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DUAL ANNIHILATORS IN BOUNDED BCK-ALGEBRAS

ALI BANDERI (1) AND HABIB HARIZAVI (2)

Abstract. In this paper, for any two subsets A and C of a bounded BCK-algebra

X , the concept of dual annihilator of A with respect to C, denoted by (C : A)d, is

introduced and some related properties are investigated. It is proved that if A is a

dual ideal and C a normal ideal of an involutory BCK-algebra X , then (C : A)d is

the relative pseudocomplement of A with respect to NC. Moreover, applying the

concept of dual annihilator, the involutory dual ideal with respect to an ideal is

defined, and it is shown that the set of all involutory dual ideals with respect to a

normal ideal forms a distributive lattice.

1. Introduction

The notion of BCK-algebras was introduced by Y. Imai and K. Iséki [7] in 1966

as a generalization of set-theoretic difference and propositional calculi. In the same

year, K. Iséki introduced the notion of BCI-algebras which is a generalization of

BCK-algebras [8]. These algebras are two important classes of logical algebras. The

concept of an ideal in a BCK-algebra (and BCI-algebra) was first introduced by K.

Iséki and S. Tanaka [9] in 1976 (and by K. Iséki [10] in 1980.) The notion of dual ideals

in BCK-algebras was introduced by E.Y. Deeba [5] in 1977. In 1980, E.Y. Deeba

[6] introduced the notion of filters and in the setting of bounded implicative BCK-

algebra constructed quotient algebra via a filter. But some facts show that the notions
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of dual ideals and filters defined by E.Y. Deeba are not dual to Iséki’s ideals, hence J.

Meng [13] introduced the notion of dual ideals for bounded BCK-algebras in 1986.

In 1991, M. Aslam and A.B. Thaheem [2] introduced the concepts of annihilators

and involutory ideals in commutative BCK-algebras and studied their properties.

Y.B. Jun, et al. [11] generalized this concept to BCI-algebras and obtained some

related results in 1996. M. Kondo [12] showed that the set of involutory ideals in

BCK-algebra forms a boolean algebra in 1998. H.A.S. Abujabal, et al. introduced

the concepts of generalized annihilators in commutative BCK- algebras and studied

their properties [1]. In this paper, for any two subsets A and C of a bounded BCK-

algebra X, we introduce the concept of dual annihilator of A with respect to C

and investigate some related properties. Using the notation (C : A)d for the dual

annihilator of A with respect to C, we prove that if A is a dual ideal and C a normal

ideal of a BCK-algebra then (C : A)d is the relative pseudocomplement of A with

respect to NC = {1 ∗ c | c ∈ C}. Moreover, we investigate the relationship between

f((C : A)d) and (f(C) : f(A))d for a BCK-homomorphism f . Finally, applying the

concept of dual annihilator, we define the involutory dual ideals of a BCK-algebra

and prove that the set of all involutory dual ideals with respect to a normal ideal

forms a distributive lattice.

2. preliminaries

In this section, we review some definitions and results, which will be used in the

remaining parts of this paper. The reader is referred to [14, 15] for more details.

Definition 2.1. By a BCK-algebra we mean an algebra (X, ∗, 0) of type (2, 0) sat-

isfying the following axioms:

BCK-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

BCK-2: (x ∗ (x ∗ y)) ∗ y = 0,

BCK-3: x ∗ x = 0,
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BCK-4: x ∗ y = 0 and y ∗ x = 0 imply x = y,

BCK-5: 0 ∗ x = 0,

for all x, y, z ∈ X. An algebra (X, ∗, 0) of type (2, 0) is said to be a BCI-algebra if it

satisfies the four axioms (BCK-1)-(BCK-4).

We call the element 0 of X the zero element of X. For brevity, we often write X

instead of (X, ∗, 0) for a BCK-algebra (and BCI-algebra). In any BCK-algebra X

(and BCI-algebra), one can define a partial order ≤ by putting x ≤ y if and only if

x ∗ y = 0. A non-empty subset A of X is called a subalgebra of X if x ∗ y ∈ A for all

x, y ∈ A.

In any BCK-algebra X, the following hold: for any x, y, z ∈ X,

(a1) x ∗ 0 = x,

(a2) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(a3) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,

(a4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(a5) x ∗ (x ∗ (x ∗ y)) = x ∗ y,

(a6) x ∗ (x ∗ y) ≤ x, y.

A BCK-algebra X is called commutative if it satisfies the condition: x ∗ (x ∗ y) =

y ∗ (y ∗ x) for all x ∈ X. In this case, x ∗ (x ∗ y) (and y ∗ (y ∗ x)) is the greatest lower

bound of x and y with respect to BCK-order ≤, and we will denote it by x ∧ y.

A subset A of a BCK-algebra X is called an ideal of X if it satisfies (1) 0 ∈ A;

(2) x, y ∗ x ∈ A imply y ∈ A for all x, y ∈ X.

