(xi :

i ∈ Ij) : j ∈ J).
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Example 2.2. [4] Let D and E be two sets and let the set of all partial functions

from D to E be denoted by Pfn(D, E). A family (xi : i ∈ I) is summable if and only

if for i, j in I, and i 6= j, dom(xi) ∩ dom(xj) = ∅. If (xi : i ∈ I) is summable, then

for any d in D

d(Σixi) =











dxi, if d ∈ dom(xi) for some (necessarily unique) i ∈ I;

undefined, otherwise.

Then (Pfn(D, E), Σ) is a partial monoid.

Definition 2.3. [4] Let (M, Σ) and (M ′, Σ′) be partial monoids. Then (M ′, Σ′) is

said to be a partial submonoid of (M, Σ) if it satisfies the following:

(1) M ′ is a subset of M , and

(2) (xi : i ∈ I) is a summable family in M ′ implies that (xi : i ∈ I) is a summable

family in M and Σ′

ixi = Σixi.

Definition 2.4. [10] Let (R, Σ) and (Γ, Σ′) be two partial monoids. Then R is said

to be a partial Γ-semiring if there exists a mapping R × Γ × R −→ R (images to

be denoted by xγy for x, y ∈ R and γ ∈ Γ) satisfying the following axioms for all

x, y, z, (xi : i ∈ I) in R and µ, γ, (γi : i ∈ I) in Γ

(1) xγ(yµz) = (xγy)µz,

(2) a family (xi : i ∈ I) is summable in R implies (xγxi : i ∈ I) is summable in R

and xγ[Σ(xi : i ∈ I)] = Σ(xγxi : i ∈ I), [Σ(xi : i ∈ I)]γx = Σ(xiγx : i ∈ I),

(3) a family (γi : i ∈ I) is summable in Γ implies (xγiy : i ∈ I) is summable in R

and x[Σ′(γi : i ∈ I)]y = Σ(xγiy : i ∈ I).

Definition 2.5. [10] Let R be a partial Γ-semiring. Let A be a nonempty subset of

R and Γ′ be a nonempty subset of Γ. Then the pair (A, Γ′) is said to be a partial sub

Γ-semiring if

(i) A is a partial submonoid of R,
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(ii) Γ′ is a partial submonoid of Γ, and

(iii) AΓ′A ⊆ A.

Definition 2.6. [20] The sum ordering ≤ on a partial monoid (M, Σ) is the binary

relation such that x ≤ y if and only if there exists an element h in M such that

y = x + h for x, y ∈ M .

It is trivial to observe that the sum ordering is a quasi order (i.e., reflexive and

transitive).

Definition 2.7. [20] A sum-ordered partial monoid or so-monoid, in short, is a

partial monoid in which the sum ordering is a partial ordering.

Definition 2.8. [10] A partial Γ-semiring R is said be a sum-ordered partial Γ-

semiring (in short Γ-so-ring) if the partial monoids R and Γ are so-monoids.

The support of a family (xi : i ∈ I) in M is defined to be the subfamily (xi : i ∈ J)

where J = {i ∈ I | xi 6= 0}.

Definition 2.9. [20] A partial semiring is a quadruple (R, Σ, ·, 1), where (R, Σ) is

a partial monoid with partial addition Σ, (R, ·, 1) is an monoid with multiplicative

operation · and unit 1, and the additive and multiplicative structures obey the following

distributive laws.

If Σ(xi : i ∈ I) is defined in R, then for all y in R, Σ(y·xi : i ∈ I) and Σ(xi·y : i ∈ I)

are defined and y · [Σixi] = Σi(y · xi); [Σixi] · y = Σi(xi · y).

Definition 2.10. [4] A sum ordered partial semiring or so-ring for short, is a partial

semiring in which the sum ordering is a partial ordering.

Example 2.11. [10] Let R = Γ := Z−
⋃

{0} , the set of all nonpositive integers.

Then R and Γ are partial monoids with finite support addition. Now R is a partial
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Γ-semiring with usual multiplication of integers. Also R is a Γ-so-ring with the partial

order “usual less than or equal to”. However R is not a so-ring. Since −2,−3 ∈ R

and (−2)(−3) = 6 6∈ R.

