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ON THE THIRD HANKEL DETERMINANT FOR A SUBCLASS
OF CLOSE-TO-CONVEX FUNCTIONS

PRAVATI SAHOO

ABSTRACT. Let A denote the class of all normalized analytic function f in the
unit disc U of the form f(z) = z+ Y.,—,anz". The object of this paper is to
obtain a bound to the third Hankel determinant denoted by Hs3(1) for a subclass

of close-to-convex functions.

1. INTRODUCTION

Let A denote the class of all analytic functions defined on the unit disc U = {z :
|z| < 1} with the normalization condition f(0) =0 = f’(0) — 1. So f € A has the

form

(1.1) f(2) :z—|—2anz".

Let S be the class of all functions f € A which are univalent in U. Let P denote the

class of functions p(z), has the form

(1.2) plz) =14 c2",

which are regular in the open unit disc U and satisfy the conditions p(0) = 1 and
Rep(z) > 0, for z € U. Here p(z) is called the Caratheodory function [5]. A function

f € A is said to be starlike if it satisfies the condition Re{%} >0, for z € U
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and 8*, be the class of all starlike functions. Further, a function f € A is said to be
close-to-convex if it satisfies the condition Re{%} > 0, for z € U and for a starlike
function ¢(z). K be the class of all close-to-convex functions which was introduced

by Kaplan [9]. In 1977, Chichra [4] introduced a new subclass of K defined as follows:

Definition 1.1. ([4]) For @ > 0, a function f € A with w # 0 said to be

alpha-close-to-convex function if for a starlike function ¢(z), satisfies the condition

) (f(2)
o) )

and C, be the class of all alpha-close-to-convex functions.

Re{(l—a) }>0, 2eU

For a =0, C, = K. For ¢(z) = f(z), the class C, is the class of alpha-starlike
functions, which was introduced and studied by P.T. Mocanu [15], also studied in
[17]. Chichra [4] proved that every alpha-close-to-convex function is close-to-convex.

Also established the following theorem:

Theorem 1.1. [4] Let fora >0, f € C,. Then

2+« 9 + 23a + 602 4 + 22a0 + 34a? + 603
0 Jas] < ;o aa] < .
3(1+ a)(1+2a) 41+ a)(1 +2a)(1 4 3a)

as| <
|2|_1+a

The inequalities are sharp.

Later in [1], Babalola derived the sharp upper bounds of the fifth coefficient of the
functions in C,, as follows:

25 + 238a + 75502 + 90203 + 1200

95 < T &)+ 20)(1 % 3a)(1 + 4a)

It is well known that, the coefficient problem in the univalent function theory ever
attracts the function theorist. Closely related to the famous Bieberbach conjecture
la,| < nfor f €8, in 1933, Fekete-Szegd obtained the sharp bound for |az — pa3,
p € R for f € 8. The functional |az — pua3| is known as Fekete-Szegd functional.

Many more functionals risen after it, each finding application in certain problems
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of geometric functions. For u = 1, a more general coefficient problem of this type,

which is the Hankel determinant problem.

Definition 1.2. The ¢-th Hankel determinant of f(z) for ¢ > 1 and n > 1 is defined

by Pommerenke [20] as

Qp, Qpy1 -+ Qpig—1
Ant1 any2 ... an+q
(1.3) Hy(n) =
Untg—1 GOniq " Un42g—2

In the recent years a great deal of attention has been devoted for finding the
estimates of Hankel determinants whose elements are the coefficients of the univalent
functions for different specific values of ¢ and n. For example, Noonan and Thomas
[18] studied about the second Hankel determinant of areally mean p-valent functions.
Noor [19] determined the rate of growth of H,(n) as n — oo for the functions in S with
a bounded boundary. Ehrenborg [6] studied the Hankel determinant of exponential
polynomials. The Hankel transform of an integer sequence and some of its properties
were discussed by Layman in [13]. Tt is interesting to note that, Ho(1) = |az — a3,
the Fekete-Szego functional for p = 1.

The Hankel determinant in the case of ¢ = 2 and n = 2, is known as the second
Hankel determinant, given by
(1.4) ) =| " P = apay — a2

az ay
The bounds of Hy(2) were obtained for various subclasses of univalent and multivalent
analytic functions by many authors existed in the literature [3, 8, 11, 14, 16, 21, 22].