An ideal A of X is called a normal ideal if x ∗ (x ∗ y) ∈ A implies y ∗ (y ∗ x) ∈ A

for all x, y ∈ X. If there is an element 1 in X satisfying x ≤ 1 for all x ∈ X, then

the element 1 is said to be the unit of X. A BCK-algebra with unit is said to be

bounded. In a bounded BCK-algebra 1 ∗ x is denoted by Nx.

For a bounded BCK-algebra X, if an element x in X satisfies NNx = x, then

x is called an involution. If any element in X is an involution, then X is called an
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involutory BCK-algebra. A non-empty subset D of a bounded BCK-algebra X is

said to be a dual ideal of X if (1) 1 ∈ D; (2) N(Nx ∗ Ny) ∈ D and y ∈ D imply

x ∈ D for any x, y ∈ X.

A mapping f : (X, ∗, 0) → (X ′, ∗′, 0′) of a BCK-algebra X into a BCK-algebra X ′

is called a BCK-homomorphism if f(x ∗ y) = f(x) ∗′ f(y) for all x, y ∈ X. Clearly,

f(0) = 0′.

Every ideal A of X determines a congruence ∼ on X in the sense that x ∼ y if and

only if x ∗ y and y ∗ x ∈ A for any x, y ∈ X. We will denote by Ax the equivalence

class of an element x ∈ X; and by X/A the quotient algebra X/ ∼, which is still a

BCK-algebra.

If X is a BCK-algebra and A a non-empty subset of X, then the set A∗ := {x ∈

X|(∀a ∈ A) a ∗ (a ∗ x) = 0} is called the annihilator of A (see [12]).

If X is a commutative BCK-algebra and C an ideal of X, then to any subset A of

X, the set (C : A) := {x ∈ X | x ∧ A ⊆ C}, where x ∧ A = {x ∧ y | y ∈ A} is called

the generalized annihilator of A (relative to C) (see [1]).

In ([3]), A. Banderi, et al. applied the generalized annihilator to BCI-algebras,

and for any two subsets A, C of a BCI-algebra X defined (C : A) by the set {x ∈

X | a ∗ (a ∗ x) ∈ C for all a ∈ A} , which is called the relative annihilator of A with

respect to C.

In a Lattice L with bottom element 0, for an element x ∈ L, the greatest element

x∗ satisfieng the condition x ∧ x∗ = 0, if it exists, is said to be pseudocomplement of

x. Let (L;∧,∨) be a lattice. Then for given x, y ∈ L, the relative pseudocomplement

of x with respect to y, if it exists, is the (unique) element (y : x) ∈ L such that: (i)

x ∧ (y : x) ≤ y; (ii) for every z ∈ L if x ∧ z ≤ y then z ≤ (y : x) ([4]). It is easy to

see that x∗ is the relative pseudocomplement of x with respect to 0.

The mapping f is said to be a closure operator on a partially ordered set (S,≤) if

it satisfies the following for any a ∈ S:

(i) a ≤ f(a); (ii) f 2(a) = f(a); (iii) a ≤ b implies f(a) ≤ f(b) ([4]).
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3. Dual Annihilators in Bounded BCK-algebras

In this section, we define the dual annihilator in bounded BCK-algebras and in-

vestigate some related properties.

Definition 3.1. Let X be a bounded BCK-algebra and A, C non-empty subsets of

X. Then, the set

(C : A)d = {x ∈ X | Na ∗ (Na ∗ Nx) ∈ C for all a ∈ A}

is called the dual annihilator of A with respect to C.

Lemma 3.1. Let X be a bounded BCK-algebra, C an ideal of X and A ⊆ X. Then

NC ⊆ (C : A)d, where NC = {1 ∗ c | c ∈ C}.

Proof. Let x ∈ NC. Then x = Nc for some c ∈ C, and so Nx = NNc. Thus it follows

from NNc ≤ c that Nx ∈ C, and hence, by using (a6), we get Na ∗ (Na ∗ Nx) ≤

Nx ∈ C for all a ∈ A. It follows that Na ∗ (Na ∗ Nx) ∈ C for all a ∈ A, and

consequently x ∈ (C : A)d. Therefore NC ⊆ (C : A)d. �

In the following theorem, we give a characterization of (C : A)d.

Theorem 3.1. Let X be an involutory BCK-algebra, C an ideal of X and A ⊆ X.

Then the following hold:

(i) (C : A)d ∩ A = NC ∩ A;

(ii) if in addition 0 ∈ A, then (C : A)d = NC.

Proof. (i) By Lemma 3.1, we only need to show the inclusion (C : A)d∩A ⊆ NC∩A.

For this, assume that x ∈ (C : A)d ∩ A. Then from x ∈ (C : A)d, we get

(3.1) Na ∗ (Na ∗ Nx) ∈ C for any a ∈ A.