Example 2.12. [10] Let D, E be any two sets. Then Pfn(D, E) and Pfn(E, D) are

partial monoids with the summations defined as in the Example 2.2. Consider the

mapping (f, γ, g) 7→ fγg of Pfn(D, E) × Pfn(E, D) × Pfn(D, E) into Pfn(D, E)

where d(fγg) = (((df)γ)g), for any d ∈ D. Then Pfn(D, E) is a partial Pfn(E, D)-

semiring.

In general Pfn(D, E) is not a Pfn(E, D)-semiring, since a family in the partial

Pfn(E, D)-semiring Pfn(D, E) need not be summable.

Definition 2.13. [10] A nonempty subset A of a Γ-so-ring R is said to be Γ-subso-

ring if

(i) A is a subso-monoid of R, i.e., A is closed under the partial addition defined on

R, and

(ii) AΓA ⊆ A.

Definition 2.14. [10] A partial Γ-semiring R is said to have a left (right) unity if

there exists a family (ei : i ∈ I) of elements of R and a family (γi : i ∈ I) of elements

of Γ such that Σieiγir = r (Σirγiei = r) for any r in R.

Definition 2.15. [12] A Γ-so-ring R is said to be a complete Γ-so-ring if every family

of elements in R is summable and every family of elements in Γ is summable.

Definition 2.16. [12] Let R be a partial Γ-semiring, A be a nonempty subset of R

and Ω be a nonempty subset of Γ. Then the pair (A, Ω) of (R, Γ) is said to be a left

(right) partial Γ-ideal of R if it satisfies the following:

(i) (xi : i ∈ I) is a summable family in R and xi ∈ A ∀i ∈ I implies Σixi ∈ A,
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(ii) (αi : i ∈ I) is a summable family in Γ and αi ∈ Ω ∀i ∈ I implies Σiαi ∈ Ω, and

(iii) for all x ∈ R, y ∈ A and α ∈ Ω, xαy ∈ A (yαx ∈ A).

If (A, Ω) is both left and right partial Γ-ideal of a partial Γ-semiring R, then (A, Ω)

is called a partial Γ-ideal of R. If Ω = Γ, then A is called a partial ideal of R.

Definition 2.17. [12] Let R be a Γ-so-ring, A be a nonempty subset of R and Ω be

a nonempty subset of Γ. Then the pair (A, Ω) is said to be a left (right) Γ-ideal of R

if it satisfies the following:

(i) (A, Ω) is a left (right) partial Γ-ideal of R,

(ii) for any x ∈ R and y ∈ A such that x ≤ y implies x ∈ A, and

(iii) for all α ∈ Γ and β ∈ Ω such that α ≤ β implies α ∈ Ω.

If (A, Ω) is both left and right Γ-ideal of a Γ-so-ring R, then (A, Ω) is called a

Γ-ideal of R. If Ω = Γ, then A is called an ideal of (R, Γ).

Definition 2.18. [12] Let R be a Γ-so-ring. If A, B are subsets of R and Γ1 is a subset

of Γ, then we define AΓ1B as the set {x ∈ R | ∃ ai ∈ A, γi ∈ Γ1, bi ∈ B, Σiaiγibi

exists and x ≤ Σiaiγibi}.

If A = {a} then we also denote AΓ1B by aΓ1B. If B = {b} then we also denote

AΓ1B by AΓ1b. Similarly if A = {a} and B = {b}, we denote AΓ1B by aΓ1b

and thus aΓ1b = {x ∈ R | x ≤ aγb for some γ ∈ Γ1}. Also, if A is a left ideal

and B is a right ideal of R, then AΓRΓB = {x ∈ R | x ≤ Σiaiαiriβibi for some

ai ∈ A, bi ∈ B, ri ∈ R, αi, βi ∈ Γ}.

Definition 2.19. [16] Let R be a Γ-so-ring. An element ‘a’ of R is said to be regular

if a ∈ aΓRΓa. If every element of R is regular then R is called a regular Γ-so-ring.

Lemma 2.20. [16] Let R be a complete Γ-so-ring with left unity. Then R is regular

if and only if BΓA = A
⋂

B for any left ideal A and right ideal B of R.
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Definition 2.21. [17] Let R be a Γ-so-ring. A Γ-subso-ring B of R is said to be a

bi-ideal of R if and only if BΓRΓB ⊆ B.

Theorem 2.22. [17] Let R be a complete Γ-so-ring and A be a nonempty subset of

R. Then the bi-ideal of R generated by A is < A >b= {x ∈ R | x ≤ Σixi +Σjxjαjx
′

j +

Σkx
′′

kα
′

krkα
′′

kx
′′′

k , where xi, xj, x
′

j, x
′′

k, x
′′′

k ∈ A, αj, α
′

k, α
′′

k ∈ Γ, rk ∈ R}.

