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SOLVING THE OPTIMAL CONTROL PROBLEMS WITH

CONSTRAINT OF INTEGRAL EQUATIONS VIA MÜNTZ

POLYNOMIALS

NEDA NEGARCHI (1) AND KAZEM NOURI (2)

Abstract. In this study, an efficient numerical scheme is presented for solving a

class of optimal control problems governed by the form of the Volterra-Fredholm

integral equation. The technique based upon approximating the state and control

functions by Müntz polynomials. The numerical integration and new approach

utilized to discretize the optimal control problem to a nonlinear programming using

the Chebyshev nodes together with the Gauss quadrature rule. Finally, numerical

examples illustrate the efficiency of the proposed method.

1. Introduction

The classical theory of optimal control was developed in the last years as a powerful

tool to establish optimal solutions for different problems in many aspects of science

and technology. Optimal control problem (OCP) received considerable attention

during the last four decades because of their applications in many different fields, in-

cluding aerospace process control, bioengineering, economics, financial mathematics,

management science and etc [26]. Also, considering the importance and application

of integral equation in various sciences, we consider a main class of OCPs governed

by the integral equation.
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There are various techniques for solving this class of OCPs. An overview of these

techniques can be studied in the research works provided by Vinokurov [27], Bakke

[3], Belbas [4, 5], Pan and Teo [21], Elangar and Kim [12], Carlier and Tahraou [10].

Among all of the numerical techniques for solving OCPs, orthogonal functions and

polynomials have attracted a lot of attention. High accuracy and ease of applying

them for OCPs are important advantages which have encouraged authors to use

them for many problems, see for example, Shih and Wang [24], Chou and Horng

[11], Elnagar and Razzaghi [13], Wang and Li [28], Tohidi and Samadi [26], Ross

and Fahroo [22], Negarchi and Nouri [20]. In this study, a numerical solution of the

OCP governed by the form of nonlinear Volterra-Fredholm integral equation (VFIE)

is considered, which is described by the following minimization problem:

Problem 1:

(1.1)

Min Q(x, y) =
∫ 1

0
(x(t) − a(t))2 + (y(t) − b(t))2dt,

s.t. x(t) = f(t) +
∫ t

0
p1(t, τ, x(τ), y(τ))dτ +

∫ 1

0
p2(t, τ, x(τ), y(τ))dτ, t ∈ [0, 1].

where f(t), a(t) and b(t) are continuous and known functions, x(t) and y(t) are real-

valued function and continuous and belong to Sobolev space W r,∞ with r ≥ 2 (see

[1, 9]).

Notice that, a control problem is usually expressed by two types of function, namely

the state and control functions (x(t),y(t)). The control function directs the evolution

of the system from one step to the next, and the state function describes the behavior

of the system. In OCP, the state and control functions are both unknown. The

purpose of these problems is to determine x(t) and y(t).

The paper is organized as follows: Section 2 contains the basic concepts. In Section

3, a new numerical method for solving problem 1 is proposed. Section 4 presents some

numerical examples illustrating the efficiency and accuracy of the proposed method.

Finally The conclusion is given in section 5.



SOLVING THE OPTIMAL CONTROL PROBLEMS WITH CONSTRAINT OF INTEGRAL ... 91

2. Preliminaries

In this section, some definitions and basic concepts are expressed.

Definition 2.1. ([17]) A function ψ : [0, T ] → R belongs to the Sobolev space

W z,l, if its jth weak derivative ψ(j), lies in Ll[0, T ] for all 0 ≤ j ≤ z with the

norm‖ψ‖W z,l =
z

∑

j=0

∥

∥ψ(j)
∥

∥

Ll , where ‖ψ‖Ll denotes the usual Lebesgue norm defined

for 1 ≤ l <∞ as follows:

‖ψ‖Ll = (

∫ T

0

|ψ(t)|ldt)
1

l .

Lemma 2.1. Given any function ψ ∈ W z,∞, t ∈ [0, T ], there is a polynomial gN(t)

of degree N or less, such that

(2.1) |ψ(t) − gN(t)| ≤ CC0N
−z, ∀t ∈ [0, 1],

where C is a constant independent of N , z is the order of smoothness of ψ and

C0 = ‖ψ‖W z,∞ (gN(t) with the smallest norm ‖ψ(t) − gN(t)‖L∞ is called the N th

order best polynomial approximation of ψ(t) in the norm of L∞).