Putting a = x in (3.1), we obtain Nx ∗ (Nx ∗ Nx) ∈ C, that is, Nx ∈ C and

so NNx ∈ NC. Thus by the involutory property, we get x ∈ NC. Therefore

(C : A)d ∩ A ⊆ NC, and so the result holds.
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(ii) By Lemma 3.1, we only need to show that (C : A)d ⊆ NC. Let x ∈ (C : A)d.

Then we have

(3.2) Na ∗ (Na ∗ Nx) ∈ C for any a ∈ A.

Since 0 ∈ A, putting a = 0 in (3.2), we get NNNx ∈ C, and so by the involutory

property, we obtain x ∈ NC. Therefore (C : A)d ⊆ NC. �

In the following example, we show that both the involutory property of X and

0 ∈ A in Theorem 3.1 are necessary.

Example 3.1. [15] Let X = {0, 1, 2, 3, 4} and Y = {0, a, b} be two bounded BCK-

algebras with the following Cayley tables:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 0 0

3 3 2 1 0 0

4 4 2 1 1 0

∗ 0 a b

0 0 0 0

a a 0 0

b b a 0

Then

(i) X is not involutory because NN3 = 2. Taking C := {0, 1} and A := {3}, it

is routine to check that NC = {2, 4} and (C : A)d = X. Therefore (C : A)d ∩ A 6=

NC ∩ A;

(ii) it is easy to see that Y is involutory. Taking C := {0} and A := {b}, it can be

checked that (C : A)d = Y and NC = {b}. Therefore (C : A)d 6= NC.

The following lemma is an immediate consequence from Definition 3.1.

Lemma 3.2. Let X be a bounded BCK-algebra. Then for any non-empty subsets

A, B, C, D of X, the following hold:

(i) if A ⊆ B, then (C : B)d ⊆ (C : A)d;



DUAL ANNIHILATORS IN BOUNDED BCK-ALGEBRAS 331

(ii) if C ⊆ D, then (C : A)d ⊆ (D : A)d.

Proposition 3.1. Let X be a bounded BCK-algebra, {Ci | i ∈ I} a family of subsets

of X and A ⊆ X. Then the following hold:

(i)
⋂

i∈I

(Ci : A)d = (
⋂

i∈I

Ci : A)d;

(ii)
⋃

i∈I

(Ci : A)d ⊆ (
⋃

i∈I

Ci : A)d.

Proof. (i) By Lemma 3.2(ii), from
⋂

i∈I

Ci ⊆ Ci, we get (
⋂

i∈I

Ci : A)d ⊆ (Ci : A)d

for any i ∈ I. It follows that (
⋂

i∈I

Ci : A)d ⊆
⋂

i∈I

(Ci : A)d. To prove the reverse

inclusion, assume that x ∈
⋂

i∈I

(Ci : A)d. Thus for any i ∈ I and a ∈ A, we have

Na∗ (Na∗Nx) ∈ Ci and consequently Na∗ (Na∗Nx) ∈
⋂

i∈I

Ci for any a ∈ A. Hence

x ∈ (
⋂

i∈I

Ci : A)d and so
⋂

i∈I

(Ci : A)d ⊆ (
⋂

i∈I

Ci : A)d. This completes the proof.

(ii) By the similar argument of (i), we can prove that
⋃

i∈I

(Ci : A)d ⊆ (
⋃

i∈I

Ci :

A)d. �

The reverse inclusion in Proposition 3.1(ii) is not true in general as seen in the

following example.

Example 3.2. Let X = {0, 1, 2, 3, 4} be a bounded BCK-algebra as in Example 3.1.

Taking C0 := {0}, C1 := {1}, C2 := {2} and A := {1, 2}, it is routine to check

that (C0 : A)d = {4}, (C1 : A)d = (C2 : A)d = ∅ and (
2⋃

i=0

Ci : A)d = X. Therefore

(
2⋃

i=0

Ci : A)d 6⊆
2⋃

i=0

(Ci : A)d.

Proposition 3.2. Let X be a bounded BCK-algebra, {Ai | i ∈ I} a family of subsets

of X and C ⊆ X. Then the following hold:

(i)
⋂

i∈I

(C : Ai)
d = (C :

⋃

i∈I

Ai)
d;

(ii)
⋃

i∈I

(C : Ai)
d ⊆ (C :

⋂

i∈I

Ai)
d.