Definition 2.23. [18] Let R be a Γ-so-ring and P be a proper bi-ideal of R. Then P

is called a prime bi-ideal of R if and only if for any bi-ideals A, B of R, AΓB ⊆ P

implies A ⊆ P or B ⊆ P .

Theorem 2.24. [18] Let R be a complete Γ-so-ring and P be a proper bi-ideal of R.

Then the following conditions are equivalent:

(i) P is a prime bi-ideal of R.

(ii) If A is a right ideal and B is a left ideal of R such that AΓB ⊆ P then A ⊆ P

or B ⊆ P .

Definition 2.25. [18] A proper bi-ideal P of a Γ-so-ring R is said to be a semiprime

bi-ideal of R if and only if for any bi-ideal A of R, AΓA ⊆ P implies A ⊆ P .

Theorem 2.26. [18] Let R be a complete Γ-so-ring and P be a proper bi-ideal of R.

Then the following conditions are equivalent:

(i) P is semiprime bi-ideal of R.

(ii) If A is a left (right) ideal of R such that AΓA ⊆ P then A ⊆ P .

3. Irreducible & Strongly Irreducible Bi-Ideals

We introduce the notions of irreducible and strongly irreducible bi-ideals in Γ-so-

rings as follows:

Definition 3.1. A bi-ideal P of a Γ-so-ring R is said to be irreducible bi-ideal if and

only if for any bi-ideals H and K of R, H
⋂

K = P implies H = P or K = P .
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Definition 3.2. A bi-ideal P of a Γ-so-ring R is said to be strongly irreducible bi-

ideal if and only if for any bi-ideals H and K of R, H
⋂

K ⊆ P implies H ⊆ P or

K ⊆ P .

Clearly every strongly irreducible bi-ideal of R is irreducible bi-ideal. The following

is an example of an irreducible bi-ideal which is not a strongly irreducible bi-ideal of

a Γ-so-ring.

Example 3.3. Consider the Γ-so-ring R as in the Example 3.3 of [16]. In that

example R = {0, a, b, c, d, e}, Σ is defined on R as

Σixi =



























xj, if xi = 0 ∀i 6= j, for some j,

d, if (xj = a, xk = b or xj = b, xk = c for some j, k) and xi = 0 ∀i 6= j, k,

undefined, otherwise.

Then R is a so-monoid.

And Γ = {0′, 1′}, Σ′ is defined on Γ as

Σ′

iαi =











1′, if αi = 0′ ∀i 6= j for some j

undefined, otherwise.

Then Γ is a so-monoid.

The mapping R × Γ × R → R is defined as follows:

0′ 0 a b c d e

0 0 0 0 0 0 0

a 0 0 0 0 0 0

b 0 0 0 0 0 0

c 0 0 0 0 0 0

d 0 0 0 0 0 0

e 0 0 0 0 0 0

1′ 0 a b c d e

0 0 0 0 0 0 0

a 0 0 0 0 0 a

b 0 0 0 0 0 b

c 0 0 0 0 0 c

d 0 0 0 0 0 d

e 0 a b c d e

Then R is a Γ-so-ring. For the bi-ideals A = {0, a}, B = {0, b} and C = {0, c} of
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R, B
⋂

C = {0, b}
⋂

{0, c} = {0} ⊂ A and B * A, C * A. Hence A = {0, a} is not

a strongly irreducible bi-ideal of R. However the bi-ideal A = {0, a} is an irreducible

bi-ideal of R, since there are no bi-ideals H, K other than A = {0, a} such that

H
⋂

K = A.

Theorem 3.4. If P is a bi-ideal of a complete Γ-so-ring R then the following condi-

tions are equivalent:

(i) P is a strongly irreducible bi-ideal of R.

(ii) If x, y be elements of R such that < x >b

⋂

< y >b⊆ P then x ∈ P or y ∈ P .

Proof. (i)⇒(ii): Suppose P is a strongly irreducible bi-ideal of R. Let x, y be elements

of R such that < x >b

⋂

< y >b⊆ P . Since P is strongly irreducible bi-ideal,

< x >b⊆ P or < y >b⊆ P . Hence x ∈ P or y ∈ P .