Proof. See [9]. �

In this research, the Müntz polynomials and their basic properties recalled. Ini-

tially, the orthogonal Müntz systems were introduced by the Armenian mathemati-

cians Badalyan [2] and Taslakyan [25]. Next, they were assessed by Mc Carthy, Sayre

and Shawyer [17], and then reassessed by Borwein and Erdélyi [7]. For more details

see [18, 19, 20, 23].

Let A = {α0, α1, α2, . . .} be a complex sequence such that 0 ≤ α0 < α1 < · · · → ∞.

The classical Müntz theorem express that the Müntz polynomials of the form:

(2.2)

n
∑

k=0

akx
αk ,
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real coefficients {ak, k = 0, 1, . . . , n} are dense in L2[0, 1] if and only if (see [6, 8]),

(2.3)
∞

∑

k=0

α−1
k = ∞.

The constant function 1 is also in the system, where α0 = 0, then the result holds for

C[0, 1] with the uniform norm.

Müntz polynomials define as linear combinations of the Müntz system {xα0 , xα1 , . . . , xαn}

and the set of all such polynomials denote with Mn(A) = span {xα0 , xα1 , . . . , xαn}.

Furthermore, let

(2.4) M(A) :=
∞
⋃

n=0

Mn(A) =span {xα0 , xα1 , xα2 , . . .} .

In the following, the Müntz-Legendre polynomials introduced, which are orthogonal

on [0, 1] with weight function w(x) = 1.

Let the complex numbers from the set A = span {α0, α1, . . . , αn} satisfy the con-

dition Re(αk) > −1/2, then, the Müntz- Legendre polynomial of degree n defined on

[0, 1] by (see [6, 14, 18]),

(2.5) Ln(x) =

n
∑

k=0

Cn,kx
αk , Cn,k =

n−1
∏

v=0

(αk + ᾱv + 1)

n
∏

v=0,v 6=k

(αk − αv)
.

It is shown that they are orthogonal in L2[0, 1] with respect to the Legendre weight

function w(x) = 1.

For the Müntz-Legendre polynomials the following orthogonality relation holds:

(2.6) (Ln, Lm) =

∫ 1

0

Ln(x) Lm(x)w(x)dx =
δnm

αn + αn + 1
.

Also

xL′
j(x) − xL′

j−1(x) = αjLj(x) + (1 + ᾱj−1)Lj−1(x), j = 1, 2, 3, . . . ,(2.7)

xL′′
j (x) = (αj − 1)L′

j(x) +

j−1
∑

k=0

(αk + αk + 1)L′
k(x), j = 0, 1, 2, . . . .(2.8)
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It can easily be proved that:

(2.9) Ln(1) = 1 and L′
n(1) = αn +

n−1
∑

k=0

(αk + αk + 1).

3. Description of methodology

One of the methods that can be used to solve OCP is a direct method that converts

the optimal control into an algebraic optimization problem. This method is based on

the approximation of the state and control functions in terms of the basic functions

and the orthogonal Müntz-Legendre polynomials. Here, a numerical method provided

for solving the OCP. In the proposed method, an approximate is presented for the

cost function and integral equation control system.

Consider the dynamic system of the OCP as follows:

(3.1) x(t) = f(t) +
∫ t

0
p1(t, τ, x(τ), y(τ))dτ +

∫ 1

0
p2(t, τ, x(τ), y(τ))dτ, t ∈ [0, T ].

The dynamic system is approximated using the approximation of state and control

functions, x(t) ≈ xN (t) =
N
∑

m=0

xN(tm)Lm(t), y(t) ≈ yN(t) =
N
∑

m=0

yN(tm)Lm(t), and

the set of shifted Chebyshev nodes on [a, b] with ηi = 1
2
(a+b)+1

2
(b−a) cos( 2i−1

2N
π), i = 0, 1, . . . , N

as:

(3.2)

x(ηi) = f(ηi) +
∫ ηi

0
p1(ηi, τ,

N
∑

m=0

xN (tm)Lm(τ),
N
∑

m=0

yN(tm)Lm(τ))dτ

+
∫ 1

0
p2(ηi, τ,

N
∑

m=0

xN (tm)Lm(τ),
N
∑

m=0

yN(tm)Lm(τ))dτ, i = 0, 1, . . . , N.