Proof. (i) Using Lemma 3.2(i), we get (C :
⋃

i∈I

Ai)
d ⊆

⋂

i∈I

(C : Ai)
d. To prove the

reverse inclusion, assume that x ∈
⋂

i∈I

(C : Ai)
d. Thus x ∈ (C : Ai)

d for all i ∈ I, and
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consequently Na ∗ (Na ∗ Nx) ∈ C for all a ∈ Ai. Hence Na ∗ (Na ∗ Nx) ∈ C for all

a ∈
⋃

i∈I

Ai, and so x ∈ (C :
⋃

i∈I

Ai)
d. Therefore

⋂

i∈I

(C : Ai)
d ⊆ (C :

⋃

i∈I

Ai)
d, and so the

result holds.

(ii) Using Lemma 3.2(i), the proof is straightforward. �

The reverse inclusion in Proposition 3.2(ii) is not true in general as seen in the

following example.

Example 3.3. Let X = {0, 1, 2, 3, 4} be a bounded BCK-algebra as in Example 3.1.

Taking A1 := {1, 4}, A2 := {3, 4} and C := {0, 4}, it is routine to check that (C :

A1)
d = {2, 3, 4}, (C : A2)

d = {4} and (C : A1 ∩ A2)
d = X. Therefore X = (C :

A1 ∩ A2)
d 6⊆ (C : A1)

d ∪ (C : A2)
d = {2, 3, 4}.

In the following, we establish an important property of (C : A)d.

Theorem 3.2. If X is an involutory BCK-algebra with unit 1, then for any ideal C

of X and A ⊆ X, (C : A)d is a dual ideal of X.

Proof. Since Na ∗ (Na ∗ N1) = 0 ∈ C for all a ∈ A, it follows that 1 ∈ (C : A)d.

Now assume that N(Ny ∗Nx) ∈ (C : A)d and x ∈ (C : A)d for some x, y ∈ X. Then

Na ∗ (Na ∗ NN(Ny ∗ Nx) ∈ C and Na ∗ (Na ∗ Nx) ∈ C for all a ∈ A and so by

involutory property, we get

(3.3) Na ∗ (Na ∗ (Ny ∗ Nx) ∈ C, for all a ∈ A.

Using axiom (BCI-1), we obtain

(3.4) (Na ∗ (Na ∗ Ny)) ∗ (Na ∗ (Na ∗ Nx)) ≤ (Na ∗ Nx) ∗ (Na ∗ Ny).
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Moreover, we have

((Na ∗ Nx) ∗ (Na ∗ Ny)) ∗ (Na ∗ (Na ∗ (Ny ∗ Nx)))

= ((Na ∗ (Na ∗ (Na ∗ (Ny ∗ Nx)))) ∗ (Na ∗ Ny)) ∗ Nx by (a2)

= ((Na ∗ (Ny ∗ Nx)) ∗ (Na ∗ Ny)) ∗ Nx by (a5)

≤ (Ny ∗ (Ny ∗ Nx)) ∗ Nx by (BCI − 1) and (a3)

= (Ny ∗ Nx) ∗ (Ny ∗ Nx) by (a2)

= 0 ∈ C by (BCI − 3)

Thus it follows that ((Na ∗ Nx) ∗ (Na ∗ Ny)) ∗ (Na ∗ (Na ∗ (Ny ∗ Nx))) ∈ C and

so by (3.3) and (3.4), we get (Na ∗ (Na ∗ Ny)) ∗ (Na ∗ (Na ∗ Nx)) ∈ C. Hence from

Na ∗ (Na ∗ Nx) ∈ C, we conclude Na ∗ (Na ∗ Ny) ∈ C for any a ∈ A, and so

y ∈ (C : A)d. Therefore (C : A)d is a dual ideal of X. �

In the following, we introduce the relation between (C : A) and (C : A)d.

Theorem 3.3. Let X be an involutory BCK-algebra. Then for any ideal C of X

and A ⊆ X,

N(C : A) = (C : NA)d.

Proof. Let z ∈ N(C : A). Then z = Nx for some x ∈ (C : A). It follows that

(3.5) a ∗ (a ∗ x) ∈ C for any a ∈ A.

Now, let h := Na ∈ NA be an arbitrary element of NA. Then, by using the

involutory property, we get Nh = a, and so by (3.5), we conclude Nh∗ (Nh∗x) ∈ C.

But x = Nz. Thus Nh ∗ (Nh ∗ Nz) ∈ C for every h ∈ NA. This implies that

z ∈ (C : NA)d and therefore N(C : A) ⊆ (C : NA)d. To prove the reverse inclusion,

let z ∈ (C : NA)d. Then Nh ∗ (Nh ∗Nz) ∈ C for any h ∈ NA. Thus, since Nh = a,

we get a ∗ (a ∗ Nz) ∈ C for every a ∈ A and so Nz ∈ (C : A). This implies that

z ∈ N(C : A). Therefore (C : NA)d ⊆ N(C : A), and so the proof is completed. �
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In the following, we determine the (C : A)d for some subsets A of X.

Lemma 3.3. Let X be a bounded BCK-algebra with unit 1 and C an ideal of X.