Similarly, the third Hankel determinant in the case of ¢ = 3 and n = 1, denoted by
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H3(1), is defined by

a; ag as
(1-5) H3(1) = | a2 as a4
a3 a4 as

For f € A, a; =1, we have

Hs3(1) = az(asas — a3) — as(as — asaz) + as(az — a3).
and by applying triangle inequality, we obtain
(1.6) [H3(1)| < |aslazas — a3| + |aal|ay — asas| + |as||as — a3].

Recently, Babalola [2], Bansal et.al [3], Prajapat et.al [23] Vamshee Krishna et.al [11],
have studied the third Hankel determinant and obtained the bounds of the determi-
nants |Hs(2)| and |H3(1)| for IC, the class of close-to-convex functions. Also in [24],
Sahoo obtained the bounds of the determinants |H»(2)| and |H3(1)] for a subclass of
a-starlike functions. Motivated by the results obtained by Chichra [4], Babalola [2]
and Prajapat et.al[23], we obtain an upper bound to |H3(2)| and |H3(1)| for the

function f(z) in the class C,.

2. PRELIMINARY RESULTS

The following lemmas are required to prove our main results.

Lemma 2.1. ([20] pp. 41). If p(2) € P, given by (1.2), then |cx| < 2, for each k > 1

and the inequality is sharp for the function py(z) = 1£=.

Lemma 2.2. ([12]) Let p(z) € P, given by (1.2), then
(2.1) 20y = i +x(d — ),
for some x, |z| <1, and

(2.2) des =+ 2c1(4 —c)r — (4 —c])a® +2(4 — &) (1 — |z]?)z,
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for some x and z such that |x| <1 and |z| < 1.

Lemma 2.3. [5] If f € 8" be given by (1.1), then |a,| < n, n =2,3,.... Equality
holds for the rotations of the Koebe function k(z) = e

Lemma 2.4. [10] If f € §* be given by (1.1), then for any real number p, we have

las — paz| < {1, if  Ll<u<i,

Lemma 2.5. [7] If f € 8* be given by (1.1), then |asas — a3] < 1. Equality holds for

Koebe function.

Lemma 2.6. [2] If f € S* be given by (1.1), then |asaz — a4| < 2. Equality holds for

Koebe function.

3. MAIN RESULTS

To obtain our result, we refer to the classical method initiated by Libera and

Zlotkiewicz [12].

Theorem 3.1. For 0 < a <2/3, let f € C,. Then

85 + 3247 + 509 + 3970 + 15203 + 36a]

Hy(2)| = —a3] <
[H2(2)| = |azas — a3 < 36(1+ a)2(1 + 2a)2(1 + 3a)

Proof. Let f(z) given by (1.1), be in the class C,. Then there exists an analytic

o0
n—

function p € P given by (1.2) and a starlike function ¢(z) = z+ >~ , b,2", such that

(1 —a)zf'(2)¢'(2) + ad(2)(2f'(2))" = p(2)$(2)¢' ().

On substituting power series expansion of f(z), p(z) and ¢(z), and comparing the

coefficient of z™ on both sides we obtain

n—1 n—1

(3.1) Z(n —k)[(n =2k = Da+k+ 1bgr1an—k = ZQk+1bn_k, n>2,

k=0 k=0



64 PRAVATI SAHOO
where a; = by = ¢; = 1 and for k > 2,

(3.2) Ik = Z(/f — J)¢;bk—j-
Thus we have,

qo — 2b2 + Ci1, (g3 = 3b3 + 2b201 + Co, 4 = 4b4 + 3b301 + 2b202 + cs3.

On substituting the values of g2, g3, ¢4 in (3.1), and comparing the coefficients of 22

2% and z* we get

(3.3) 21+ a)as = (1 +a)by + 1
(3.4) 314+ a)(1+2a)as = (1 + a)(1 +2a)bs + (1 4 3a)bacy + (1 4+ a)es

41+ a)(142a)(14+3a)ay = (1+a)(1+2a)(1+ 3a)by

+ (14 2a)(1 4+ 5a)bscr + (14 a)(1 + 5a)bacy

(3.5) + (14 a)(1 4 2a)es + ala — 1)biey.
Now
b c b 14 ba
2 2 1 4
_ — =4 ) |= b
=il = |(5+ o) [+ L ra®

