
Jordan Journal of Mathematics and Statistics (JJMS) 11(4), 2018, pp 345 - 361

ON D-METACOMPACTNESS IN BITOPOLOGICAL SPACES

HAMZA QOQAZEH (1) , HASAN HDEIB (2) AND EMAD ABU OSBA (3)

Abstract. In this paper we define pairwise D-metacompact spaces and study their

properties and their relations with other topological spaces. Several examples are

discussed and many will known theorems are generalized concerning metacompact

spaces.

1. Introduction

In 1963, Kelly [7] introduced the notion of a bitopological space, i.e. a triple

(X, τ1, τ2) where X is a set and τ1, τ2 are two topologies on X. He also defined pairwise

regular (P−regular), pairwise normal (P−normal), and obtained generalization of

several standard results such as Urysohn’s lemma and Tietze extension theorem.

Several authors have since considered the problem of defining compactness for such

spaces, see Kim [8], Fletcher, Hoyle and Patty [5]. In 1969, Fletcher et. al, [5] gave

the definitions of τ1τ2−open and P−open covers in bitopological spaces. A cover Ũ of

the bitopological space (X, τ1, τ2) is called τ1τ2−open if Ũ ⊂ τ1 ∪ τ2, if in addition, Ũ

contains at least one non-empty member of τ1 and at least one non-empty member
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of τ2, it is called P−open. Also they defined the concept of P−compact space as

follows: A bitopological space (X, τ1, τ2) is called P−compact if every P−open cover

of the space (X, τ1, τ2) has a finite subcover. While in 1972, Datta [3] defined

S−compact space as follows: A bitopological space (X, τ1, τ2) is called S−compact

if every τ1τ2−open cover of the space (X, τ1, τ2) has a finite subcover. In 1969,

Birsan [1] gave the following definitions: A bitopological space (X, τ1, τ2) is called

τ1−compact with respect to τ2 if for each τ1−open cover of X, there is a finite τ2−open

subcover. A bitopological space (X, τ1, τ2) is called B−compact if it is τ1−compact

with respect to τ2 and τ2−compact with respect to τ1. In 1975, Cooke and Reilly

[2] discussed the relations between these definitions. In 1983 Fora and Hdieb [6]

introduced the definition of P−Lindelöf, S−Lindelöf, B−Lindelöf spaces in analogue

manner. They also gave the definitions of certain types of functions as follows : A

function f : (X, τ1, τ2) −→ (Y, σ1, σ2) is called P−continuous (P−open, P−closed,

P−homeomorphism, respectively), if both functions f1 : (X, τ1) −→ (Y, σ1) and

f2 : (X, τ2) −→ (Y, σ2) are continuous (open, closed, homeomorphism, respectively).

In this paper we introduce the notion of D−metacompact spaces in bitopological

spaces, and derive some related results. When (X, τ1, τ2) has the property Q this

means that both (X, τ1) and (X, τ2) have this property. For instance a bitopological

space (X, τ1, τ2) is called metacompact, if both (X, τ1) and (X, τ2) are metacompact

spaces.

We will use the letters P−, S− to denote the pairwise and semi, respectively,

e.g. P−metacompact stands for pairwise metacompact, and similarly, one can define

P−compact, P−Lindelöf, ... etc. Also, S−metacompact stands for semi metacom-

pact, and similarly, one can define S−Lindelöf, ... etc.

Also we will use the letters P − D−, S − D− to denote the pairwise−D and

semi−D, respectively, e.g. P − D−metacompact stands for pairwise

D−metacompact, S − D−metacompact stands for semi D−metacompact.
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τi−closure, τi−interior of a set A will be denoted by CLiA, IntiA respectively.

The product of τ1 and τ2 will be denoted by τ1 × τ2.

Let R, Z, N, Q denote the set of all real numbers, integer numbers, natural numbers,

and rational numbers, respectively. Let τdis, τind, τu, τs, τcoc, τcof , τl, τr denote

the discrete, the indiscrete usual, Sorgenfrey line, cocountable, cofinite, left-ray, and

right-ray topologies, respectively. Let ω0 and ω1 denote the cardinal numbers of Z

and R, respectively.

