# ODD VERTEX EQUITABLE EVEN LABELING OF LADDER GRAPHS

P. JEYANTHI (1), A.MAHESWARI (2) AND M.VIJAYALAKSHMI (3)

ABSTRACT. Let G be a graph with p vertices and q edges and  $A=\{1,3,\ldots,q\}$  if q is odd or  $A=\{1,3,\ldots,q+1\}$  if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling  $f:V(G)\to A$  that induces an edge labeling  $f^*$  defined by  $f^*(uv)=f(u)+f(v)$  for all edges uv such that for all a and b in A,  $|v_f(a)-v_f(b)|\leq 1$  and the induced edge labels are  $2,4,\ldots,2q$  where  $v_f(a)$  be the number of vertices v with f(v)=a for  $a\in A$ . A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph [2]. In this paper we investigate the odd vertex equitable even labeling behavior of some ladder graphs.

## 1. Introduction

We consider only simple, finite, connected and undirected graphs and follow the basic notations and terminology of graph theory as in [1]. Let G(V, E) be a graph with p vertices and q edges. The vertex set and the edge set of a graph are denoted by V(G) and E(G) respectively. The notion of vertex equitable labeling was due to Lourdusamy and Seenivasan et al.[4]. Let G be a graph with p vertices and q edges and  $A = \{0, 1, 2, \ldots, \left\lceil \frac{q}{2} \right\rceil \}$ . A graph G is said to be vertex equitable if there

<sup>1991</sup> Mathematics Subject Classification. 05C78.

Key words and phrases. vertex equitable labeling; vertex equitable graph; odd vertex equitable even labeling, odd vertex equitable even graph.

Copyright © Deanship of Research and Graduate Studies, Yarmouk University, Irbid, Jordan.

exists a vertex labeling  $f:V(G)\to A$  that induces an edge labeling  $f^*$  defined by  $f^*(uv) = f(u) + f(v)$  for all edges uv such that for all a and b in A,  $|v_f(a)| - f(u) = f(u) + f(v)$  $|v_f(b)| \leq 1$  and the induced edge labels are  $1, 2, 3, \ldots, q$  where  $v_f(a)$  is the number of vertices v with f(v) = a for  $a \in A$ . The vertex labeling f is known as vertex equitable labeling. Motivated by the concept of vertex equitable labeling [4], Jeyanthi, Maheswari and Vijayalakshmi extended this concept and introduced a new concept namely odd vertex equitable even labeling in [2] and proved that the graphs, path,  $P_n \odot P_m(n, m \ge 1), K_{1,n} \cup K_{1,n-2}(n \ge 3), K_{2,n}(n \ge 1), T_p$ -tree, cycle  $C_n(n \equiv 0)$ or  $1 \pmod{4}$ , quadrilateral snake  $Q_n(n \geq 1)$ , ladder  $L_n(n \geq 1)$ ,  $L_n \odot K_1(n \geq 1)$ , arbitrary super subdivision of any path  $P_n$  are odd vertex equitable even graphs. They also proved that the graph  $K_{1,n}$  is an odd vertex equitable even graph if and only if  $n \leq 2$ . Let G be a graph with p vertices and q edges and  $p \leq \left\lceil \frac{q}{2} \right\rceil + 1$ , then G is not an odd vertex equitable even graph. In addition, they proved that if every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph. In [3], Jeyanthi and Maheswari proved that some cyclic snake related graphs admit odd vertex equitable even labeling.

We use the following definitions and known results in the subsequent section.

**Definition 1.1.** The graph  $\langle L_n \hat{O} K_{1,m} \rangle$  is the graph obtained from ladder  $L_n$  and 2n copies of  $K_{1,m}$  by identifying a non central vertex of  $i^{th}$  copy of  $K_{1,m}$  with  $i^{th}$  vertex of  $L_n$ .

**Definition 1.2.** The graph  $P_n \times P_2$  is called a ladder graph.

**Definition 1.3.** Let G be a graph. The subdivision graph S(G) is obtained from G by subdividing each edge of G with a vertex.

**Definition 1.4.** The corona  $G_1 \odot G_2$  of the graphs  $G_1$  and  $G_2$  is defined as a graph obtained by taking one copy of  $G_1$  (with p vertices) and p copies of  $G_2$  and then joining the  $i^{th}$  vertex of  $G_1$  to every vertex of the  $i^{th}$  copy of  $G_2$ .