(ii)⇒(i): Suppose x, y be elements of R such that < x >b

⋂

< y >b⊆ P implies

x ∈ P or y ∈ P . Let H, K be ideals of R such that H
⋂

K ⊆ P . Suppose that

H 6⊆ P . Then there exists an element x ∈ H such that x 6∈ P . Let y ∈ K. Then

< x >b⊆ H and < y >b⊆ K, and thus < x >b

⋂

< y >b⊆ H
⋂

K ⊆ P . Then by

assumption x ∈ P or y ∈ P . Since x 6∈ P , y ∈ P and so K ⊆ P . Hence P is a

strongly irreducible bi-ideal of R. �

Definition 3.5. Let R be a Γ-so-ring and P be a proper bi-ideal of R. Then P is

said to be a strongly prime bi-ideal of R if and only if for any bi-ideals A, B of R,

(AΓB)
⋂

(BΓA) ⊆ P implies A ⊆ P or B ⊆ P .

Example 3.6. Let R := [0, 1] be the unit interval of real numbers. For any family

(xi : i ∈ I) in R, define Σ(xi : i ∈ I) = sup{xi | i ∈ I}. Then (R, Σ) is a so-monoid.

Let Γ := N
⋃

{0}, the set of all nonnegative integers. Then Γ is a so-monoid with

finite support addition. Consider the mapping (x, α, y) 7→Inf{x, α, y} of R × Γ × R

into R. Then R is a Γ-so-ring and every bi-ideal of R is in the form of [0, a] for
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some a ∈ [0, 1]. Let x ∈ R. Take P := [0, x]. Let A, B be bi-ideals of R such that

(AΓB)
⋂

(BΓA) ⊆ P . Then there exists y, z ∈ R such that A = [0, y] and B = [0, z].

Now AΓB = [0, y]Γ[0, z] = [0, inf{y, α, z}] and BΓA = [0, z]Γ[0, y] = [0, inf{z, α, y}]

for every α ∈ Γ and so, [0, inf{y, α, z}] ⊆ P = [0, x]. Then either y ≤ x or z ≤ x.

Thus A = [0, y] ⊆ [0, x] = P or B = [0, z] ⊆ [0, x] = P . Hence P = [0, x] is a strongly

prime bi-ideal of R.

Every strongly prime bi-ideal of R is a prime bi-ideal of R.

Theorem 3.7. Every strongly irreducible and semiprime bi-ideal of a Γ-so-ring R is

a strongly prime bi-ideal of R.

Proof. Let P be a strongly irreducible and semiprime bi-ideal of R. Let A, B be

any bi-ideals of R such that (AΓB)
⋂

(BΓA) ⊆ P . Clearly A
⋂

B is a bi-ideal of R,

(A
⋂

B)Γ(A
⋂

B) ⊆ AΓB and (A
⋂

B)Γ(A
⋂

B) ⊆ BΓA. Thus (A
⋂

B)Γ(A
⋂

B) ⊆

(AΓB)
⋂

(BΓA) ⊆ P . Since P is semiprime, A
⋂

B ⊆ P . Since P is strongly

irreducible, A ⊆ P or B ⊆ P . Hence P is a strongly prime bi-ideal of R. �

Theorem 3.8. If P is a bi-ideal of R and a ∈ R such that a 6∈ P . Then there exists

an irreducible bi-ideal I of R such that P ⊆ I and a 6∈ I.

Proof. Let C = {B | B is a bi-ideal of R, P ⊆ B and a 6∈ B}. Clearly P ∈ C.

Moreover C is a nonempty partially ordered set with set inclusion of subsets. Let

{Bi | i ∈ ∆} be an ascending chain of bi-ideals of C. Take B ′ =
⋃

i∈∆

Bi. Since

{Bi | i ∈ ∆} is an ascending chain of bi-ideals of C, B ′ is a bi-ideal of R, P ⊆ B′ and

a 6∈ B′. This implies that B′ ∈ C. Hence B′ is an upper bound of {Bi | i ∈ ∆} in C.

Then by Zorn’s lemma C has a maximal element, let it be I.

Now we prove that I is an irreducible bi-ideal of R. Let H, K be any two bi-ideals

of R such that H
⋂

K = I. Then I = H
⋂

K ⊆ H, K. Suppose if I ⊂ H and

I ⊂ K. Then by the maximality of I, a ∈ H and a ∈ K and hence a ∈ H
⋂

K = I,
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a contradiction. Therefore H = I or K = I. Hence I is an irreducible bi-ideal of R

such that P ⊆ I and a 6∈ I. �

Theorem 3.9. Any proper bi-ideal P of R is the intersection of all irreducible bi-

ideals of R containing P .