2. Pairwise D-Metacompact Spaces

In this section, we will introduce the concept of D-metacompactness in bitopological

spaces, and introduce some of their properties, and relate it to other spaces.

Let us recall known definitions which will be used in the sequel.

Definition 2.1. A subset A of topological space (X, τ) is called a D−set if there are

two open sets U and V such that U 6= X and A = U − V . In this case we say that

A is a D−set generated by U and V .

Observe that every open set U different from X is a D−set if A = U and V = φ.

Definition 2.2. A cover D̃ = {Dα : α ∈ ∆}of a topological space (X, τ) is said to

be D−cover if each Dα is a D−set for all α ∈ ∆.

In a bitopological space (X, τ1, τ2) , the D−sets generated by open sets in (X, τi)

are called τi − D−sets denoted by Dτi
.

A cover D̃ of the bitopological space (X, τ1, τ2) is called τ1τ2 − D−cover, if D̃ ⊂

Dτ1 ∪Dτ2 . If in addition, D̃ contains at least one non-empty τ1 −D set and at least

one non-empty τ2 − D set, it is called P − D−cover.

A pairwise D−cover Ṽ of a bitopological space (X, τ1, τ2) is called parallel refine-

ment of pairwise D−cover Ũ of X if each τi − D−set of Ṽ is contained in some

τi − D−set of Ũ (i = 1, 2) .
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A pairwise D−cover Ũ of the bitopological space (X, τ1, τ2) is called pairwise point

finite if each x ∈ X is contained in a finite number of τ1 − D−members of Ũ , or it

contained in a finite number of of τ2 − D−members of Ũ .

It is clear that every P−open cover with proper subsets is a P −D−cover, but the

converse needs not be true. In the bitopological space (R, τcof , τdis), {{x} : x ∈ R} is

a P − D−cover that is not P−open cover.

Definition 2.3. A bitopological space (X, τ1, τ2) is called P − D−metacompact if

every P − D−cover of the space (X, τ1, τ2) has a pairwise point finite parallel refine-

ment.

A bitopological space (X, τ1, τ2) is called S − D−metacompact if every τ1τ2 −

D−cover of the space (X, τ1, τ2) has a pairwise point finite parallel refinement.

A bitopological space (X, τ1, τ2) is called τ1−D−metacompact with respect to Dτ2

if each τ1 − D−cover of X has a point finite τ2 − D−parallel refinement.

A bitopological space (X, τ1, τ2) is called B−D−metacompact, if it is τ1−D−metacompact

with respect to Dτ2 and τ2 − D−metacompact with respect to Dτ1 .

Theorem 2.1. Every P − D−metacompact space (X, τ1, τ2) is P−metacompact.

Proof. Let Ũ = {Uα : α ∈ ∆} be a P−open cover of (X, τ1, τ2). Then Ũ is a P −

D−cover, so it has a pairwise point finite parallel refinement. Hence the result. �

Recall that: A space (X, τ) is said to be locally indiscrete if every open set is

clopen.

Definition 2.4. A bitopological space (X, τ1, τ2) is called locally indiscrete if every

τi−open set is τi−clopen (i = 1, 2).

In a locally indiscrete space (X, τ1, τ2), every τi − D−set is clopen.

The converse of above theorem is not true as we will see in the following example.
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Example 2.1. Let τ1 = {U ⊂ R : Q ⊂ U} ∪ {φ} and

τ2 = {U ⊂ R : R− U is uncountable} ∪ {φ}. Then (R, τ1, τ2) is P−metacompact

which is not P − D−metacompact.

Since the P − D−cover {{x} : x ∈ R−Q} ∪ {(−n, n) : n ∈ N} has no point finite

parallel refinement.

The following theorem shows that the converse of the above theorem can be true

under extra conditions.

Theorem 2.2. Every locally indiscrete P−metacompact bitopological space

(X, τ1, τ2) is P − D−metacompact.