**Definition 1.5.** Let  $G_1$  be a graph with p vertices and  $G_2$  be any graph. A graph  $G_1 \hat{o} G_2$  is obtained from  $G_1$  and p copies of  $G_2$  by identifying one vertex of  $i^{th}$  copy of  $G_2$  with  $i^{th}$  vertex of  $G_1$ .

**Theorem 1.6.** [2] Cycle  $C_n$  is an odd vertex equitable even graph if  $n \equiv 0$  or  $1 \pmod{4}$ 

**Theorem 1.7.** [2]  $K_{1,n} \cup K_{1,n-2}$  is an odd vertex equitable even graph for any  $n \geq 3$ .

#### 2. Main Results

In this section, we prove that  $S(L_n)$ ,  $L_m \hat{O} P_n$ ,  $L_n \odot \overline{K_m}$ ,  $\langle L_n \hat{O} K_{1,m} \rangle$  are odd vertex equitable even graphs.

**Theorem 2.1.** The subdivision graph  $S(L_n)$  is an odd vertex equitable even graph.

Proof. Let  $V(L_n) = \{u_i, v_i/1 \le i \le n\}$ ,  $E(L_n) = \{u_i u_{i+1}, v_i v_{i+1}/1 \le i \le n-1\} \cup \{u_i v_i/1 \le i \le n\}$ . Let  $v_i'$  be the newly added vertex between  $v_i$  and  $v_{i+1}$ ,  $u_i'$  be the newly added vertex between  $u_i$  and  $u_{i+1}$ . Let  $w_i$  be the newly added vertex between  $v_i$  and  $v_i$ . Clearly  $S(L_n)$  has 5n-2 vertices and 6n-4 edges.

Let 
$$A = \left\{ \begin{array}{l} 1, 3, 5, ..., 5n - 2 & \text{if } n \text{ is odd} \\ 1, 3, 5, ..., 5n - 1 & \text{if } n \text{ is even} \end{array} \right\}.$$

Define the vertex labeling  $f: V(S(L_n)) \to A$  as follows:

$$f(u_1) = 1, f(v_1) = f(v_1') = 3.$$

For 
$$1 \le i \le \left| \frac{n}{2} \right|$$
,  $f(u_{2i}) = 12i - 5$ ,  $f(u'_{2i-1}) = 12i - 3$ ,  $f(v_{2i}) = 12i - 7$ ,

$$f(w_{2i}) = 12i - 5.$$

For 
$$1 \le i \le \lceil \frac{n}{2} \rceil$$
,  $f(w_{2i-1}) = 12i - 11$ .

For 
$$1 \le i \le \lfloor \frac{n}{2} \rfloor$$
,  $f(u_{2i+1}) = f(u'_{2i}) = 12i - 1$ ,  $f(v'_{2i}) = 12i + 3$ ,  $f(v_{2i+1}) = 12i + 1$ .

For the vertex labeling f, the induced edge labeling  $f^*$  is as follows:

$$f^*(u_1w_1) = 2$$
,  $f^*(w_1v_1) = 4$ ,  $f^*(u_1u_1') = 10$ ,  $f^*(v_1'v_2) = 8$ .

For 
$$1 \le i \le \lceil \frac{n}{2} \rceil - 1$$
  $f^*(u_{2i}u'_{2i}) = 24i - 6$ ,  $f^*(w_{2i}v_{2i}) = 24i - 12$ ,

$$f^*(v_{2i}v'_{2i}) = 24i - 4$$
,  $f^*(v'_{2i}v_{2i+1}) = 24i + 4$ ,  $f^*(u'_{2i}u_{2i+1}) = 24i - 2$ ,  $f^*(u_{2i+1}w_{2i+1}) = 24i$ ,  $f^*(w_{2i+1}v_{2i+1}) = 24i + 2$ . For  $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor - 1$ ,  $f^*(u_{2i+1}u'_{2i+1}) = 24i + 8$ ,  $f^*(v'_{2i+1}v_{2i+2}) = 24i + 10$ . For  $1 \le i \le \left\lfloor \frac{n}{2} \right\rfloor$ ,  $f^*(v_{2i-1}v'_{2i-1}) = 24i - 18$ ,  $f^*(u'_{2i-1}u_{2i}) = 24i - 8$ ,  $f^*(u_{2i}w_{2i}) = 2(12i - 5)$ . It can be verified that the induced edge labels of  $S(L_n)$  are  $2, 4, \ldots, 12n - 8$  and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Clearly  $f$  is an odd vertex equitable even labeling of  $S(L_n)$ . Thus,  $S(L_n)$  is an odd vertex equitable even graph. An odd vertex equitable even labeling of  $S(L_6)$  is shown in Figure 1.