B ala—1) b} N 1+ 5
A1+ a)(1+20)1+3a) 2 T A1+ 2a2)1 + 3a) 2P

+¥c — %—F Ltda bac +¥c 2
A1+ 3a) ° 3 3(1+a)(1+2a) > " " 3(1+2a)°

1 1 1+ 5a
— | S (bobs — 03+ ——(by — b
’8(24 D S e s e
1 + 6 a(l —a) 1
o 21 .2 - e S X
[bg M1b2]01+36K(a>b26361 8K( ) 62 1+ 72[)
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2 b 2 1 s 74 33a+54a?
—————|03 — Cy — cy — c1¢
O+ 2a) 2 F22 T 90 902 T oK (@)(1 + 2a) 21
(1+2a) 1
3.6 — b
( ) + 8K( ) Clc3+8(1+3 ) 2C3 |,
where
(3.7) K(a) = (14 a)(1+2a)(1 + 3a),
8 + 8la + 208a? + 192a° 9(1 + 5a)
9(1 + 5a)(1 + 2a) 16(1 + 3w)

Substituting the values of ¢y and ¢3 from Lemma2.2 in the equation (3.6), we have

1 1 1+ 5a
2 _ 2 21 .2
|a2a4 — &3‘ = g(bz@; — bg) + m(lM — bgbg)cl + 8(1 n Oé>2(1 n 30é> [bg — /,lez]Cl
1 + 6 a(l—a) 4 1, 1 )
T 3R (0) 2N T B (e) 2 T % T g ey b T ebl
1 7+ 33a + 540
2 4 — 2 R P 4 — 2 2

1
32(1 4+ a)(1 + 3a)

[d4+2c1(4— D)z —c1(4—cD)a® +2(4 — &) (1 — ]x\Q)zH

boci[ci + (4 — cf)a] + [(1+ )by + 1] x

1
8

1 1+ 6a a(l — «a)
m(lM — bzbg)Cl -+ mbzbgcl —_

(baby — b2) +

14+ 5a
8(1+ a)?(1 + 3a)

1+4a+1222 , 1

2
281+ 2a)K () 12T

[bs — p1b3)c;

1
e [ha — uob?l —
9(1 + 2a) 1bs = pabi)er

1

- b . b2 4 — 2\2

54 2la+360%(1 - a)
288(1 + 2a) K («)

5 1+6a+9a%(1+2a)
b2C1 +
7201+ 20)K(a)

boci (4 — )
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(3.9)

o801+ 20) K ()

3201 +3a) 2 T6K(a)
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1+4a+ 1202

S gy _G-de? - dpe
1 1

32(1+a)(1+3a)  36(1+2a)?

c1(4 — c3)a? 1+ 2

[(1+ a)bz + ca] (4 — e]) (L — [2]*)|.

By Lemma2.1, we have |¢;| < 2. For convenience of notation, we take ¢; = ¢ and we

may assume without loss of generality that ¢ € [0,2]. Applying the triangle inequality

with |z| = p and using Lemma 2.3, Lemma 2.4, Lemma 2.5 and Lemma 2.6, we obtain

from the above inequality

1
|CL26L4—CL§| S §|b2b4—b§|+

(3.10)

|by — babslc (14 6a)|bo]|bslc a1l — a)|bs|3c
8(1+ ) 36K () 8K ()

14+ 5a
(14 a)?(1+ 3a)

|bs — pab3| (4 — ¢*)’p

1+ 4a + 1202

b . b2 2
283(1 + 20) K (av) b = mbse

1
4 2
—1b
C+72|3| +8

1
b [by — B +

o(1 + 2a) o(1 + 2a)
5+21a+36a2(1—a)|b|3+1+6a+9a2(1+2a)|b|(4 2)
c c(d—c
283(1 + 20) K (o) 2 21+ 20)K(@) 2 a
1 4 12 2 2 4 — 2\,,2 4 — 2\2,,2
+aa+ @ 02(4—02)/L—|— C( C):u ( C),u

144(1 + 2a) K () 321+ a)(1+3a)  36(1+ 2a)?

c(4 — A)p? 1+ 2«
|ba| +
32(1 + 3) 16K (a)

[(1+ a)lba] + ] (4 = *)(1 — p?)

+

31+a) | Aifa) n Ay() 5 As(@) p
41+ 3a)  12k(a)  72(1 4 20)k(a) 144(1 + 2a)k(«)

Ayg(a) 4 (4—A)p ,
288(1 + 2a)k(a) + 144(1 + 2a) K (o) [Bi(a) + Ba(@)c + Bs(a)c?]