Proof. Let C = {Bi | Bi is an irreducible bi-ideal of R and P ⊆ Bi, i ∈ ∆}. Take

B =
⋂

i∈∆

Bi. Then P ⊆ B. Suppose that a 6∈ P . Then by Theorem 3.8, there exists an

irreducible bi-ideal I of R such that P ⊆ I and a 6∈ I. Then I ∈ C and a 6∈ B. Hence

B ⊆ P , and hence P is the intersection of all irreducible bi-ideals of R containing

P . �

Remark 3.10. If R is a regular complete Γ-so-ring and a be any element of R then

< a >b= aΓRΓa.

Proof. Note that < a >b= {x ∈ R | x ≤ Σna + Σjaαja + Σkaα′

krkα
′′

ka, where

αj, α
′

k, α
′′

k ∈ Γ, rk ∈ R}. Let x ∈< a >b. Then x ≤ Σna + Σjaαja + Σkaα′

krkα
′′

ka,

where αj, α
′

k, α
′′

k ∈ Γ, rk ∈ R. Since R is a regular Γ-so-ring, a ∈ aΓRΓa. This implies

that Σna ∈ aΓRΓa, Σjaαja ∈ aΓaΓRΓa ⊆ aΓRΓa and Σkaα′

krkα
′′

ka ∈ aΓRΓa and

hence < a >b⊆ aΓRΓa. Let x ∈ aΓRΓa. Then x ≤ Σiaαiriβia for some αi, βi ∈ Γ

and ri ∈ R. ⇒ x ∈< a >b and hence aΓRΓa ⊆< a >b. Hence < a >b= aΓRΓa. �

Definition 3.11. A Γ-so-ring R is said to be an intra-regular Γ-so-ring if for any

element a in R, a ∈ RΓaΓaΓR.

Theorem 3.12. In a complete Γ-so-ring R with left unity the following statements

are equivalent:

(1) R is regular and intra-regular.

(2) For any bi-ideal B of R, BΓB = B.

(3) For any bi-ideals A, B of R, A
⋂

B = (AΓB)
⋂

(BΓA).
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(4) Every bi-ideal of R is semiprime.

(5) Each proper bi-ideal of R is the intersection of irreducible semiprime bi-ideals of

R which contain it.

Proof. We prove the equivalence of the statements as (1)⇔(2)⇒(3)⇒(4)⇒(5)⇒(2).

(1)⇒(2): Suppose R is regular and intra-regular. Let B be any bi-ideal of R.

Since B is a Γ-subso-ring of R, BΓB ⊆ B. Let a ∈ B. Since R is regular and

intra-regular, a ∈ aΓRΓa and a ∈ RΓaΓaΓR. Now a ∈ aΓRΓa ⊆ (aΓR)Γ(aΓRΓa)

⊆ (aΓR)Γ(RΓaΓaΓR)ΓRΓa = (aΓ(RΓR)Γa)Γ(aΓ(RΓR)Γa) ⊆ (aΓRΓa)Γ(aΓRΓa)

⊆ (BΓRΓB)Γ(BΓRΓB) (since a ∈ B) ⊆ BΓB (Since B is a bi-ideal of R). This

implies that B ⊆ BΓB and hence BΓB = B.

(2)⇒(1): Suppose BΓB = B for any bi-ideal B of R. To prove R is regular Γ-

so-ring, by Lemma 2.20, we prove that AΓB = A
⋂

B for any right ideal A and

left ideal B of R. So, let H be a right ideal and K be a left ideal of R. It is

clear that HΓK ⊆ H
⋂

K and H
⋂

K is a bi-ideal of R. Then by assumption

(H
⋂

K)Γ(H
⋂

K) = H
⋂

K. This implies H
⋂

K = (H
⋂

K)Γ(H
⋂

K) ⊆ HΓK.

This implies ⇒ HΓK = H
⋂

K and hence by Lemma 2.20, R is a regular Γ-so-ring.

To prove R is intra-regular, let a ∈ R. Then by Remark 3.10, < a >b= aΓRΓa.