Proof. Let Ũ be a P−D−cover of (X, τ1, τ2). Then Ũ = {Uα : α ∈ ∆}∪{Vβ : β ∈ Γ},

where Uα ∈ Dτ1 for each α ∈ ∆ and Vβ ∈ Dτ2 for each β ∈ Γ. Since (X, τ1, τ2) is

locally indiscrete, Uα is clopen set for each α ∈ ∆ and Vβ is clopen set for each β ∈ Γ.

Hence Ũ = {Uα : α ∈ ∆}∪{Vβ : β ∈ Γ} is a P−open cover, so it has a pairwise point

finite parallel refinement. Hence the result. �

It is clear that the locally indiscrete bitopological space (R, τind, τdis) is P−D−metacompact,

since it is P−metacompact.

Theorem 2.3. The bitopological space (X, τ1, τ2) is S −D−metacompact if and only

if it is D−metacompact and P − D−metacompact.

Proof. =⇒) Assume that (X, τ1, τ2) is S−D−metacompact. Let Ũ be a P−D−cover

of X. Then Ũ is a τ1τ2 − D−cover of the space (X, τ1, τ2). Since (X, τ1, τ2) is S −

D−metacompact,Ũ has a pairwise point finite parallel refinement. Hence (X, τ1, τ2)

is P − D−metacompact. Also any τ1 − D−cover or τ2 − D− cover of (X, τ1, τ2) is

a τ1τ2 − D−cover. Hence (X, τ1) and (X, τ2) are D−metacompact. So (X, τ1, τ2) is

D−metacompact.
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⇐=) Assume that (X, τ1, τ2) is D−metacompact and P −D−metacompact. Let Ũ

be a τ1τ2 −D−cover of (X, τ1, τ2). If Ũ is a P −D−cover, then the result follows. If

Ũ is not P −D−cover, then it is τ1 −D−cover or τ2 −D−cover of (X, τ1, τ2). Since

(X, τ1, τ2) is D−metacompact, Ũ has a pairwise point finite parallel refinement. So

(X, τ1, τ2) is S − D−metacompact. �

In a bitopological space (X, τ1, τ2), the least upper bound topology of τ1 and τ2 is

the smallest topology that contains τ1 ∪ τ2.

The following theorems can be proved easily.

Theorem 2.4. The bitopological space (X, τ1, τ2) is S −D−metacompact if and only

if (X, τ) is D−metacompact, where τ is the least upper bound topology of τ1 and τ2.

Corollary 2.1. The bitopological space (X, τ1, τ2) is S−metacompact if and only if

(X, τ) is metacompact, where τ is the least upper bound topology of τ1 and τ2.

Theorem 2.5. If a bitopological space (X, τ1, τ2) is B − D−metacompact, then both

(X, τ1) and (X, τ2) must be D−metacompact spaces.

Corollary 2.2. If a bitopological space (X, τ1, τ2) is B−metacompact, then both

(X, τ1) and (X, τ2) must be metacompact spaces.

Recall that a space has a hereditary property P, if every subspace of it has this

property.

Theorem 2.6. If a bitopological space (X, τ1, τ2) is hereditary D−metacompact, then

it is S − D−metacompact.

Proof. Let Ũ be a τ1τ2−D−cover of (X, τ1, τ2). Then Ũ = {Uα : α ∈ ∆}∪{Vβ : β ∈ Γ},

where Uα is a τ1 − D set for each α ∈ ∆ and Vβ is a τ2 − D set for each β ∈ Γ. Let

U =
⋃

α∈∆

Uα. If U is finite, we are done. Else write Uα = Kα−Wα where Kα , Wα ∈ τ1
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and Kα 6= X. We can write Uα = Kα∩U −Wα ∩U . Let Ω = {α ∈ ∆ : Kα ∩ U = U}

. So the sets {Uα : α ∈ ∆ − Ω} is a family of D−sets in U . If x ∈ U −
⋃

α∈∆−Ω

Uα.