(4—c)p’

288(1 + 20) K () [D1(Oz) + Dy(a)c + D3(oz)c?]

= Fl(ca :u)a
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where

(3.11) Aj(a) = 8+45a+6a?, Ay(a) = 8+67a+101a’+6a°, As(a) = 4+15a+36a°,

(3.12) Bi(a) = 16K (a), By(a) =4(1 + 6a + 9a® + 18a%),
(3.13) Bs(a) = D3(a) = Ay(a) = 1+ 4a + 1202
(3.14) Di(a) = —4(1 + a)(1 4 12a + 36a?), Dy(a) = 18a(1 + 2a)?,

and K («) defined by (3.7).

Differentiating Fj(c, 1) with respect to u, we get

O _ __ (4=¢)

op  144(1 + 20)K(a)
+ 2{2+43(4+3p)a + 18(1 4 2u)a*(1 + a) + 36(1 + p)a’ e + (14 p) (1 + 2a)c?]

[4(1 = ) (14 a)(1 4 12 + 360%) + 4(1 + a)(3 + 8a — 12a?)

OF
which shows that 6—1 >0for 0 < pu<1and 0 < a< 1. Therefore Fi(c,pu) is an
1
increasing function of p for 0 < p < 1 and for any fixed ¢ with ¢ € [0,2]. So it attains
maximum at g = 1. Thus

(3.15) max Fi(c,u) = Fi(c,1) = Gy(c) (say).

0<p<1

Therefore from (3.10) and (3.15) we have

31+a) | Aia) As(a) 2 As(a) 3
Gl = 10530 T 126 T A 200k@)°  THA + 200k(a)°
b Bl . (4=

288(1 + 2a)k(c) | 144(1 1 20)K(a) |
(3.16) [(D1(a) +2B1()) + (Do) + 2Bs(a))c + 2Bs(a)c?],
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where Aj(«), As(a), As(a), Bi(a), Bs(a), Bs(a) and Di(«), Dy(a) defined in
(3.11), (3.12), (3.13) and (3.14) respectively, and K («) defined by (3.7). On differ-

entiating G (c) with respect to ¢, we get

1+ 3a
144K2(a)
+3a(7 + 32 + 40a%)c + 8(1 + @) (2 + 36a + 72a” — 1530°)]

Gl(c) = [4(4 = )1+ a){(1 + 4o + 120%)c + 6(1 + 6a + 9o* + 180”)}

which shows that G’ (c) > 0 for 0 < ¢ < 2. So G4(c) is increasing function of ¢, hence

it will attains maximum at ¢ = 2. Therefore

85 + 3ar[247 + 509 + 397 + 15203 + 3607
3.17 Gi(c) = G1(2) =
(B17) pmax Gi(e) = G (2) 36(1 + a)2(1 + 20)2(1 + 3a)

Hence the upper bound on |asa, — a3| can be obtained by setting g = 1 and ¢ = 2 in

(3.10). Hence the desired result follows from (3.10) and (3.17). O

For a = 0, the result was proved in [23].

Theorem 3.2. For 0 < a < %, let f € C,. Then

9 + 52 + 83a% + 3703 + 18a*
3(1+ a)?(1 + 2a)(1 + 3a)

lasas — ay] <

Proof. Let f(z) given by (1.1), be in the class C,. Then substituting the values of

as, as and a4 from (3.3), (3.4) and (3.5) in |asas — ay|, we have

asaz — ay| = @+071 %—F Lt3a bac —|—¥c
o N2 T2 +a) ) \3 T3+ a)(1+20) 0 T 3(1+2a)
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by 1+ 5a ala—1) 9
- {Z - {4(1 a3 T Il T o) £ 200 £ 304)62} “
1+ 5a b 1
T 2a)(1+3a) 22 T a1y 304)03}
1 bobs  Es(«) 9 1
- 'Z(b2b3 —0) -9 T R e T Ry
(1+ 3a)? 5 1
(3.18) [2(1 + 3a)e; — Eq(a)bg)es + 60 £ o)k () 9] — mc;; ,
where
(3.19) Ei(a)=(14+9%)(14+ @), Es(a)=(149a)(1+ 2a),
2+ 15a(1+a)
(3:20) 1= 1 9a)(1 + 20)

and K («) defined by (3.7).
Substituting the values of ¢ and ¢3 from Lemma 2.2 in the equation (3.18), and on

simplification we have,

bgbg — b4 bgbg EQ(O() (bg - ,ngb%)cl (3 + 13 + 170[2 - 90(3)1720%
lagaz — a4| = - -