Then the following hold:

(i) (C : {1})d = X;

(ii) if in addition X is involutory, then (C : NC)d = X.

Proof. (i) Since N1∗(N1∗Nx) = 0 ∈ C for any x ∈ X, it follows that X ⊆ (C : {1})d,

and consequently (C : {1})d = X.

(ii) Since X is involutory, it follows from Theorem 3.3 that (C : NC)d = N(C : C).

But (C : C) = X. Therefore (C : NC)d = X. �

In the following, we will investigate the (C : A)d in which C is a normal ideal.

Proposition 3.3. Let X be an involutory BCK-algebra, C an ideal and A ⊆ X.

Then the following hold:

(i) if (C : A)d = X, then A ⊆ NC;

(ii) if in addition C is normal, then (C : A)d = X if and only if A ⊆ NC.

Proof. (i) Let (C : A)d = X and x ∈ A. Then x ∈ (C : A)d and so Na∗(Na∗Nx) ∈ C

for every a ∈ A. Thus from x ∈ A, we get Nx ∗ (Nx ∗ Nx) ∈ C, that is, Nx ∈ C. It

follows that NNx ∈ NC. But by the involutory property of X, we have NNx = x.

Therefore x ∈ NC and so A ⊆ NC.

(ii) By (i), we only need to prove the sufficiency. Let A ⊆ NC and let x be an

arbitrary element of X. Using axiom BCI-2, we have

(3.6) Nx ∗ (Nx ∗ Na) ≤ Na ∈ NA for any a ∈ A.

Now, for any a ∈ A, by hypotheses, there exists c ∈ C such that a = Nc. Thus

by (3.6), we get Nx ∗ (Nx ∗ Na) ≤ NNc. But NNc ≤ c for any c ∈ C. Hence

Nx ∗ (Nx ∗ Na) ∈ C and so by the normality of C, we conclude Na ∗ (Na ∗ Nx) ∈
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C, which implies x ∈ (C : A)d. Therefore (C : A)d = X, and so the proof is

completed. �

The following theorem provides a proof for the fact that (C : A)d is the pseudo-

complement of dual ideal A with respect to NC.

Theorem 3.4. Let X be an involutory BCK-algebra. Then for any normal ideal C

and two dual ideals A, B of X,

A ∩ B ⊆ NC ⇔ A ⊆ (C : B)d.(3.7)

Proof. (⇒) Let A ∩ B ⊆ NC and a ∈ A. For any b ∈ B, using (a6), we have

Na ∗ (Na ∗ Nb) ≤ Na. It follows that NNa ≤ N(Na ∗ (Na ∗ Nb)). But by the

involutory property of X, we have NNa = a. Thus a ≤ N(Na ∗ (Na ∗ Nb)) and so,

since A is a dual ideal and a ∈ A, we conclude N(Na∗(Na∗Nb)) ∈ A. By the similar

argument, from Na ∗ (Na ∗ Nb) ≤ N(b), we can show that N(Na ∗ (Na ∗ Nb)) ∈ B.

Therefore N(Na∗(Na∗Nb)) ∈ A∩B, hence by hypothesis, we get N(Na∗(Na∗Nb)) ∈

NC. Then, using the involutory property of X, we obtain Na ∗ (Na ∗ Nb) ∈ C.

Thus, by the normality of C, we get Nb∗ (Nb∗Na) ∈ C, which implies a ∈ (C : B)d.

Therefore A ⊆ (C : B)d.

(⇐) Let A ⊆ (C : B)d and let x be an arbitrary element of A ∩ B. Then

x ∈ (C : B)d, and hence we have

(3.8) Nb ∗ (Nb ∗ Nx) ∈ C for every b ∈ B.

Since x ∈ B, putting b = x in (3.8), we get Nx ∗ (Nx ∗ Nx) ∈ C, that is, Nx ∈ C.

Thus, by the involutoty property of X, we conclude x ∈ NC. Therefore A ∩ B ⊆

NC. �

Corollary 3.1. Let X be an involutory BCK-algebra. Then for any normal ideal C

and dual ideal A of X, (C : A)d is the relative pseudocomplement of A with respect

to NC.
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Proof. By Theorem 3.1(i), (C : A)d ∩ A ⊆ NC. Now assume that D is a dual ideal

of X such that D∩A ⊆ NC. Then by Theorem 3.4, we get D ⊆ (C : A)d. Therefore

(C : A)d is the relative pseudocomplement of A with respect to NC. �

In the following, we establish some other properties of dual annihilators.

Theorem 3.5. Let X be a bounded BCK-algebra, C a normal ideal of X and A ⊆ X.

Then the following hold:

(i) A ⊆ (C : (C : A)d)d;

(ii) (C : A)d = (C : (C : (C : A)d)d)d.

