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OSTROWSKI INEQUALITY AND APPLICATIONS IN

INFORMATION THEORY

RAM NARESH SARASWAT (1) AND AJAY TAK (2)

Abstract. Here we provide, an approximation for new f-divergence between two

probability distributions defined on finite set in terms of integral means using Os-

trowskis integral inequality. Some particular cases are derived. Consider some

numerical illustration with the case when each pair pi, qi is very close and deal with

applications to mutual information.

1. Introduction

Let

Γn =

(

P = (p1, p2...pn)|pi ≥ 0,
n
∑

i=1

pi = 1

)

, n ≥ 2

be the set of all complete finite discrete probability distributions. The new f -

divergence between two probability distributions P and Q is defined by

(1.1) Sf (P, Q) =

n
∑

i=1

qif

(

pi + qi

2qi

)

where f : (0,∞) → <+ is a convex function and P = (p1, p2...pn), Q = (q1, q2...qn) ∈
Γn, where pi and qi and for some i = 1, 2, 3...n, are probabilities (see Jain & Saraswat

([10]-[11]). All the below divergences are particular instances of new f -divergence.

Some options of f satisfy f(1) = 0, so that Sf (P, P ) = 0. Convexity ensures that
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Sf(P, Q) is non-negative.

The following wellknown information divergence measures, Bhattacharya divergence[1],

Kullback-Leibler divergence measure[13], Variational distance[14], Triangular

discrimination[21], Relative J-divergence[7],Hellinger discrimination[9], Chi-square

divergence[16], Relative Jensen-Shannon divergence[19], Relative arithmetic-geometric

divergence[20] will be used in this paper.

• If f(t) = (t − 1)2, for t > 0, then Chi-square divergence measure is given by

(1.2) Sf(P, Q) =
1

4

n
∑

i=1

(pi − qi)
2

qi

=
1

4

n
∑

i=1

p2
i

qi

− 1 =
1

4
χ2(P, Q)

• If f(t) = t ln t, for t > 0, then Relative Arithmetic-Geometric divergence

measure is given by

(1.3) Sf(P, Q) =

n
∑

i=1

(

pi + qi

2

)

log

(

pi + qi

2qi

)

= G(Q, P )

• If f(t) = − ln t, for t > 0, then Relative Jensen-Shannon divergence measure

is given by

(1.4) Sf (P, Q) =
n
∑

i=1

qi ln

(

2qi

pi + qi

)

= F (Q, P )

• If f(t) = (t−1)2

t
, for t > 0, then Triangular discrimination is given by

(1.5) Sf(P, Q) =
1

2

n
∑

i=1

(pi − qi)
2

(pi + qi)
=

1

2
∆(P, Q)

• If f(t) = (t− 1) ln t, for t > 0, then Relative J-divergence measure is given by

(1.6) Sf(P, Q) =
n
∑

i=1

(

pi − qi

2

)

ln

(

pi + qi

2qi

)

=
1

2
JR(P, Q)

• If f(t) = (2t − 1) log (2t − 1), for t > 1
2

then Kullback-Leibler divergence

measure is given by

(1.7) Sf(P, Q) =
n
∑

i=1

pi ln

(

pi

qi

)

= K(P, Q)
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• If f(t) = 1 −
√

t, for t > 0, then Hellinger discrimination is given by

(1.8) Sf (P, Q) =

n
∑

i=1

[

1 − B

(

P + Q

2
, Q

)]

= h

(

P + Q

2
, Q

)

• If f(t) = |t − 1|, for t > 0, then Variational distance is given by

(1.9) Sf (P, Q) =
1

2

n
∑

i=1

|pi − qi| =
1

2
V (P, Q)

The following theorem 1.1 of Ostrowskis integral inequalityis given in [2],[4]-[6] and

[7].Some applications to numerical integration, special means and short proof of in-

equality are defined in Dragomir [8].

Theorem 1.1. Assume that g : [a, b] → < is absolutely continuous with g ′ ∈ L∞[a, b]

that is, ||g′||∞ := ess supt∈[a,b] |g′(t)| < ∞ then

(1.10) |g(x) − 1

b − a

∫ b

a

g(t)dt| ≤





1

4
+

(

x − a+b
2

b − a

)2


 (b − a)||g′||∞

∀x ∈ [a, b]. The following important result is given by Diaz and Metcalf (see[[15],

p.61]).