Since < a >b is a bi-ideal of R, by assumption < a >b=< a >b Γ < a >b. Then

< a >b=< a >b Γ < a >b= (aΓRΓa)Γ(aΓRΓa) = (aΓR)ΓaΓaΓ(RΓa) ⊆ RΓaΓaΓR.

Since a ∈< a >b, a ∈ RΓaΓaΓR. Hence R is a intra-regular Γ-so-ring.

(2)⇒(3): Suppose BΓB = B for any bi-ideal B of R. Let A, B be any bi-ideals

of R. Then A
⋂

B is a bi-ideal of R. By assumption (A
⋂

B)Γ(A
⋂

B) = A
⋂

B.

Since (A
⋂

B)Γ(A
⋂

B) ⊆ AΓB and (A
⋂

B)Γ(A
⋂

B) ⊆ BΓA, we have A
⋂

B ⊆

(AΓB)
⋂

(BΓA). We know that if A, B are bi-ideals of R then AΓB and BΓA are

bi-ideals of R. This implies that (AΓB)
⋂

(BΓA) is a bi-ideal of R. Then by assump-

tion (AΓB)
⋂

(BΓA)
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= [(AΓB)
⋂

(BΓA)]Γ[(AΓB)
⋂

(BΓA)] ⊆ (AΓB)Γ(BΓA) ⊆ AΓRΓA ⊆ A (since A is

bi-ideal). Similarly we can prove that (AΓB)
⋂

(BΓA) ⊆ B. Therefore (AΓB)
⋂

(BΓA) ⊆

A
⋂

B. Hence (AΓB)
⋂

(BΓA) = A
⋂

B.

(3)⇒(4): Suppose that A
⋂

B = (AΓB)
⋂

(BΓA) for any bi-ideals A, B of R. Let

P be a bi-ideal of R. To prove P is a semiprime bi-ideal of R, let A be any bi-ideal of

R such that AΓA ⊆ P . By Assumption A = A
⋂

A = (AΓA)
⋂

(AΓA) = AΓA ⊆ P .

Hence P is a semiprime bi-ideal of R.

(4)⇒(5): Suppose that each bi-ideal of R is semiprime. Let P be a proper bi-ideal

of R. Then P is a semiprime bi-ideal of R. Also by Theorem 3.9, P is the intersection

of all irreducible bi-ideals of R containing P . Hence each proper bi-ideal of R is the

intersection of irreducible semiprime bi-ideals of R which contain it.

(5)⇒(2): Suppose that each proper bi-ideal of R is the intersection of irreducible

semiprime bi-ideals of R which contain it. Let B be a bi-ideal of R. Suppose that

BΓB = R. Since B is a Γ-subso-ring of R, BΓB ⊆ B. Then R ⊆ B. This implies

that B = R and hence BΓB = B. Suppose BΓB 6= R. Then BΓB is a proper bi-ideal

of R. By assumption, BΓB is the intersection of irreducible semiprime bi-ideals of R

which contain BΓB. That is BΓB =
⋂

{Bi | Bi is an irreducible semiprime bi-ideal

of R and BΓB ⊆ Bi, i ∈ ∆}. Since each Bi is semiprime bi-ideal and BΓB ⊆ Bi ∀

i ∈ ∆, we have B ⊆ Bi ∀ i ∈ ∆, and thus B ⊆ BΓB. Hence BΓB = B. Hence the

theorem. �

Theorem 3.13. Let R be a regular and intra-regular complete Γ-so-ring with left

unity. Then for any bi-ideal B of R, B is strongly irreducible bi-ideal if and only if

B is strongly prime bi-ideal.

Proof. Suppose B is a strongly irreducible bi-ideal of R. Let H, K be any bi-

ideals of R such that (HΓK)
⋂

(KΓH) ⊆ B. Then By the Theorem 3.12, H
⋂

K =
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(HΓK)
⋂

(KΓH) ⊆ B. Since B is strongly irreducible bi-ideal, H ⊆ B or K ⊆ B.

Hence B is a strongly prime bi-ideal of R.

Conversely, suppose that B is a strongly prime bi-ideal of R. Let H, K be any

bi-ideals of R such that H
⋂

K ⊆ B. By the Theorem 3.12, (HΓK)
⋂

(KΓH) =

H
⋂

K ⊆ B. Since B is strongly prime bi-ideal, H ⊆ B or K ⊆ B. Hence B is a

strongly irreducible bi-ideal of R. �
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