Proof. (i) Clearly, if a ∈ A, then Na ∗ (Na ∗ Nx) ∈ C for all x ∈ (C : A)d. Thus,

since C is a normal ideal, we conclude Nx ∗ (Nx ∗ Na) ∈ C, which implies a ∈ (C :

(C : A)d)d. Therefore A ⊆ (C : (C : A)d)d.

(ii) By (i), we have A ⊆ (C : (C : A)d)d and so by Lemma 3.2(i), we get (C : (C :

(C : A)d)d)d ⊆ (C : A)d. On the other hand, using (i), we obtain (C : A)d ⊆ (C :

(C : (C : A)d)d)d, and so the proof is completed. �

The reverse inclusion of Proposition 3.5(i) is not true in general as seen in the

following example.

Example 3.4. [15] Let (X = {0, 1, 2, 3}, ∗, 0) be a BCK-algebra with the following

Cayley table:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 1 0

2 2 2 0 0

3 3 2 1 0

Taking C := {0, 1} and A = {2}, it is routine to check that C is a normal ideal and

(C : (C : A)d)d = {2, 3}. Therefore (C : (C : A)d)d * A.

In the following, we introduce other property of dual annihilators.
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Proposition 3.4. Let X be an involutory BCK-algebra. Then for any two subsets

A and B and an ideal C of X, ((C : A)d : B)d ⊆ (C : (A ∩ B))d.

Proof. Let x ∈ ((C : A)d : B)d. Then Nb ∗ (Nb ∗Nx) ∈ (C : A)d for every b ∈ B, and

hence Na ∗ (Na ∗ (Nb ∗ (Nb ∗ Nx))) ∈ C for every a ∈ A and b ∈ B. Consequently,

it follows that Nt ∗ (Nt ∗ (Nt ∗ (Nt ∗Nx))) ∈ C for every t ∈ A∩B, and so by (a5),

we get Nt ∗ (Nt ∗Nx) ∈ C for every t ∈ A∩B. This implies x ∈ (C : (A∩B))d, and

therefore the proof is completed. �

In the following, we investigate the relationship between f(C : A)d and (f(C) :

f(A))d for a BCK-homomorphism f .

Theorem 3.6. Let f : X −→ Y be a BCK-epimomorphism of bounded BCK-

algebras and A, C ⊆ X. Then the following hold:

(i) f((C : A)d) ⊆ (f(C) : f(A))d;

(ii) if f is a BCK-isomorphism, then f((C : A)d) = (f(C) : f(A))d.

Proof. (i) Let y ∈ f((C : A)d), then y = f(x) for some x ∈ (C : A)d. It follows that

Na ∗ (Na ∗ Nx) ∈ C for all a ∈ A, and so f(Na ∗ (Na ∗ Nx)) ∈ f(C). Therefore

(3.9) f(Na) ∗ (f(Na) ∗ f(Nx)) ∈ f(C) for all a ∈ A.

Clearly, since f is epimorphism, f(1) = 1, and so from (3.9), we conclude Nf(a) ∗

(Nf(a)∗Nf(x)) ∈ f(C). This implies y = f(x) ∈ (f(C) : f(A))d for all f(a) ∈ f(A).

Therefore f((C : A)d) ⊆ (f(C) : f(A))d.

(ii) By (i), we only need to show that (f(C) : f(A))d ⊆ f((C : A)d). Assume that

y ∈ (f(C) : f(A))d. Thus,

(3.10) Nf(a) ∗ (Nf(a) ∗ Ny) ∈ f(C) for all a ∈ A.

Since f is a BCK-isomorphism, we have f(1) = 1 and y = f(x) for some x ∈ X, and

so from (3.10), we get f(Na ∗ (Na ∗Nx)) ∈ f(C). It follows that Na ∗ (Na ∗Nx) ∈
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f−1(f(C)). By the injectivity of f , we have f−1(f(C)) = C. Thus Na ∗ (Na ∗Nx) ∈

C for all a ∈ A, and so x ∈ (C : A)d. Therefore y ∈ f((C : A)d), and hence

(f(C) : f(A))d ⊆ f((C : A)d). This completes the proof. �

In the following example, we show that both injective and surjective conditions of

f in Theorem 3.6(ii) are necessary.

Example 3.5. [15] (i) Let (X = {0, 1, 2, 3}, ∗, 0) and (Y = {0, a, b}, ∗
′

, 0) be two

bounded BCK-algebras with the following Cayley tables:

∗ 0 1 2 3

0 0 0 0 0

1 1 0 0 0

2 2 2 0 0

3 3 3 3 0

∗
′

0 a b

0 0 0 0

a a 0 0

b b b 0

Define f : X −→ Y by f(0) = f(1) = 0, f(2) = a and f(3) = b. It can be checked that

f is a BCK-epimorphism but not injective. Taking C := {1, 3} and A := {2}, it is

routine to check that f((C : A)d) = {0, a} and (f(C) : f(A))d = {0, a, b}. Therefore

f((C : A)d) 6= (f(C) : f(A))d.