Theorem 1.2. Suppose ak(6= 0) and bk(k = 1, 2...n) are real numbers satisfying

m ≤ bk

ak

≤ M. Then

(1.11)

n
∑

k=1

b2
k + mM

n
∑

k=1

a2
k ≤ (M + m)

n
∑

k=1

akbk

Equality holds if and only if for each k either bk = mak or bk = Mak. The following

extension of this will be used.

Proposition 1.1. Suppose the conditions of the Diaz-Metcalf result hold and tk > 0

for k = 1, 2...n. Then

(1.12)
n
∑

k=1

tkb
2
k + mM

n
∑

k=1

tka
2
k ≤ (M + m)

n
∑

k=1

tkakbk
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Equality holds if and only if for each k either bk = mak or bk = Mak. This follows

for k = 1, 2...n that

(
bk

ak

− m)(M − bk

ak

)tka
2
k ≥ 0

Then desired result follows on summation over k.

In Section 2. We provide, by the use of Ostrowskis integral inequality for absolutely

continuous mappings with essentially bounded of first derivative,an approximation for

the new f -divergence in terms of an integral mean.Here we use proposition 1.1 with

slight modification according as new f -divergence.Section 3 considers some particular

cases of Theorem 2.1 and section 4 considers some of the examples with the case when

each pair pi, qi is very close. Finally in Section 5, we deal with applications to mutual

information. This research work is similar to paper [6].

2. INFORMATION INEQUALITY ON NEW f-DIVERGENCE

In our main result, Theorem 2.1 below does not assume convexity.In this way we

assume that there exist real numbers r, R with 0 < r ≤ pi+qi

2qi
≤ R < ∞ for all

i ∈ (1, 2...n). We will establish in Theorem 2.1 below that if p and q are close in the

sense that R−r is small, then the integral mean 1
R−r

∫ R

r
f(t)dt approximates the new

f -divergence to first order.

Theorem 2.1. Assume that f : [r, R] → < is absolutely continuous on [r, R] and

f ′ ∈ L∞[r, R] Then

(2.1) |Sf(P, Q) − 1

R − r

∫ R

r

f(t)dt|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(Q, P ) +

(

R + r

2
− 1

)2
]]

(R − r)||f ′||∞ ≤ 1

2
(R − r)||f ′||∞
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Proof: By Ostrowskis integral inequality, we have

|f
(

pi + qi

2qi

)

− 1

R − r

∫ R

r

f(t)dt| ≤





1

4
+

(

pi+qi

2qi
− R+r

2

(R − r)

)2


 (R − r)||f ′||∞

for each i ∈ 1, 2...n. We may multiply by qi sum the resultant inequalities and use

the generalized triangle inequality to obtain

|Sf(P, Q) − 1

R − r

∫ R

r

f(t)dt|

≤
n
∑

i=1

qi|f
(

pi + qi

2qi

)

− 1

R − r

∫ R

r

f(t)dt|

≤
[

1

4
+

1

(R − r)2

n
∑

i=1

qi

(

pi + qi

2qi

− R + r

2

)2
]

(R − r)||f ′||∞

Since

n
∑

i=1

qi

(

pi + qi

2qi

− R + r

2

)2

=

n
∑

i=1

qi

4

[

(pi + qi)
2

q2
i

− 2(pi + qi)(R + r)

qi

+ (R + r)2

]

=
1

4

n
∑

i=1

[

(pi + qi)
2

qi

− 2(pi + qi)(R + r) + (R + r)2

]

=
1

4

n
∑

i=1

[

(pi + qi)
2

qi

+ (R + r)(R + r − 2)(pi + qi))

]

=
1

4

n
∑

i=1

[(

p2
i

qi

+ 3

)

+ (R + r)(R + r − 4)

]
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=
1

4

n
∑

i=1

[(

p2
i

qi

+ 3

)

+ (R + r)2 − 4(R + r)

]

=
1

4

n
∑

i=1

[(

p2
i

qi

+ 3 − 4

)

+ (R + r − 2)2

]

=
1

4

n
∑

i=1

[(

p2
i

qi

− 1

)

+ (R + r − 2)2

]

=

[

1

4

n
∑

i=1

χ2(P, Q) +
(R + r − 2)2

2

]

=
1

4

n
∑

i=1

χ2(P, Q) +

(

R + r

2
− 1

)2

,

this yields the first inequality in (2.1).