Let y ∈ U − {x}. So there exists an open set Ox in τ1 such that x ∈ Ox ∩ U and

y /∈ Ox. Let Úαx
= (Ox ∩ Kαx

∩ U) − Wαx
∩ U ⊆ Uαx

, where x ∈ Uαx
∈ Ũ . Now;

{Uα : α ∈ ∆ − Γ} ∪

{

Úαx
: x ∈ U −

⋃

α∈∆−Ω

Uα

}

is a D−cover for U . Similarly, we

can do the same for the τ2 − D−cover for V =
⋃

β∈Γ

Vβ.

Since U is τ1 − D−metacompact, it has a point finite parallel refinement say
{

U∗

α : α ∈ ∆
′
}

and U =
⋃

α∈∆
′

U∗

α.

Similarly, since V is τ2−D−metacompact, it has a point finite parallel refinement

say
{

V ∗

β : β ∈ Γ
′
}

and V =
⋃

β∈Γ
′

V ∗

β .

Hence,
{

U∗

α : α ∈ ∆
′
}

∪
{

V ∗

β : β ∈ Γ
′
}

is a τ1τ2−D−point finite parallel refinement

of Ũ . Hence the result. �

Definition 2.5. A bitopological space (X, τ1, τ2) is called P − D−Lindelöf if every

P − D− cover of the space (X, τ1, τ2) has a countable subcover.

A bitopological space (X, τ1, τ2) is called S−D−Lindelöf if every τ1τ2 −D − cover

of the space (X, τ1, τ2) has a countable subcover.

A bitopological space (X, τ1, τ2) is called τ1 − D−Lindelöf with respect to Dτ2 if

for each τ1 − D−cover of X, there is a countable τ2 − D−subcover.

A bitopological space (X, τ1, τ2) is called B − D−Lindelöf

if it is τ1 − D−Lindelöf with respect to Dτ2 and τ2 − D−Lindelöf with respect to

Dτ1 .

Example 2.2. Consider the two topologies τ1 and τ2 on R defined by the basis:

ß1 = {(−∞, a) : a > 0} ∪ {{x} : x > 0}

ß2 = {(a,∞) : a < 0} ∪ {{x} : x < 0}

Then X is P−metacompact, P − D−metacompact but not a B−metacompact,

since for the τ1−open cover {(−∞, 2)} ∪ {{x} : x > 1}of R has no point finite
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τ2−open refinement. So it is not a B − D−metacompact. It is clear that both

(R, τ1) and (R, τ2) are D−metacompact spaces, so (R, τ1, τ2) is D−metacompact.

Observe that (R, τ1, τ2) is S−metacompact, S − D−metacompact. On the other

hand we have (R, τ1, τ2) is countably P − D−metacompact. Now we observe that

(R, τ1, τ2) is P−Lindelöf, P − D−Lindelöf, it is also clear that (R, τ1, τ2) is not

B−Lindelöf, and not Lindelöf, so it is not B − D−Lindelöf.

Definition 2.6. A subset D of a bitopological space (X, τ1, τ2) is called pairwise

dense denoted by (P−dense ) in X , if CLτ1D = CLτ2D = X.

A bitopological space (X, τ1, τ2) is called P−separable, if it has a P−dense count-

able subset D.

Definition 2.7. A subset A of a topological space (X, τ) is called D−dense, if for

all x ∈ X and every D−set Dx containing x we have Dx ∩ A 6= φ.

It is clear that every D−dense set is dense. The converse is not true, since in

(R, τcof) the set of all irrational numbers k = R−Q is dense but not D−dense, since

{5} is a D−set and k ∩ {5} = φ.

Definition 2.8. A subset A of a bitopological space (X, τ1, τ2) is called pairwise

D−dense, if for all x ∈ X and every τi−D−set Dx containing x we have Dx∩A 6= φ,

(i = 1, 2).

A bitopological space (X, τ1, τ2) is called P −D−separable, if it has a P −D−dense

countable subset D.

It is clear that the bitopological space (Z, τu, τcof) is P − D−separable.