(ii) [15] Let (X = {0, 1}, ∗, 0) and (Y = {0, a, b}, ∗
′

, 0) be two BCK-algebras with

the following Cayley tables:

∗ 0 1

0 0 0

1 1 0

∗
′

0 a b

0 0 0 0

a a 0 0

b b a 0

Define f : X −→ Y by f(0) = 0 and f(1) = b. It can be checked that f is a

BCK-monomorphism but not surjective. Taking C := {0} and A := {1}, it is
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routine to check that f((C : A)d) = {0, b} and (f(C) : f(A))d = {0, a, b}. Therefore

f((C : A)d) 6= (f(C) : f(A))d.

In the following, we establish a property of dual annihilators in quotient BCK-

algebras.

Proposition 3.5. Let X be a bounded BCK-algebra. Then for any ideal A and

subsets I, J of X containing A,

(
J

A
:

I

A
)d =

(J : I)d

A
.(3.11)

Proof. We have

Ax ∈ (
J

A
:

I

A
)d ⇔ NAy ∗ (NAy ∗ NAx) ∈

J

A
for all Ay ∈

I

A

⇔ Ny ∗ (Ny ∗ Nx) ∈ J for all y ∈ I

⇔ x ∈ (J : I)d

⇔ Ax ∈
(J : I)d

A
.

This completes the proof. �

For any X, we denote by I(X) the set of all dual ideals of X, and show that the

notion of dual annihilator induces a closure operator as follows.

Theorem 3.7. Let X be a bounded BCK-algebra and C a normal ideal of X. Then,

the mapping fC : I(X) → I(X) defined by

(3.12) fC(A) = (C : (C : A)d)d for any A ∈ I(X),

is a closure operator on (I(X),⊆).

Proof. By Lemma 3.2(i) and Theorem 3.5, the result holds. �

Now, we introduce a class of dual ideals that is connected to the notion of dual

annihilator, and show that it can be endowed with a lattice structure.
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Definition 3.2. Let X be a bounded BCK-algebra and C an ideal of X. Then a dual

ideal A of X is called an involutory dual ideal with respect to C if A = (C : (C : A)d)d.

We denote the set of all involutory dual ideals with respect to C by Sd
C(X).

Example 3.6. [15] Let (X = {0, 1, 2, 3, 4}, ∗, 0) be a BCK-algebra with the following

Cayley table:

∗ 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 0 0

2 2 2 0 0 0

3 3 3 2 0 0

4 4 3 2 1 0

Taking A := {3, 4} and C := {0, 1}, we can check that C is an ideal, A is a dual ideal

of X and (C : (C : A)d)d = {3, 4} and so A = (C : (C : A)d)d. Therefore A is an

involutory dual ideal with respect to C.

Lemma 3.4. Let X be an involutory BCK-algebra. Then for any ideal C of X, NC

is a dual ideal of X.

Proof. Since 0 ∈ C, N0 = 1 ∈ NC. Now let N(Nx ∗ Ny) ∈ NC and y ∈ NC. Then

by the involutory property of X, we get Nx ∗ Ny ∈ C and Ny ∈ C. Thus, since

C is an ideal, it follows that Nx ∈ C, and hence x ∈ NC. Therefore NC is a dual

ideal. �

In the following, we introduce some involutory dual ideals.

Proposition 3.6. Let X be an involutory BCK-algebra. Then the following hold:

(i) if C is an ideal of X, then NC ∈ Sd
C(X);

(ii) if C is a normal ideal of X, then (C : A)d ∈ Sd
C(X) for any A ⊆ X.

Proof. (i) By Lemma 3.4, NC is a dual ideal of X. Using Theorem 3.3, we get

(C : NC)d = N(C : C). Note that (C : C) = X, and so by the involutory property of
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X, we have N(C : C) = NX = X, and hence (C : NC)d = X. Now, using Theorem

3.1(ii), we conclude (C : (C : NC)d)d = (C : X)d = NC. Therefore NC ∈ Sd
C(X).

(ii) It is clear by Theorem 3.2 and Theorem 3.5. �

Note that if C is a normal ideal of a bounded BCK-algebra X, then by Theorem

3.5(i), X = (C : (C : X)d)d. Therefore Sd
C(X) 6= ∅.

In the following theorem, we show that if C is a normal ideal, then Sd
C(X) is a

distributive lattice.

Theorem 3.8. Let X be a bounded BCK-algebra and C a normal ideal of X. Then

in the poset (Sd
C(X),⊆), the following hold: for any A, B ∈ Sd

C(X),

(i) inf{A, B} = A ∩ B;

(ii) sup{A, B} = (C : (C : A ∪ B)d)d;

(iii) (Sd
C(X),∧,∨) is a distributive lattice, where A∧B = A∩B and A∨B = (C :

(C : A ∪ B)d)d.