In the above equation, the points of the set {t0, t1 . . . , tN} correspond with the col-

location points {η0, η1, . . . , ηN}. Using linear transformation τ = τ̃i(τ) = 1
2
(τ +

1) and τ = τ̂i(τ) = ηi

2
(τ + 1) transform the interavels [0, 1] and [0, ηi] into [−1, 1].

Then, the Gauss-Legendre quadrature rule, with the nodes τ0 = −1, τN = 1 and

τj, j = 1, 2, . . . , N − 1 (the j-th root of the Legendre polynomial PN−1(t)), and the
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weights ωj = 2
(1−τ2

j )(P ′

N
(τj))2

, j = 0, 1, . . . , N, can be applied as follows:

(3.3)

x(ηi) = f(ηi) + ηi

2

N
∑

j=0

ωjp1(ηi, , τ̂i(τj),
N
∑

m=0

xN(tm)Lm(τ̂i(τj)),
N
∑

m=0

yN(tm)Lm(τ̂i(τj)))

+ 1
2

N
∑

j=0

ωjp2(ηi, , τ̃i(τj),
N
∑

m=0

xN (tm)Lm(τ̃i(τj)),
N
∑

m=0

yN(tm)Lm(τ̃i(τj))),

i = 0, 1, . . . , N.

For convenience, x(t) and y(t) are considered as follows:

(3.4) x(t) ≈ xN(t) =
N

∑

m=0

xN(tm)gm(t), y(t) ≈ yN(t) =
N

∑

m=0

yN(tm)gm(t).

With the same process, we approximate the cost functional of problem 1 as:

(3.5)

∫ 1

0
(x(t) − a(t))2 + (y(t) − b(t))2dt

= 1
2

∫ 1

−1
((xN (η+1

2
) − a(η+1

2
))2 + (yN(η+1

2
) − b(η+1

2
))2)dη

≈ 1
2

N
∑

j=0

ωj ((xN (
τj+1

2
) − a(

τj+1

2
))2 + (yN(

τj+1

2
) − b(

τj+1

2
))2).

So, problem 1 is discretized to the following nonlinear programming problem:

(3.6)
Min QN (X, Y )

s.t. Ii(X, Y ) = −f(ηi), i = 0, 1, . . . , N,

where X = (x̂0, x̂1, . . . , x̂N ), Y = (ŷ0, ŷ1, . . . , ŷN) are the unknown vectors. In other

words,

(3.7)
Min QN (X, Y )

QN (X, Y ) := 1
2

N
∑

j=0

ωj ((xN(
τj+1

2
) − a(

τj+1

2
))2 + (yN(

τj+1

2
) − b(

τj+1

2
))2),

and

(3.8)

Ii(X, Y ) := ηi

2

N
∑

j=0

ωjp1(ηi, , τ̂i(τj),
N
∑

m=0

xN (tm)gm(τ̂i(τj)),
N
∑

m=0

yN(tm)gm(τ̂i(τj)))

+ 1
2

N
∑

j=0

ωjp2(ηi, , τ̃i(τj),
N
∑

m=0

xN (tm)gm(τ̃i(τj)),
N
∑

m=0

yN(tm)gm(τ̃i(τj))) − x(ηi),

i = 0, 1, . . . , N.
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Following [15], problem 1 is approximated by the nonlinear programming problem

with object function Eq. (3.8) and down constraint:

(3.9) |Ii(X, Y ) + f(ηi)| ≤ (N − 1)
3

2
−z, i = 0, 1, . . . , N.

Then, the nonlinear programming problem is given by;

Problem 2:

(3.10)
Min QN (X, Y )

|Ii(X, Y ) + f(ηi) | ≤ (N − 1)
3

2
−z, i = 0, 1, . . . , N.

The feasibility of problem 2 can be proved using the following theorem.