FIGURE 1. An odd vertex equitable even labeling of  $S(L_6)$ 

**Theorem 2.2.** The graph  $L_m\hat{O}P_n$  is an odd vertex equitable even graph.

Proof. Let  $u_1, u_2, \ldots, u_m$  and  $v_1, v_2, \ldots, v_m$  be the vertices of the ladder  $L_m$ . Let  $v_{ij}, u_{ij}$   $(1 \le i \le m, 1 \le j \le n)$  be the vertices of m copies of  $P_n$ .

Let vertex set  $V(L_m \widehat{o} P_n) = \{u_i, v_i, u_{ij}, v_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$  and edge set  $E(L_m \widehat{o} P_n) = \{u_i v_i : 1 \leq i \leq m\} \bigcup \{u_i u_{i+1}, v_i v_{i+1} : 1 \leq i \leq m-1\} \bigcup \{u_{ij} u_{ij+1}, v_{ij} v_{ij+1} : 1 \leq i \leq m, 1 \leq j \leq n-1 \text{ and } u_{in} = u_i, v_{in} = v_i : 1 \leq i \leq m\}.$ 

Clearly  $L_m \hat{O} P_n$  has 2mn vertices and 2mn + m - 2 edges.

Let 
$$A = \left\{ \begin{array}{ll} 1, 3, 5, ..., 2mn + m - 2 & \text{if } m \text{ is odd} \\ 1, 3, 5, ..., 2mn + m - 1 & \text{if } m \text{ is even} \end{array} \right\}.$$

Define the vertex labeling  $f: V(L_m \hat{O} P_n) \to A$  as follows:

### Case 1. n is odd.

For 
$$1 \le j \le \left\lceil \frac{n}{2} \right\rceil$$
 and  $i$  is odd, set  $f(u_{i(2j-1)}) = n - (2j-2) + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor$ ,  $f(v_{i(2j-1)}) = n + (2j-2) + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor$ , For  $1 \le j \le \left\lfloor \frac{n}{2} \right\rfloor$  and  $i$  is odd,  $f(u_{i(2j)}) = n - 2j + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor$ ,  $f(v_{i(2j)}) = n + 2j + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor$ . For  $1 \le j \le \left\lceil \frac{n}{2} \right\rceil$  and  $i$  is even, set  $f(u_{i(2j-1)}) = 3n + 2 + (2j-2) + (4n+2) \left\lfloor \frac{i-1}{2} \right\rfloor$ ,  $f(v_{i(2j-1)}) = 3n - (2j-2) + (4n+2) \left\lfloor \frac{i-1}{2} \right\rfloor$ ,

For 
$$1 \le j \le \lfloor \frac{n}{2} \rfloor$$
 and  $i$  is even,  $f(u_{i(2j)}) = 3n + 2 + (2j - 2) + (4n + 2) \lfloor \frac{i-1}{2} \rfloor$ ,

$$f(v_{i(2j)}) = 3n - (2j - 2) + (4n + 2) \left\lfloor \frac{i-1}{2} \right\rfloor.$$

# Case 2. n is even.

For  $1 \le j \le \frac{n}{2}$  and i is odd, set

$$f(u_{i(2j-1)}) = f(u_{i(2j)}) = n - 2j + 1 + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor,$$
  
$$f(v_{i(2j-1)}) = f(v_{i(2j)}) = n + 1 + (2j-2) + (4n+2) \left\lfloor \frac{i}{2} \right\rfloor,$$

For  $1 \le j \le \frac{n}{2}$  and i is even, set

$$f(u_{i(2j-1)}) = 3n + 1 + (2j-2) + (4n+2) \lfloor \frac{i-1}{2} \rfloor,$$

$$f(u_{i(2j)}) = 3n + 1 + 2j + (4n + 2) \lfloor \frac{i-1}{2} \rfloor,$$

$$f(v_{i(2j-1)}) = 3n + 1 - (2j-2) + (4n+2) \left\lfloor \frac{i-1}{2} \right\rfloor,$$

$$f(v_{i(2j)}) = (3n-1) - (2j-2) + (4n+2) \left\lfloor \frac{i-1}{2} \right\rfloor.$$