Theorem 2.7. A P − D−separable, P − D−metacompact space (X, τ1, τ2) is P −

D−Lindelöf.
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Proof. Let Ũ = {Uα : α ∈ ∆} be a P − D− cover of X. Assume that Ũ has no

countable subcover. Let Ṽ = {Vβ : β ∈ Γ} be a point finite parallel refinement of Ũ .

Let D be a countable D−dense subset of X. Then Vβ ∩D 6= φ for each β ∈ Γ. Thus

Ṽ is countable set. So, we may write Ṽ = {Vi : i ∈ N}. But for each i ∈ N, we have

Vi ⊆ Uαi
for some αi ∈ ∆. Thus X =

⋃

i∈N

Vi ⊆
⋃

i∈N

Uαi
⊆ X. Hence {Uαi

: i ∈ N} is a

countable subcover of Ũ . �

Since every P−open cover is P − D−cover, The following corollaries are easily

proved.

Corollary 2.3. A P−D−separable, P−D−metacompact space (X, τ1, τ2) is P−Lindelöf.

Corollary 2.4. A P−separable, P−metacompact space (X, τ1, τ2)

is P−Lindelöf.

The last corollary can be also found in [11].

Example 2.3. (1) The bitopological space (N, τdis, τind) is P −D−metacompact, S −

D−metacompact, not B − D−metacompact, D−metacompact space since (N, τdis)

and (N, τind) are D−metacompact. It is also countably P − D−metacompact, not

countably B − D−metacompact. On the other hand (N, τdis, τind)

is P − D−Lindelöf, P−separable, and so, it is P − D−separable.

(2) The bitopological space (R, τdis, τu) is P − D−metacompact,

B−D−metacompact, D−metacompact space since (R, τdis) and (R, τu) are D−metacompact.

It is also countably P − D−metacompact, countably B − D−metacompact. It is not

P−separable, so it is not P − D−separable. It is clear that (R, τdis, τu) is neither

P−Lindelöf nor P−compact. It is not P−countably compact. So (R, τdis, τu) is nei-

ther P −D−Lindelöf nor P −D−compact. Also it is not P −D−countably compact.

Theorem 2.8. Every P−D−Lindelöf countably P−D−metacompact space (X, τ1, τ2)

is P − D−metacompact.
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Proof. Let Ũ = {Uα : α ∈ ∆} be a P −D−cover of X. Since X is P −D−Lindelöf, Ũ

has a countable subcover Ṽ = {Vαi
}∞i=1

. Since X is countablyP−D −metacompact,Ṽ

has a point finite parallel refinementW̃ of Ũ . Hence (X, τ1, τ2) isP−D −metacompact.

�

Since every P−open cover is P − D−cover, the following corollaries are easily

proved.

Corollary 2.5. Every P − D−Lindelöf countably P − D−metacompact space

(X, τ1, τ2) is P−metacompact space.

Corollary 2.6. Every P−Lindelöf countably P − D−metacompact space

(X, τ1, τ2) is P−metacompact.

Corollary 2.7. Every P−Lindelöf countably P−metacompact space (X, τ1, τ2) is

P−metacompact.

The last corollary can be also found in [11].

It is clear that the bitopological space (Z, τdis, τind) is P − D−metacompact, since

it is countably P − D−metacompact and P − D−Lindelöf.

Theorem 2.9. Every P − D−metalindelöf, countably P − D −metacompact space

(X, τ1, τ2) is P − D−metacompact space.

Proof. Let Ũ = {Uα : α ∈ ∆} be a P−D−cover of X. Since X is P−D−metaLindelöf,

Ũ has a point countable parallel refinementṼ = {Vαi
}∞i=1

, which is also a P − D −

cover of (X, τ1, τ2). Since X is countably P −D−metacompact,Ṽ has a point finite

parallel refinementW̃ of Ũ .