For the second, set bk =
√

pk+qk

2qk

and ak =
√

2qk

pk+qk

, (k = 1, 2...n). Then

bk

ak

= pk+qk

2qk

∈ [r, R], (k = 1, 2...n). On applying Proposition 1.1 for

tk = (pk + qk), (k = 1, 2...n),

we get

(

n
∑

k=1

(pk + qk)

(√

pk + qk

2qk

)2

+ rR

n
∑

k=1

(pk + qk)

(
√

2qk

pk + qk

)2
)

≤ (r + R)
n
∑

k=1

(pk + qk)

√

pk + qk

2qk

√

2qk

pk + qk

,

or equivalently

n
∑

k=1

(pk + qk)
2

2qk

+ 2rR ≤ 2(R + r),

n
∑

k=1

(pk + qk)
2

qk

≤ 4((R + r) − rR),

n
∑

k=1

p2
k

qk

+ 3 ≤ 4((R + r) − rR),

n
∑

k=1

p2
k

qk

− 1 ≤ 4((R + r) − rR − 1),

χ2(P, Q) ≤ 4((R + r) − rR − 1),
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Thus

1

4
χ2(P, Q) ≤ R + r − rR − 1 = (1 − r)(R − 1)

and so

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

1

4
((R + r) − 2)2

]

≤ 1

2

and the theorem is proved.

Corollary 2.1. Let f satisfy the conditions of Theorem 2.1. If ε > 0 and

0 ≤ R − r ≤ 2ε/||f ′||∞, then

|Sf(P, Q) − 1

R − r

∫ R

r

f(t)dt| ≤ ε.

For the approximation aspect Theorem 2.1 can be reformulated.

Corollary 2.2. Let f : [0, 2] → < be absolutely continuous with f ′ ∈ L∞[0, 2]. If

η ∈ (0, 1) and pi(η), qi(η) are such that

|pi(η) + qi(η)

2qi(η)
− 1| ≤ η

for all i ∈ {1, 2...n}, then

Sf (P (η), Q(η)) =
1

2η

∫ 1+η

1−η

f(t)dt + Rf(P, Q, η)

and the remainder Rf(P, Q, η) satisfies

Rf (P, Q, η) ≤ η

2

[

1 +
1

η2

1

4
χ2(P (η), Q(η))

]

||f ′||∞ ≤ η||f ′||∞.

This follows by Theorem 2.1 with the options R = 1 + η and r = 1 − η(η ∈ (0, 1)).
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3. SOME PARTICULAR CASES

In some applications, we can use of definition 1.1 for functions f : [0,∞] → <
which are continuous but not necessarily convex.

3.1 For Relative Arithmetic Geometric divergence, we take f(t) = t ln t. With

this option we have ||f ′||∞ = ln(eR) and

∫ R

r

f(t)dt =
1

4

[

R2 ln R2 − r2 ln r2 − (R2 − r2)
]

=
R2 − r2

4
ln





(

(R2)R2

(r2)r2

)
1

R2
−r2

.
1

e





=
R2 − r2

4
I
[

R2, r2
]

,

where the identic mean I(a, b) for positive argument is given by

I(a, b) :=











a if b=a

1
e

(

bb

aa

)
1

b−a

if b6=a

The conclusion of Theorem 2.1 reads

(3.1) |G(Q, P ) − R + r

4
ln
[

I(R2, r2)
]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r) ln(eR) ≤ 1

2
(R − r) ln(eR)

3.2 If we take the convex map f : [0,∞] → < given by f(t) = − ln t, then Relative

Jensen-Shannon divergence measure we have

Sf (P, Q) =
n
∑

i=1

qi ln

(

2qi

pi + qi

)

= F (Q, P )

With this option ||f ′||∞ = 1
r

and the identic mean reappears through

1

R − r

∫ R

r

f(t)dt| = ln [I(R, r)]
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Theorem 2.1 provides

(3.2) |F (Q, P ) − ln

[

1

I(r, R)