For the vertex labeling f, the induced edge labeling  $f^*$  is as follows:

$$f^*(u_i v_i) = (4n+2)(i-1) + 2n$$
 if  $1 \le i \le m$ 

$$f^*(u_i u_{i+1}) = (4n+2)i$$
 if  $1 \le i \le m-1$ 

$$f^*(v_i v_{i+1}) = (4n+2)i - 2 if 1 \le i \le m-1.$$

For 
$$1 \le i \le m$$
,  $1 \le j \le n-1$ 

$$f^*(v_{ij}v_{i(j+1)}) = \begin{cases} 2(n+j+(4n+2)\lfloor \frac{i}{2} \rfloor) & \text{if } i \text{ is odd} \\ 2(3n+(4n+2)\lfloor \frac{i-1}{2} \rfloor) - 2(j-1) & \text{if } i \text{ is even.} \end{cases}$$

If 
$$n$$
 is even  $f^*(u_{ij}u_{i(j+1)}) = \begin{cases} 2(n-j+(4n+2)\lfloor\frac{i}{2}\rfloor) & \text{if } i \text{ is odd} \\ 2(3n+2+(4n+2)\lfloor\frac{i-1}{2}\rfloor)+2(j-1) & \text{if } i \text{ is even.} \end{cases}$ 
If  $n$  is odd  $f^*(u_{ij}u_{i(j+1)}) = \begin{cases} 2(n-j+(4n+2)\lfloor\frac{i}{2}\rfloor) & \text{if } i \text{ is odd} \\ 2(3n+1+(4n+2)\lfloor\frac{i-1}{2}\rfloor)+2j & \text{if } i \text{ is even.} \end{cases}$ 

It can be verified that the induced edge labels of  $L_m \hat{O} P_n$  are  $2, 4, \ldots, 4mn + 2m - 4$  and  $|v_f(i) - v_f(j)| \leq 1$  for all  $i, j \in A$ . Clearly f is an odd vertex equitable even labeling of  $L_m \hat{O} P_n$ . Thus,  $L_m \hat{O} P_n$  is an odd vertex equitable even graph. An odd vertex equitable even labeling of  $L_5 \hat{O} P_6$  is shown in Figure 2.



FIGURE 2. An odd vertex equitable even labeling of  $L_5\hat{O}P_6$ 

**Theorem 2.3.** The graph  $L_n \odot \overline{K_m}$  is an odd vertex equitable even graph if m > 1.

*Proof.* Let  $u_1, u_2, \ldots, u_n$  and  $v_1, v_2, \ldots, v_n$  be the vertices of the ladder  $L_n$ . Let  $u_{ij}, v_{ij}$   $(1 \le i \le n, 1 \le j \le m)$  be the vertices of n copies of  $\bar{K}_m$ .

Clearly 
$$L_n \odot \overline{K_m}$$
 has  $2n + 2mn$  vertices and  $2mn + 3n - 2$  edges.

Let 
$$A = \left\{ \begin{array}{l} 1, 3, 5, ..., 2mn + 3n - 2 & \text{if } n \text{ is odd} \\ 1, 3, 5, ..., 2mn + 3n - 1 & \text{if } n \text{ is even} \end{array} \right\}.$$

Define the vertex labeling  $f: V(L_n \odot \overline{R})$ 

$$f(u_{2i-1}) = 4(m+1)(i-1) + 2i - 1$$
 if  $1 \le i \le \left\lceil \frac{n}{2} \right\rceil$ ,

$$f(u_{2i}) = 4(m+1)i + 2i - 1 \text{ if } 1 \le i \le \left| \frac{n}{2} \right|,$$

$$f(v_{2i-1}) = 4(m+1)(i-1) + 2m + 2i - 1 \text{ if } 1 \le i \le \left\lceil \frac{n}{2} \right\rceil$$

$$f(v_{2i}) = 4(m+1)(i-1) + 2m + 2i + 1 \text{ if } 1 \le i \le \lfloor \frac{n}{2} \rfloor,$$

$$f(u_{2i-1,j}) = 4(m+1)(i-1) + 2j + 2i - 3$$
 if  $1 \le i \le \lceil \frac{n}{2} \rceil$   $1 \le j \le m$ ,

$$f(v_{2i-1,j}) = 4(m+1)(i-1) + 2j + 2i - 1 \text{ if } 1 \le i \le \lfloor \frac{n}{2} \rfloor \ 1 \le j \le m,$$

$$f(u_{2i,j}) = f(v_{2i,j}) = 4(m+1)i + 2j + 2i - 2m - 3 \text{ if } 1 \le i \le \lfloor \frac{n}{2} \rfloor \ 1 \le j \le m.$$

For the vertex labeling f, the induced edge labeling  $f^*$  is as follows:

For 
$$1 \le i \le n$$
  $f^*(u_i v_i) = 2((2m+3)(i-1) + (m+1)),$ 

For 
$$1 \le i \le n - 1$$
  $f^*(u_i u_{i+1}) = 2(2m+3)i$ ,  $f^*(v_i v_{i+1}) = 2(2m+3)i - 2$ ,