Hence (X, τ1, τ2) is P − D −metacompact. �

Corollary 2.8. Every P − D −metalindelöf, countably P − D−metacompact space

(X, τ1, τ2) is P−metacompact space.
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Corollary 2.9. Every P−metalindelöf, countably P − D −metacompact space

(X, τ1, τ2) is P−metacompact space.

Corollary 2.10. Every P−metalindelöf, countably P−metacompact space

(X, τ1, τ2) is P−metacompact space.

The last corollary can be also found in [11].

The following theorem is easily proved.

Theorem 2.10. Every D−metaLindelöf, countably D−metacompact space

(X, τ1, τ2) is D−metacompact space.

Theorem 2.11. Every P − D−compact space (X, τ1, τ2) is P−compact.

Proof. Let Ũ = {Uα : α ∈ ∆} be a P−open cover of (X, τ1, τ2). Then Ũ is a P −

D−cover, and so it has a finite subcover. Hence the result. �

The converse of above theorem is not true as we will see in the following example.

Example 2.4. Let X = R, τ1 = {φ, X , {1} , {1, 2}}, τ2 = τcof . Then (R, τ1, τ2) is

P−compact but not P − D−metacompact, for the P − D−cover {{x} : x ∈ R} of R

has no finite subcover.

Example 2.5. Let X = R, ß1 = {X } ∪ {x} : x ∈ X − {0}},

ß2 = {X} ∪ {x} : x ∈ X − {1}}. Let τ1 and τ2 be the topologies on X which are

generated by the bases ß1 and ß2, respectively. Then (R, τ1, τ2) is P−D−metacompact

and countably P−D−metacompact. On the other hand, (R, τ1, τ2) is not P−Lindelöf,

since the P−open cover {{x} : x ∈ X} of X has no countable subcover. It is clear

that (R, τ1, τ2) is not P−compact, since the P−open cover {{x} : x ∈ X} of X has

no finite subcover, it is not compact space. So (R, τ1, τ2) is not P − D−Lindelöf nor

P − D−compact.
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The following definitions can be found in [10] and [6].

Example 2.6. (1) The bitopological space (R, τdis, τcoc) is P−metacompact, not B−metacompact,

since the τ1−open cover {{x} : x ∈ R}of R has no point finite τ2−open refinement.

Also it is P − D−metacompact

and B − D−metacompact. It is also countably P−metacompact. It is clear that

(R, τdis, τcoc) is not P −D−Lindelöf space which is neither P−countably compact nor

P−compact. So (R, τdis, τcoc) is P−Lindelöf space which is neither P −D−countably

compact nor P − D−compact.

(2) Let τs denotes the Sorgenfrey line topology on R.Then the bitopological space

(R, τs, τu) is S − D−Lindelöf, so it is P − D−Lindelöf and D−Lindelöf. Also it is

P −D−separable, so (R, τs, τu) is P −D−metacompact. It is clear that (R, τs, τu) is

not B−metacompact, since the τu open cover {(−n, n) : n ∈ N} of R has no point

finite τs−open refinement, because τs  τu. It is also clear that (R, τs, τu) is neither

S − D−compact nor S − D−countably compact.

Remark 1. It is clear that every P − D−paracompact (S − D−paracompact) space

is P − D−metacompact (S − D−metacompact).

Theorem 2.12. If the bitopological space (X, τ1, τ2) is P − D−metacompact, then

each τ1−closed subset of X is τ2−D−metacompact relative to X, and each τ2−closed

subset of X is τ1 − D−metacompact relative to X.

Proof. Let K 6= φ be a τ1−closed subset of X and Ũ = {Uα : α ∈ ∆} be a τ2 −

D−cover of K. Then Õ = {X − K} ∪ {Uα : α ∈ ∆} is a P − D−cover of X. Since

(X, τ1, τ2) is P − D−metacompact, Õ has a pairwise point finite parallel refinement,

say {Vβ : β ∈ Γ} ∪ {U∗

α : α ∈ ∆}, where Vβ is a τ1 − D−sets for each β ∈ Γ, and U ∗

α

is a τ2 −D−for each α ∈ ∆. Thus {U ∗

α : α ∈ ∆} is a point finite parallel refinement

of Ũ . Hence K is a τ2 − D−metacompact relative to X. The proof of other case is

similar. �
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Corollary 2.11. If the bitopological space(X, τ1, τ2) is P−metacompact, then each

τ1−closed subset of X is τ2 − D−metacompact relative to X, and each τ2−closed

subset of X is τ1 − D−metacompact relative to X.