Theorem 3.1. Given any feasible solution (x(t), y(t)) for problem 1, suppose x(t), y(t)

belong to W z,∞ with z ≥ 2. Then, there is a positive integer N1 such that for any

N > N1, problem 2 has a feasible solution (x̂i, ŷi) such that, the feasible solution

satisfies

(3.11) |x(ti) − x̂i| ≤ d1(N − 1)1−z, |y(ti) − ŷi| ≤ d2(N − 1)1−z, i = 0, 1, . . . , N,

where d1, d2 > 0 are constants and independents of N .

Proof. See [16]. �

In the next theorem, the convergence of the following sequence is expressed, and

thus the convergence of the proposed method for problem 1 is provided,

(3.12) {(x∗N(ti), y
∗
N(ti)), 0 ≤ i ≤ N}∞N=N1

.

Theorem 3.2. Assume that {(x∗N(ti), y
∗
N(ti)), 0 ≤ i ≤ N}∞N=N1

be a sequence of

optimal solutions to problem 2. If the function sequence has a subsequence that uni-

formly converges to the continuous function {(p1(t), p2(t))} on interval [0, 1] then,

x̂(t) =
∫ t

t0
p1(ν)dν+ x̂0 and ŷ(t) =

∫ t

t0
p2(ν)dν+ ŷ0 are the optimal solution to problem

1.
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Proof. See [16, 26]. �

4. Numerical examples

Here, three examples tested using the approach discussed in section 3. Exam-

ples are given to demonstrate the ability, punctuality and performance of our pre-

sented method. All computations are carried out in Mathematica version 10 software.

In order to analyze the errors of the present method, we introduce the notations

δx = max |x(ti) − xN (ti)|, δy = max |y(ti) − yN(ti)|, and δQ = max |Q(x(ti), y(ti)) −

Q(xN (ti), yN(ti))| for i = 0, 1, . . . , N.

Example 4.1. Consider the following OCP

(4.1)
Min Q(x, y) =

∫ 1

0
(x(t) − log(t+ 1))2 + (y(t) − t)2dt,

s.t. x(t) = f(t) +
∫ h(t)

0
tx(τ)y(τ)dτ +

∫ 1

0
(t− τ)x(h(τ)) dτ, 0 ≤ t ≤ 1,

where h(t) = t
3
, f(t) = log(t+1)+t+ 5

4
+log( 81

256
)(1+t)− t

36
(6t−t2+log( t

3
+1)(2t2−18)).

This equation has exact solutions x(t) = log(t + 1), y(t) = t and the optimal value

of cost function Q = 0. The numerical results of solving this example using our

method for N = 5, 10, 15, 20 are demonstrated in Table 1. Also, Figure 2 (a) and (b),

show the absolute errors of presented method for the state and control functions with

N = 15.

Table 1. Absolute errors of the state, control and cost functions for

Example 4.1.

N

error 5 10 15 20

δx 4.35618 × 10−4 1.65563 × 10−6 2.71056 × 10−7 1.77025 × 10−8

δy 5.02916 × 10−5 7.88033 × 10−6 4.02253 × 10−8 4.63509 × 10−9

δQ 2.00442 × 10−7 8.82044 × 10−10 3.95540 × 10−14 6.13608 × 10−17
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0.2 0.4 0.6 0.8 1.0

2. ´ 10-8

4. ´ 10-8

6. ´ 10-8

8. ´ 10-8

1. ´ 10-7

1.2 ´ 10-7
Absolute Error of xHtL

(a)

0.2 0.4 0.6 0.8 1.0

5. ´ 10-9

1. ´ 10-8

1.5 ´ 10-8

2. ´ 10-8

2.5 ´ 10-8

3. ´ 10-8

3.5 ´ 10-8

Absolute Error of yHtL

(b)

Figure 2. Numerical results of Example 4.1 for N = 15.