4 12 12K () 241+ a)K(a)
(1+3a—6a%)cd  (143a+6a?)ci(4—cA)x  Ei(a)(d — )bz
- 48K(a) a 24K (av) 24K (a)
(4—char? (A=) —|z[)z
16(1 + 3a) 8(1+ 3a)

By the Lemma2.1, we have |¢;| < 2. For convenience of notation, we take ¢; = ¢
and we may assume without loss of generality that ¢ € [0,2]. Applying the triangle
inequality with |z| = p and using Lemma 2.3, Lemma 2.4 and Lemma 2.6, we obtain

3+ 13a+ 1702 — 903

babs — by|  |bo]|bs| | Eb(a)
* * 24(1+ o) K (o)

4 12 12K(«)

|lazaz —as| < |bs — psb3|c +
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1+ 3a(1 — 2a) 3 1+ 3a + 6a?
C S —
48K () 24K ()

Er(o)(4 =) cd—cp®  (A-c)(1—-p?)

x| by|c? + c(4 —c)p

24K (o) &l 16(1 + 3a) 8(1+ 3a)
< 3(14+2a) 5+ 27a + 6a2 N 3+ lda + 19a% — 240
c c
— 2(14 3a) 12K () 24(1+ o) K ()
n 1+ 3a(l —2a) 4 n (4—cA201+a)(1+9a) + (1 + 3a+ 6a?)c)p
c
48K («v) 24K (@)
c(4—c*)(e—2)u?
3.21 = F: .
a2y + B e
Differentiating Fy(c, 1) with respect to ¢, we have
OF,  (5+27a+60%) — (14 3a+60”)uc®
oc 12K (a)

(3 —p)(1+5a) +24a%(1 — a) — 2(1 4+ a)(1 + 9a)u
12(1 + o) K ()
(4—cA)(1+3a+6a?) 1+3a(l-2a), ((2-0c)(2+3c) ,
24K (o) %K(a) | 16(1+3a) |

which shows that % > (0 for 0 < ¢ < 2. So Fy(c, p) is increasing function of ¢, hence

it will attains maximum at ¢ = 2. Therefore

(3.22) max Fy(c, p) = F5(2, u) = Gao(p) (say).

0<eL2
From (3.21) and (3.22), we get
(3.23)

Golt) 3(1+2a) 5+427Ta+6a? 3+ 1lda+19a? —24a® 1+ 3a(l —2a)
2\) =

2(1+3a) 6K(@) | 6(l+aK@) | oK@

which is independent of . Hence the sharp upper bound of the functional |asas — ay]

is F5(2, ;1) = Ga(p). Thus the desired result follows from (3.21) and (3.23). O

Theorem 3.3. For 0 < a < %, let f € C,. Then

9 4(1 + 2 + 4a? + 2a3)
|a3_ag| < o
3(1+2a)(1 + 2a + 4a2)

Proof. The proof is similar to the proof of the Theorem 3.1 and Theorem 3.2. O
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Theorem 3.4. If for 0 < a < %, f €C,, then

1 P (« Po(a) P3(a)
H3(1) S 3(14+2a0) K () 72(1+a1)2(1+2a) + (1+o¢)22(1+3a) + 5(1+4a)(3i+2a+4a2)i| )

where K(a) defined by (3.7) and
Pi(a) = [9 + 23a + 6a2][85 + 3(247 + 509« + 397 + 15203 + 36a?)],

Py(a) = [2+ 11a + 1702 + 3a3][9 + 52 + 83a? + 37a® + 18a?],

Py(a) = 41 + 2a + 4a? + 20®][25 4 238a + 75502 + 902 + 120a?)].

Proof. Let for 0 < a < 1, f € C,. Then from (1.6) we have,
[H3(1)] < |as|lazas — a3] + |aa|las — azas| + |as||as — a3].

By using the bounds of |agas—a3|, |agaz—as|, |az—a3| from Theorem 3.1, Theorem 3.2,
Theorem 3.3 respectively, and the bounds |ag|, |as4| due to Chichral4], and the bound
of |as| due to Babalola[l] we get the desired result. O

Remark: Finding the function for which the upper bound for |H3(2)| and |Hs(1)]
are to be sharp is an open problem. The nature of the function to be maximised

much more complicated even for a = 0, that is, for the functions in /.
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