3. Product of D-metacompact Bitopological Spaces

Definition 3.1. A function f : (X, τ1, τ2) −→ (Y, σ1, σ2) is called

P−continuous (P− open, P−closed, P−homeomorphism, respectively) if the func-

tions f : (X, τ1) −→ (Y, σ1) and f : (X, τ2) −→ (Y, σ2) are continuous (open, closed,

homeomorphism, respectively).

Definition 3.2. A function f : (X, τ1, τ2) −→ (Y, σ1, σ2) is called

P−perfect, if the function f is P−continuous, P−closed, and for all y ∈ Y , the

set f−1 (y) is P−compact.

Theorem 3.1. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a P−perfect function. If X is

locally indiscrete space, then X is P − D−metacompact space if Y is so.

Proof. Let Ũ = {Uα : α ∈ ∆} ∪ {Vβ : β ∈ Γ} be any P − D−cover of X, where

{Uα : α ∈ ∆} is a set of τ1 − D−members of Ũ and {Vβ : β ∈ Γ} is a set of τ2 −

D−members of Ũ .

Now, since f is P−perfect, for every y ∈ Y we have f−1 (y) is P−compact subset

of X. So there exist finite subsets ∆1 and ∆2 of ∆ and Γ respectively such that

f−1 (y) ⊆ {
⋃

Uαi
: αi ∈ ∆1}

⋃

{
⋃

Vβi
: βi ∈ ∆2}. Now;

Oy1
= Y − f (X −

⋃

Uαi
: αi ∈ ∆1) is a τ1−open subset of Y and f−1 (Oy1

) ⊆

{
⋃

Uαi
: αi ∈ ∆1}.

Oy2
= Y − f (X −

⋃

Vβi
: βi ∈ ∆2) is a τ2−open subset of Y and f−1 (Oy2

) ⊆

{
⋃

Vβi
: βi ∈ ∆2}.

y ∈ Oy1
∪ Oy2

. So, Õ = {Oy1
: y ∈ Y } ∪ {Oy2

: y ∈ Y } is a P−open cover of Y .

Since Y is P − D−metacompact, Õ has a pairwise point finite parallel refinement
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Õ∗ =
{

O∗

y1
: y ∈ Y

}

∪
{

O∗

y2
: y ∈ Y

}

.

Now, O∗

y1
is a τ1 − D−open subset of X and O∗

y2
is a τ2 − D−open subset of X.

Since f is perfect, the set
{

f−1
(

O∗

y1

)

: y ∈ Y
}

∪
{

f−1
(

O∗

y2

)

: y ∈ Y
}

is a pairwise

point finite parallel refinement of X. So, X is P − D−metacompact. �

Corollary 3.1. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a P−perfect function. Then X

is P−metacompact space if Y is so.

The last corollary can be also found in [11].

Definition 3.3. Let (X, τ1, τ2) and (Y, σ1, σ2) be bitopological spaces. Then the

Cartesian product of (X, τ1, τ2) and (Y, σ1, σ2) is the bitopological space (X × Y, τ1 × σ1, τ2 × σ2).

Lemma 3.1. If A is a compact subset of a topological space (X , τ) and B is a

compact subset of a topological space (Y , σ) and A × B ⊆ W ; where W is an open

subset of X × Y , then there exist open sets U and V in X andY respectively such

that A × B ⊆ U × V ⊆ W .

Theorem 3.2. Let (X, τ1, τ2) and (Y, σ1, σ2) be bitopological spaces. If X is a

Hausdorff compact, then the projection function P : X × Y −→ Y is P−closed .