Proof. (i) Let A, B ∈ Sd
C(X). Then by Theorem 3.5(i), we have A ∩ B ⊆ (C :

(C : (A ∩ B))d)d. Also by Proposition 3.2(i), it follows from A ∩ B ⊆ A, B that

(C : (C : A ∩ B)d)d ⊆ (C : (C : A)d)d ∩ (C : (C : B)d)d. But A, B ∈ Sd
C(X). Thus

(C : (C : A)d)d ∩ (C : (C : B)d)d = A ∩ B, and so A ∩ B = (C : (C : A ∩ B)d)d. It

follows that A ∩ B ∈ Sd
C(X). Moreover, clearly A ∩ B is the biggest involutory dual

ideal contained in A, B. This implies inf{A, B} = A ∩ B.

(ii) By Proposition 3.6(ii), (C : (C : A∪B)d)d ∈ Sd
C(X), and from Theorem 3.5(i),

we get A, B ⊆ A∪B ⊆ (C : (C : A∪B)d)d. Now assume that M ∈ Sd
C(X) such that

A, B ⊆ M . By Lemma 3.2(i), we obtain (C : M)d ⊆ (C : A)d ∩ (C : B)d. But by

Proposition 3.2(i), (C : A)d∩(C : B)d = (C : A∪B)d. Hence (C : M)d ⊆ (C : A∪B)d,

and consequently, by Proposition 3.2(i), we get (C : (C : (A ∪ B))d)d ⊆ (C : (C :

M)d)d = M . It follows that (C : (C : (A ∪ B))d)d is the least involutory dual ideal

containing A, B. Therefore, sup{A, B} = (C : (C : (A ∪ B))d)d.
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(iii) By (i) and (ii), (Sd
C(X),∧,∨) is a lattice. To prove the distributivity of Sd

C(X),

let A, B, D ∈ Sd
C(X). It is well known that in any lattice, (A ∧ B) ∨ (A ∧ D) ⊆

A ∧ (B ∨ D). Thus, it suffices to prove that A ∧ (B ∨ D) ⊆ (A ∧ B) ∨ (A ∧ D). For

brevity, we put T := (A∧B)∨ (A∧D). Since T ∈ Sd
C(X), it follows from Definition

3.2 that T = (C : (C : T )d)d. But A ∩ B ⊆ T . Hence, we have

(3.13) A ∩ B ⊆ (C : (C : T )d)d.

Thus, if we intersect the two sides of (3.13) with (C : T )d, we have

(A ∩ B) ∩ (C : T )d ⊆ (C : T )d ∩ (C : (C : T )d)d.(3.14)

On the other hand, by Theorem 3.1, we have

(C : T )d ∩ (C : (C : T )d)d = NC ∩ (C : T )d(3.15)

It follows from (3.14) and (3.15) that B∩(A∩(C : T )d) ⊆ NC. But by Corollary 3.1,

(C : B)d is the pseudocomplement of B with respect to NC. Thus A ∩ (C : T )d ⊆

(C : B)d. By the similar argument for D, we have A ∩ (C : T )d ⊆ (C : D)d. Thus

A ∩ (C : T )d ⊆ (C : B)d ∩ (C : D)d, and hence from (C : B)d ∩ (C : D)d ∈ Sd
C(X),

we get

A ∩ (C : T )d ⊆ (C : (C : ((C : B)d ∩ (C : D)d))d)d(3.16)

For brevity, we put S := (C : ((C : B)d ∩ (C : D))d)d. Thus, if we intersect the two

sides of (3.16) with S and using Theorem 3.1(i), we have

(3.17) (A ∩ (C : T )d) ∩ S ⊆ (C : S)d ∩ S = NC ∩ S,

and hence (C : T )d ∩ (A ∩ S) ⊆ NC. But by Corollary 3.1, (C : (C : T )d)d(= T ) is

the pseudocomplement of (C : T )d with respect to NC. Thus A ∩ S ⊆ T . Also, by

Proposition 3.2(i), we get S = (C : (C : B ∪ D)d)d, and so A ∩ S = A ∧ (B ∨ D).

Therefore A ∧ (B ∨D) ⊆ T = (A∧B)∨ (A∧D), and so the proof is completed. �
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4. Conclusion

In this paper, we introduced the notion of dual annihilator in bounded BCK-

algebras and investigated some related properties. We gave a characterization of the

dual annihilators, and established the relationship between the relative annihilators

and the dual annihilators. Also, using the above-mentioned notion, we characterized

the relative pseudocomplement of a dual ideal with respect to a normal ideal. Finally,

we defined the involutory dual ideal in bounded BCK-algebras, and showed that the

set of all involutory dual ideals with respect to a normal ideal forms a distributive

lattice.
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