]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(

R

r
− 1

)

≤ 1

2

(

R

r
− 1

)

3.3 For Variational distance, f(t) = |t−1|, this is absolutely continuous on [r, R].

We have ||f ′||∞ = supt∈[r,R]|f ′(t)| = 1 Further,

1

R − r

∫ R

r

f(t)dt =
1

R − r

[
∫ 1

r

(1 − u)du +

∫ R

1

(u − 1)du

]

=
1

R − r

[

(r − 1)2

2
+

(R − 1)2

2

]

=
1

R − r

[

(R − r)2

4
+

(

r + R

2
− 1

)2
]

Theorem 2.1 provides

(3.3) |1
2
V (P, Q) − 1

R − r

[

(R − r)2

4
+

(

r + R

2
− 1

)2
]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r) ≤ 1

2
(R − r).

3.4 For Relative J-divergence, f(t) = (t − 1) ln t, this is absolutely continuous on

[r,R]. We have

||f ′||∞ = supu∈[r,R]|f ′(t)| = ln(eR) − 1

R

Further,

∫ R

r

f(t)dt =

[

ln R

(

R2

2
− R

)

− R2

4
+ R

]

−
[

ln r

(

r2

2
− r

)

− r2

4
+ r

]

=

[

ln
R( R

2

2
−R)

r( r2

2
−r)

− 1

4
(R2 − r2) + (R − r)

]

.
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Theorem 2.1 provides

(3.4) |1
2
JR(P, Q) −

[

1

R − r
ln

R( R
2

2
−R)

r( r2

2
−r)

− 1

4
(R + r) + 1

]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r)

(

ln(eR) − 1

R

)

≤ 1

2
(R − r)

(

ln(eR) − 1

R

)

.

3.5 For Triangular discrimination, f(t) = (t−1)2

t
, this is absolutely continuous on

[r,R]. We have

||f ′||∞ = supt∈[r,R]|f ′(t)| = 1 − 1

R2

Further,
∫ R

r

f(t)dt =

[(

R2

2
− 2R + ln R

)

−
(

r2

2
− 2r + ln r

)]

=

[

ln
R

r
+

1

2
(R2 − r2) − 2(R − r)

]

.

Theorem 2.1 provides

(3.5) |1
2
∆(P, Q) −

[

1

R − r
ln

R

r
+

1

2
(R + r) − 2

]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R−r)

(

1 − 1

R2

)

≤ 1

2
(R−r)

(

1 − 1

R2

)

3.6 Triangular discrimination, which arises with f(t) = (t−1)2

(t+1)
, We have

||f ′||∞ = supu∈[r,R]|f ′(u)| = |f ′(R)| =
(R − 1)(R + 1)

(R + 1)2

Also
1

R − r

∫ R

r

f(u)du =
R + r

2
+ ln

(

R + 1

r + 1

)( 4
R−r

)

− 3

Theorem 2.1 provides

(3.6) |∆
(

P + Q

2
, Q

)

−
[

R + r

2
+ ln

(

R + 1

r + 1

)( 4
R−r

)

− 3

]

|
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≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r)(R − 1)(R + 3)

(R + 1)2

≤ 1

2

(R − r)(R − 1)(R + 3)

(R + 1)2
.

3.7 For Kullback-Leibler divergence measures,f(t) = (2t−1) ln(2t−1), t > 1
2
, this

is absolutely continuous on [r,R]. We have

||f ′||∞ = supt∈[r,R]|f ′(t)| = ln(e(2R − 1))2

Further,

∫ R

r

f(t)dt =

[

(2R − 1)2

8
(ln(2R − 1)2 − 1) − (2r − 1)2

8
(ln(2r − 1)2 − 1)

]

=

[

ln
(2R − 1)(

(2R−1)2

4
)

(2r − 1)( (2r−1)2

4
)
− 1

2
(R2 − r2) +

1

2
(R − r)

]

.

Theorem 2.1 provides

(3.7) |K(P, Q) −
[

1

R − r
ln

(2R − 1)( (2R−1)2

4
)

(2r − 1)( (2r−1)2

4
)
− 1

2
(R + r) +

1

2

]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r) ln(e(2R − 1))2

≤ 1

2
(R − r) ln(e(2R − 1))2.