For 
$$1 \le i \le n$$
,  $1 \le i \le m$ 

$$f^*(u_i u_{ij}) = \begin{cases} 2(2m+3)(i-1) + 2j & \text{if } i \text{ is odd} \\ 2((2m+3)(i-1) + m+1) + 2j & \text{if } i \text{ is even.} \end{cases}$$

$$f^*(v_i v_{ij}) = \begin{cases} 2((2m+3)(i-1) + m+1) + 2j & \text{if } i \text{ is odd} \\ 2((2m+3)(i-1)) + 2j & \text{if } i \text{ is even.} \end{cases}$$

$$f^*(v_i v_{ij}) = \begin{cases} 2((2m+3)(i-1) + m + 1) + 2j & \text{if } i \text{ is odd} \\ 2((2m+3)(i-1)) + 2j & \text{if } i \text{ is even.} \end{cases}$$

It can be verified that the induced edge labels of  $L_n \odot \overline{K_m}$  are  $2, 4, \ldots, 4mn + 6n - 4$ and  $|v_f(i) - v_f(j)| \leq 1$  for all  $i, j \in A$ . Clearly f is an odd vertex equitable even labeling of  $L_n \odot \overline{K_m}$ . Thus,  $L_n \odot \overline{K_m}$  is an odd vertex equitable even graph. An odd vertex equitable even labeling of  $L_6 \odot \overline{K_4}$  is shown in Figure 3.



FIGURE 3. An odd vertex equitable even labeling of  $L_6 \odot \overline{K_4}$ 

**Theorem 2.4.** The graph  $\langle L_n \hat{O} K_{1,m} \rangle$  is an odd vertex equitable even graph.

*Proof.* Let  $u_1, u_2, \ldots, u_n$  and  $v_1, v_2, \ldots, v_n$  be the vertices of the ladder  $L_n$ .

Let vertex set  $V(\langle L_n \hat{O}K_{1,m} \rangle) = \{u_i, v_i, u_{i0}, v_{i0}, v_{ij}, u_{ij} : 1 \leq i \leq n, 1 \leq j \leq m\}$  and edge set  $E(\langle L_n \hat{O}K_{1,m} \rangle) = \{u_i v_i : 1 \leq i \leq n\} \cup \{u_i u_{i+1}, v_i v_{i+1} : 1 \leq i \leq n-1\} \cup \{u_i u_{i0}, v_i v_{i0} : 1 \leq i \leq n\} \cup \{u_{i0} u_{ij}, v_{i0} v_{ij} : 1 \leq i \leq n, 1 \leq j \leq m \text{ and } u_{im} = u_i, v_{im} = v_i : 1 \leq i \leq n\}.$  Clearly  $\langle L_n \hat{O}K_{1,m} \rangle$  has 2n + 2mn vertices and 2mn + 3n - 2 edges.

Let 
$$A = \begin{cases} 1, 3, 5, ..., 2mn + 3n - 2 & \text{if } n \text{ is odd} \\ 1, 3, 5, ..., 2mn + 3n - 1 & \text{if } n \text{ is even} \end{cases}$$
.

Define the vertex labeling  $f: V(\langle L_n \hat{O} K_{1,m} \rangle) \to A$  as follows:

For 
$$1 \le i \le \lceil \frac{n}{2} \rceil$$
  $f(u_{(2i-1)0}) = f(u_{2i-1}) = 4(m+1)(i-1) + 2i - 1$ ,

$$f(v_{(2i-1)0}) = f(v_{2i-1}) = 4(m+1)(i-1) + 2m + 2i - 1,$$

$$f(u_{(2i-1)j}) = f(v_{2i-1,j}) = 4(m+1)(i-1) + 2j + 2i - 1 \text{ if } 1 \le j \le m,$$

For 
$$1 \le i \le \lfloor \frac{n}{2} \rfloor$$
  $f(u_{(2i)0}) = 4(m+1)i + 2i - 3$ ,  $f(v_{(2i)0}) = 4(m+1)(i-1) + 2m + 2i + 3$ ,

$$f(u_{2i}) = 4(m+1)i + 2i - 1, f(v_{2i}) = 4(m+1)(i-1) + 2m + 2i + 1,$$

$$f(v_{2i,j}) = 4(m+1)i - 2j + 2i - 3 \text{ if } 1 \le j \le m,$$
  
$$f(u_{2i,j}) = 4(m+1)i - 2j + 2i - 1 \text{ if } 1 \le j \le m.$$

For the vertex labeling f, the induced edge labeling  $f^*$  is as follows:

For 
$$1 \le i \le n$$
  $f^*(u_i v_i) = (4(m+1)+2)(i-1)+2(m+1)$ 

$$f^*(u_i u_{i0}) = \begin{cases} (4(m+1)+2)(i-1)+2 & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-2)+8(m+1) & \text{if } i \text{ is even.} \end{cases}$$

$$f^*(v_i v_{i0}) = \begin{cases} (4(m+1)+2)(i-1)+2(2m+1) & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-2)+4m+8 & \text{if } i \text{ is even.} \end{cases}$$
For  $1 \le i \le n-1$ .

$$f^*(u_i u_{i+1}) = (4(m+1)+2)i, f^*(v_i v_{i+1}) = (4(m+1)+2)(i-1)+4(m+1)$$

For 
$$1 \le i \le n, \ 1 \le j \le m - 1$$
,

For 
$$1 \le i \le n$$
,  $1 \le j \le m - 1$ ,
$$f^*(u_{i0}u_{ij}) = \begin{cases} (4(m+1)+2)(i-1)+2(j+1) & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-2)+2(j+1)+6(m+1) & \text{if } i \text{ is even.} \end{cases}$$

$$f^*(v_iv_{i0}) = \begin{cases} (4(m+1)+2)(i-1)+2(j+1)+2m & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-1)+2(j+1)+2m & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-2)+2(j+1)+4m+6 & \text{if } i \text{ is even.} \end{cases}$$
It can be verified that the induced edge labels of  $\langle L_n \hat{O}K_{1,m} \rangle$  are  $2, 4, \dots, 4mn+6n-4$ 

$$f^*(v_i v_{i0}) = \begin{cases} (4(m+1)+2)(i-1)+2(j+1)+2m & \text{if } i \text{ is odd,} \\ (4(m+1)+2)(i-2)+2(j+1)+4m+6 & \text{if } i \text{ is even.} \end{cases}$$

and  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ .

Clearly f is an odd vertex equitable even labeling of  $\langle L_n \hat{O} K_{1,m} \rangle$ .

Thus,  $\langle L_n \hat{O} K_{1,m} \rangle$  is an odd vertex equitable even graph.

An odd vertex equitable even labeling of  $\langle L_4 \hat{O} K_{1,5} \rangle$  is shown in Figure 4.

**Theorem 2.5.** The cycle  $C_n$  is an odd vertex equitable even graph if and only if  $n \equiv$ 0 or  $1 \pmod{4}$ .

*Proof.* The necessary condition is already proved in [2]. Conversely assume that  $n \equiv 2$ or  $3 \pmod{4}$ . Let f be an odd vertex equitable even labeling of the cycle  $C_n$ . Then



FIGURE 4. An odd vertex equitable even labeling of  $L_4\hat{O}K_{1,5}$ 

$$2\sum_{u \in V} f(u) = n(n+1).$$
 ......(1)  
Case (i):  $n \equiv 2 \pmod{4}$ .

Take n=4k+2. Then  $A=\{1,3,\ldots,n+1\}$  and  $|A|=\frac{n}{2}+1$ . Since f is an odd vertex equitable even labeling and p=q=n, we must have  $v_f(a)=2$  for  $\frac{n}{2}-1$  elements a of A and  $v_f(b)=1$  for remaining two elements b of A. Let  $a_1,a_2,\ldots a_{(\frac{n}{2}-1)}$  be the elements of A such that  $v_f(a_i)=2$  for  $1\leq i\leq \frac{n}{2}-1$  and  $v_f(a_{\frac{n}{2}})=v_f(a_{\frac{n}{2}+1})=1$ . Let  $v_i^1$  and  $v_i^2$  be the vertices of  $C_n$  so that  $f(v_i^1) = f(v_i^2) = a_i$  for  $1 \le i \le \frac{n}{2} - 1$ ,  $f(v_{\frac{n}{2}}^1) = a_{\frac{n}{2}}$  and  $f(v_{\frac{n}{2}+1}^1) = a_{\frac{n}{2}+1}$ . Then the vertex set V of  $C_n$  can be written as  $V = V_1 \cup V_2$  where  $V_1 = \{v_i^1 : 1 \le i \le \frac{n}{2} + 1\}$  and  $V_2 = \{v_i^2 : 1 \le i \le \frac{n}{2} - 1\}$ . Hence (1) can be written as  $2 \sum_{u \in V_1} f(u) + 2 \sum_{u \in V_2} f(u) = n(n+1)$ .