Proof. To show that the projection function P : X × Y −→ Y is P−closed,

we show that the projection functions P1 : (X × Y, τ1 × σ1) −→ (Y, σ1) and P2 :

(X × Y, τ2 × σ2) −→ (Y, σ2) are closed. Let y ∈ Y and let U be an open set in

(X × Y, τ1 × σ1) such that P−1

1
({y}) ⊆ U . So by ( Wallace lemma ), there exists a

σ1−open set inY say Vy such that P−1

1
({y}) = X × {y} ⊆ X × Vy ⊆ U . So, y ∈ Vy

and P−1

1
(Vy) = X ×Vy ⊆ U . So, P1 : (X × Y, τ1 × σ1) −→ (Y, σ1) is closed function.

Similarly, we have P2 : (X × Y, τ2 × σ2) −→ (Y, σ2) is closed function. Hence, the

projection function P : X × Y −→ Y is P−closed. �
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Theorem 3.3. Let (X, τ1, τ2) and (Y, σ1, σ2) be bitopological spaces such that X is

a compact Hausdorff space and Y a P − D−metacompact space. Then X × Y is a

P − D−metacompact.

Proof. First, we know that the projection function P : X×Y −→ Y is P−continuous

and for all y ∈ Y , we have P−1 {y} = X × {y} ' X is P − D−compact. Then

P : X × Y −→ Y is P−perfect function. Since Y is P − D−metacompact, then

X × Y is P − D−metacompact by Theorem 3.2. �

Corollary 3.2. The product of a compact Hausdorff bitopological space and

a P−metacompact bitopological space is P−metacompact.

The last two corollaries can be also found in [11].

Example 3.1. The bitopological space (R, τcof , τdis) is P−compact, so it is P−metacompact

but not P−D−compact. Also it is B−D−metacompact, D−metacompact space since

both (R, τcof) and (R, τdis) are D−metacompact.

The space (R2, τcof × τcof , τdis × τdis) is P − D−metacompact, but not P−compact

nor P−Lindelöf, since the P−open cover

{R× (R− {0})} ∪ {(x , 0) : x ∈ R} for R2 has no countable subcover. Hence the

space (R2, τcof × τcof , τdis × τdis) is not P − D−compact nor P − D−Lindelöf.

Lemma 3.2. Let f : (X, τ) −→ (Y, σ) be a continuous, onto function. If Ã =

{Aα : α ∈ ∆} is a point finite family subset of X, then {f (Aα) : α ∈ ∆} is a point

finite family subset of Y.

Theorem 3.4. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a P−continuous, P−closed, onto

function and Y is locally indiscrete space. Then Y is P − D−metacompact, if X is

so.



360 HAMZA QOQAZEH, HASAN HDEIB AND EMAD ABU OSBA

Proof. Let Ṽ = {Uα : α ∈ ∆} ∪ {Vβ : β ∈ Γ} be any P − D−cover of Y , where

{Uα : α ∈ ∆} are σ1 −D−members of Ṽ and {Vβ : β ∈ Γ} are σ2 −D−members of

Ṽ . Since f is P−continuous, onto function, the set

Ũ = {f−1 (Uα) : α ∈ ∆} ∪ {f−1 (Vβ) : β ∈ Γ} is a P−open cover of X.

Since X is P − D−metacompact space, there exists a pairwise point finite open

parallel refinement of Ũ , say Ũ∗ = {f−1 (U∗

α) : α ∈ ∆} ∪
{

f−1
(

V ∗

β

)

: β ∈ Γ
}

. Thus,

Ṽ ∗ = {U∗

α : α ∈ ∆}∪
{

V ∗

β : β ∈ Γ
}

is a pairwise point finite parallel refinement of Ṽ .

So, Y is P − D−metacompact. �

Corollary 3.3. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a P−continuous, P−closed, onto

function. Then Y is P − D−metacompact, if X is P−metacompact .

Corollary 3.4. Let f : (X, τ1, τ2) −→ (Y, σ1, σ2) be a P−continuous, P−closed, onto

function. Then Y is P−metacompact, if X is so.
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