3.8 For Hellinger discrimination, f(t) = (1−
√

t), t > 0, this is absolutely contin-

uous on [r,R]. We have

||f ′||∞ = supt∈[r,R]|f ′(t)| =
1

2
√

r

Further,

∫ R

r

f(t)dt =

[(

R − 2

3
R

3
2

)

−
(

r − 2

3
r

3
2

)]

=

[

(R − r) − 2

3
(R

√
R − r

√
r)

]

.
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Theorem 2.1 provides

(3.8) |h
(

P + Q

2
, Q

)

−
[

1 − 1

R − r

2

3
(R

√
R − r

√
r)

]

|

≤
[

1

4
+

1

(R − r)2

[

1

4
χ2(P, Q) +

(

R + r

2
− 1

)2
]]

(R − r)
1

2
√

r
≤ 1

2
(R − r)

1

2
√

r
.

4. Numerical Illustration

In practically, where pi and qi are close, so that we have pi = pi(ε), qi = qi(ε) and

(4.1) |pi(ε) + qi(ε)

2qi(ε)
− 1| ≤ ε, ε ∈ (0, 1)

for all i ∈ (1, 2...n), With R = 1 + ε and r = 1 − ε, we obtain from 3.1 that

|G(q(ε), p(ε)) − 1

2
ln
[

I
(

(1 + ε)2, (1 − ε)2
)]

|

≤ ε

2

[

1 +
1

ε2

1

4
χ2(p(ε), q(ε))

]

ln [e(1 + ε)] ≤ ε ln [e(1 + ε)]

Therefore if p(ε), q(ε) are in the sense of 4.1, we can approximate the Relative Arith-

metic Geometric divergence G(q(ε), p(ε)) by 1
2
ln [I ((1 + ε)2, (1 − ε)2)] and the error

of the approximation is less than

E(ε) := ε ln [e(1 + ε)] .

From 3.2, we derive

|F (q(ε), p(ε)) − ln

[

1

I(1 − ε, 1 + ε)

]

|

≤ 1

2

ε

1 − ε

[

1 +
1

ε2

1

4
χ2(p(ε), q(ε))

]

≤ ε

1 − ε
,

for ε ∈ (0, 1). Therefore for p(ε), q(ε) satisfying 4.1, we can approximate the Relative

Jensen-Shannon divergence measure F (q(ε), p(ε)) by ln
[

1
I(1−ε,1+ε)

]

and the error of

the approximation is less than ε
1−ε

for ε ∈ (0, 1)
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5. APPLICATION TO MUTUAL INFORMATION

Mutual information [18] is a measure of the amount of information that one random

variable provides about another. The reduction of uncertainty about one variable due

to knowledge of the other is considered.

It is defined for two discrete- valued random variables X and Y with a joint proba-

bility mass function t(x, y) and marginal probability mass functions p(x)(x ∈ X) and

q(y)(y ∈ Y ). It is the relative entropy between the joint distribution and the product

distribution, that is,

I(X; Y ) =
∑

x∈X

∑

y∈Y

t(x, y) ln

[

t(x, y)

p(x)q(x)

]

= K(t(x, y), p(x)q(x)),

Whereas before K(., .) denotes Kullback-Leibler distance. We assume that

(5.1) s ≤ t(x, y)

p(x)q(x)
≤ S

for all (x, y) ∈ (XxY ). Much as with r, R we have s ≤ 1 ≤ S We also may consider

mutual information in a chi-squared sense, that is,

Iχ2(X, Y ) :=
∑

x∈X

∑

y∈Y

t2(x, y)

p(x)q(x)
− 1.

Inequality 3.7 yields the following proposition.

Proposition 5.1. If t, p and q satisfy 5.1, then

|I(X, Y ) −
[

1

S − s
ln

(

(2S − 1)
(2S−1)2

4

(2s − 1)
(2s−1)2

4

)

− 1

2
(S + s) +

1

2

]

|

≤
[

1

4
+

1

(S − s)2
{1

4
Iχ2(X, Y ) +

(

S + s

2
− 1

)2

}
]

(S − s) ln(e(2S − 1))2

≤ 1

2
(S − s) ln(e(2S − 1))2
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