Since 
$$2\sum_{u\in V_1}f(u)=2(1+3+...+(n+1))=2(\frac{(n+1)(n+2)}{2}-2(1+2+...+\frac{n}{2}))=\frac{(n+2)^2}{2}$$
. Then  $2\sum_{u\in V_2}f(u)=n(n+1)-\frac{(n+2)^2}{2}$  which implies that  $2\sum_{u\in V_2}f(u)=\frac{n^2-2n-4}{2}$ . Thus we have  $\sum_{u\in V_2}f(u)=2(2k^2+k)-1$ .

Now,  $|V_2| = \frac{n}{2} - 1 = 2k$ . Hence  $\sum_{u \in V_2} f(u)$  is the sum 2k odd numbers and hence it is an even number. But  $2(2k^2 + k) - 1$  is always an odd number which is a contradiction. Case (ii):  $n \equiv 3 \pmod{4}$ .

Take n=4k+3. Then  $A=\{1,3,\ldots,n\}$  and  $|A|=\frac{n+1}{2}$ . Since f is an odd vertex equitable even labeling and p=q=n, we must have  $v_f(a)=2$  for  $\frac{n-1}{2}$  elements a of A and  $v_f(b)=1$  for remaining two elements b of A. Let  $a_1,a_2,\ldots a_{\frac{n-1}{2}}$  be the elements of A such that  $v_f(a_i)=2$  for  $1\leq i\leq \frac{n-1}{2}$  and  $v_f(a_{\frac{n+1}{2}})=1$ . Let  $v_i^1$  and  $v_i^2$  be the vertices of  $C_n$  so that  $f(v_i^1)=f(v_i^2)=a_i$  for  $1\leq i\leq \frac{n-1}{2}$ , and  $f(v_{\frac{n+1}{2}})=a_{\frac{n+1}{2}}$ . Then the vertex set V of  $C_n$  can be written as  $V=V_1\cup V_2$  where  $V_1=\{v_i^1:1\leq i\leq \frac{n+1}{2}\}$  and  $V_2=\{v_i^2:1\leq i\leq \frac{n-1}{2}\}$ . Hence (1) can be written as  $2\sum_{u\in V_1}f(u)+2\sum_{u\in V_2}f(u)=n(n+1)$ .

Since  $2\sum_{u\in V_1} f(u) = 2(1+3+...+n) = 2(\frac{n(n+1)}{2} - 2(1+2+...+\frac{n-1}{2})) = \frac{(n+1)^2}{2}$ .

Then  $2\sum_{u\in V_2} f(u) = n(n+1) - \frac{(n+1)^2}{2}$  which implies that  $2\sum_{u\in V_2} f(u) = \frac{n^2-1}{2}$ . Thus we have  $\sum_{u\in V_2} f(u) = 2(k+1)(2k+1)$ .

Now,  $|V_2| = \frac{n-1}{2} = 2k+1$ . Hence  $\sum_{u \in V_2} f(u)$  is the sum 2k+1 odd numbers and hence it is an odd number. But 2(k+1)(2k+1) is always an even number which is a contradiction.

In both cases we get a contradiction. Hence f can not be an odd vertex equitable even labeling of  $C_n$  if  $n \equiv 2$  or  $3 \pmod{4}$ .

**Theorem 2.6.** The graph  $G = K_{1,n+k} \cup K_{1,n}$  is an odd vertex equitable even graph if and only if k = 1, 2.

Proof. Let  $V(G) = \{u, v, u_j, v_i : 1 \le j \le n+k \text{ and } 1 \le i \le n\}$  and  $E(G) = \{uu_j, vv_i : 1 \le j \le n+k \text{ and } 1 \le i \le n\}$ . Then G has 2n+k+2 vertices and 2n+k edges. Let  $A = \{1, 3, 5, \ldots 2n+k \text{ or } 2n+k+1\}$  according as k is odd or even. Let f be a an odd vertex equitable even labeling of the graph  $G = K_{1,n+k} \cup K_{1,n}$ .

To get an edge label 2, there must be two adjacent vertices with vertex labels 1 and

1. So we can take f(u) = 1 and  $f(u_1) = 1$ . To get an edge label 4, there must be two adjacent vertices with vertex labels 1 and 3 and so we have  $f(u_2) = 3$ . Since all the edge labels are distinct, the pendent vertices  $u_1, u_2, u_3, u_4, \ldots, u_{n+k}$  should receive the distinct labels from the set A. So we have  $f(u_3) = 5, f(u_4) = 7, \ldots, f(u_{n+k}) = 2n + 2k - 1$ .