0.2 0.4 0.6 0.8 1.0

2. ´ 10-8

4. ´ 10-8

6. ´ 10-8

8. ´ 10-8

1. ´ 10-7

1.2 ´ 10-7
Absolute Error of xHtL

Figure 1. Graph between n, α, h, k and TIC for Model I

Example 4.2. Consider the following OCP

(4.2)
Min Q(x, y) =

∫ 1

0
(x(t) − t2)2 + (y(t) − et)2dt,

s.t. x(t) = f(t) +
∫ t

0
et x(τ)

y(τ)
dτ −

∫ 1

0
etx(τ)y(τ)dτ, 0 ≤ t ≤ 1,
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0.2 0.4 0.6 0.8 1.0

2. ´ 10-9

4. ´ 10-9

6. ´ 10-9

8. ´ 10-9

1. ´ 10-8

1.2 ´ 10-8

1.4 ´ 10-8

Absolute Error of xHtL

(a)

0.2 0.4 0.6 0.8 1.0

5. ´ 10-7

1. ´ 10-6

1.5 ´ 10-6

2. ´ 10-6

Absolute Error of yHtL

(b)

Figure 3. Numerical results of Example 4.2 for N = 12.

where f(t) = (−4+e)et +2t2 +2t+2. Trivially, the optimal value of the cost function

is Q = 0 and the optimal state and control functions are x(t) = t2 and y(t) = et.

Table 2, reports the numerical results of the proposed method for this example for

N = 4, 8, 12, 16. Figure 3 (a) and (b), show respectively the absolute errors of state

and control functions using mentioned method for N = 12.

Table 2. Absolute errors of the state, control and cost functions for

Example 4.2.

N

error 4 8 12 16

δx 4.14720 × 10−5 9.44506 × 10−8 3.21064 × 10−8 6.64294 × 10−9

δy 3.22347 × 10−4 2.02631 × 10−5 3.89277 × 10−6 8.76667 × 10−8

δQ 7.63302 × 10−8 4.71962 × 10−11 5.46642 × 10−14 6.72935 × 10−16

Example 4.3. Consider the main OCP (1.1) with p1(t, τ, x(τ), y(τ)) = sin tx(τ)y(τ),

p2(t, τ, x(τ), y(τ)) = etx(τ)y(τ), a(t) = cos t, b(t) = 1 − 2t2 and f(t) = cos t +

et(4cos1 − 3 sin 1) + sin t (4t cos t+ (2t2 − 5) sin t) . For this case the exact solutions

are x(t) = cos t, y(t) = 1 − 2t2 and the optimal value of the cost function is Q = 0.
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0.2 0.4 0.6 0.8 1.0

1. ´ 10-10

2. ´ 10-10

3. ´ 10-10

4. ´ 10-10

5. ´ 10-10
Absolute Error of xHtL

(a)

0.2 0.4 0.6 0.8 1.0

1. ´ 10-10

2. ´ 10-10

3. ´ 10-10

4. ´ 10-10

5. ´ 10-10

6. ´ 10-10
Absolute Error of yHtL

(b)

Figure 4. Numerical results of Example 4.3 for N = 20.

Table 3 denotes the numerical results obtained by our method for N = 8, 16, 24, 32.

Figure 4 (a) and (b), display the absolute errors of state and control functions using

the proposed method in this study for N = 20.

Table 3. Absolute errors of the state, control and cost functions for

Example 4.3.

N

error 8 16 24 32

δx 5.22704 × 10−5 2.76613 × 10−8 1.32447 × 10−10 7.96510 × 10−11

δy 5.80417 × 10−5 4.01463 × 10−8 2.15508 × 10−10 9.11381 × 10−11

δQ 3.43719 × 10−12 5.77193 × 10−16 8.91048 × 10−19 1.22039 × 10−19

5. Conclusion

In this paper, a new approach has posed to solve a class of OCP including the

form of VFIE by a direct method of solution based upon orthogonal Müntz poly-

nomials together with the shifted Chebyshev points as the collocation nodes. The

proposed method is based on converting the OCP into a finite dimensional mathe-

matical program problem. Illustrative examples have been presented to demonstrate
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effectiveness of our method. It is noteworthy that with increasing N, the approxi-

mations of the the state, control and cost functions are improved, so the presented

method has stable properties, as N increases, the error reduces and finally stabilizes.

The obtained rapid convergence shows this method can successfully solve the OCP. In

future research, the method can extend for solving the OCP governed by a system of

partial differential equation. Also, the mentioned method can be develop for solving

the OCP with control and state functions of the vectors.
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