If k is odd then the maximum of A is 2n+k. Hence  $2n+2k-1 \le 2n+k$  which implies  $k \le 1$ . If k is even then the maximum of A is 2n+k+1. Hence  $2n+2k-1 \le 2n+k+1$  which implies  $k \le 2$ .

If k=0 then q=2n and  $A=1,3,5,\ldots,2n+1$ . Since |A|=n+1,p=2n+2 and f is odd vertex equitable even labeling,  $v_f(a)=2$  for all  $a\in A$ . Hence, the pendent vertices of the first component receive the labels  $1,3,5,\ldots,2n-1$ , centre vertex receives the label 1 and the pendent vertices of the second component receive the labels  $3,5,\ldots,2n-1,2n+1$ .

To get an edge label 4n, there must be two adjacent vertices with vertex labels 2n+1 and 2n-1. So we can take f(v)=2n+1 or 2n-1.

If f(v) = 2n - 1 then  $v_f(2n - 1) = 3$  and  $v_f(2n + 1) = 1$ . If f(v) = 2n + 1 then the edge  $vv_n$  receives the label 4n + 2. In both cases we get a contradiction. Thus, if k = 0 then G is not an odd vertex equitable even graph.

If k = 1 then  $A = \{1, 3, 5, ..., 2n+1\}$ . The vertex labeling  $f : V(G) \to A$  is defined as follows:  $f(u) = 1; f(u_j) = 2j-1$  for  $1 \le j \le n+1$ , f(v) = 2n+1 and for  $1 \le i \le n$ ,  $f(v_i) = 2i+1$ . Hence,  $f(V(G)) = \{1, 1, 3, 5, ..., 2n+1\} \cup \{2n+1, 3, 5, ..., 2n+1\}$  and also  $f^*(E(G)) = \{2, 4, 6, ..., 2n+2\} \cup \{2n+4, 2n+6, ..., 4n+2\}$ . Hence  $v_f(i) = 2$  for i = 1, 3, 5, ..., 2n-1 and  $v_f(2n+1) = 3$ . Thus we have  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence,  $G = K_{1,n+k} \cup K_{1,n}$  is an odd vertex equitable even graph.

If k=2 then  $A=\{1,3,5,\ldots,2n+3\}$ . The vertex labeling  $f:V(G)\to A$  is defined as follows:  $f(u)=1;\ f(u_j)=2j-1$  for  $1\leq j\leq n+2,\ f(v)=2n+3$  and for  $1\leq i\leq n,\ f(v_i)=2i+1.$ 

 $f(V(G)) = \{1, 1, 3, 5, \dots, 2n+1, 2n+3\} \cup \{2n+3, 3, 5, \dots, 2n+1\}$  and also  $f(E(G)) = \{2, 4, 6, \dots, 2n+4\} \cup \{2n+6, 2n+8, \dots, 4n+4\}$ . Hence  $v_f(i) = 2$  for all  $i \in A$ . Thus we have  $|v_f(i) - v_f(j)| \le 1$  for all  $i, j \in A$ . Hence,  $G = K_{1,n+k} \cup K_{1,n}$  is an odd vertex equitable even graph.

If k=2 the proof follows from Theorem 1.7 by replacing n by m-2. Hence  $G=K_{1,n+k}\cup K_{1,n}$  is an odd vertex equitable even graph.

#### References

- [1] F. Harary, Graph theory, Addison Wesley, Massachusetts, 1972.
- [2] P. Jeyanthi, A. Maheswari and M. Vijayalakshmi, Odd vertex equitable even graphs, Proyecciones Journal of Mathematics, Vol. 36, No. 1(2017), 1-11.
- [3] P. Jeyanthi, A. Maheswari, Odd Vertex Equitable Even Labeling of Cyclic Snake Related Graphs, Proyecciones Journal of Mathematics, Vol. 37, No. 4(2018), 613-625.
- [4] A. Lourdusamy and M. Seenivasan, *Vertex equitable labeling of graphs*, Journal of Discrete Mathematical Sciences & Cryptography, Vol. 11, No.6(2008), 727-735.
- (1) Research Center, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur 628215, Tamilnadu, India.

E-mail address: jeyajeyanthi@rediffmail.com

(2) Department of Mathematics, Kamaraj College of Engineering and Technology, Virudhunagar, Tamilnadu, India.

E-mail address: bala\_nithin@yahoo.co.in

(3) Department of Mathematics, Dr.G.U. Pope College of Engineering, Sawyerpuram, Tamilnadu, India.

E-mail address: viji\_mac@rediffmail.com